

c. Sketch approx dist of
$$\sqrt{(xBAR - 170)} / (25 / root(100))$$
. Label mean and sd of your sketch.

d. Give a 68% a 95% and a 2.5% region in your sketch (c).

2. Refer to (1).

3-5core
$$\frac{187.6-170}{2.5} = \frac{17.6}{2.5} = 7.04$$
 is $P(\bar{\chi} < 187.6)$
 $= P(\bar{\chi} - 170) < \frac{187.6-170}{2.5} > \frac{187.6-170}{2$

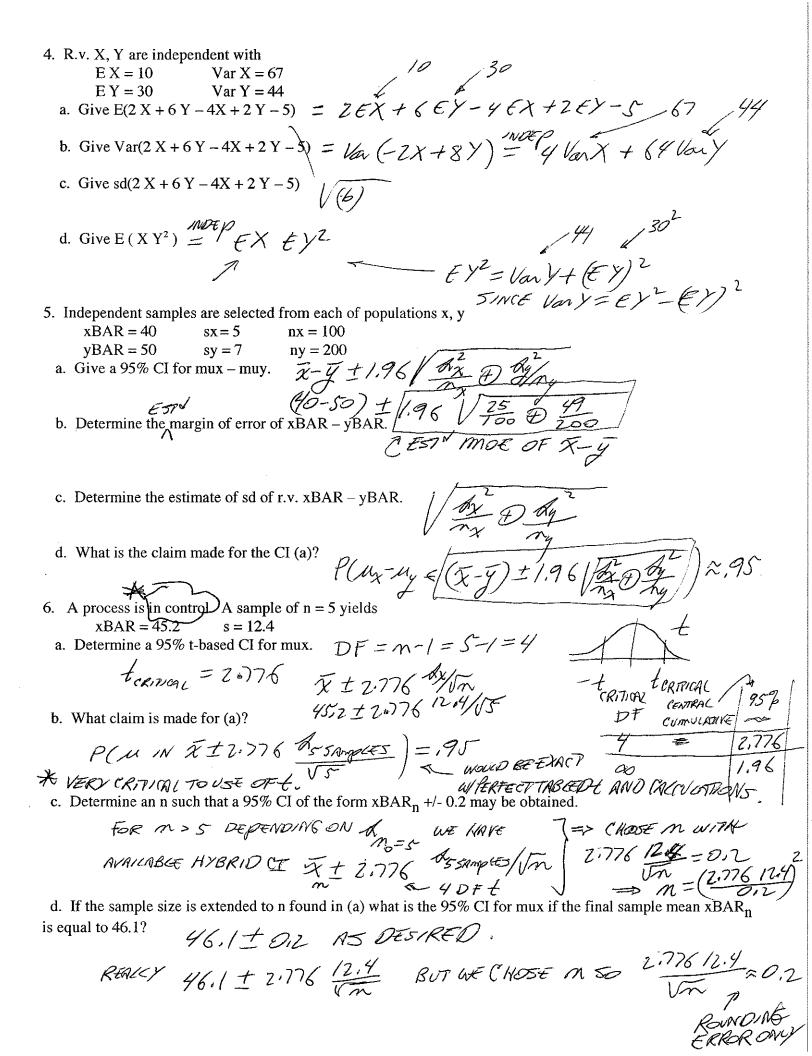
3. A sample of 50 is/selected with replacement for score x = accumulated days of sick leave. From this sample we find xBAR = 181.4 and sample sd s = 18.2.

population mean mu
$$E = 7^d 8 y = 181.4$$

population sd sigma $E = 7^d 8 y = 18.2$
expected value of xBAR = $U = 18.2$
sd of r.v. xBAR = $V_{TM} = 18.2$
 $V_{TM} = 18.2$
 $V_{TM} = 18.2$

b. Determine a 95% CI for population mean mu.
$$\bar{\chi} \pm 1.96$$
 (8.17) = 181.4 ± 1.96 (8.77)

b. Determine a 95% CI for population mean mu.
$$\chi \pm 1.96$$
 $\sqrt{50}$ = 181.4 ± 1.96 $\sqrt{50}$


c. What claim is made for the CI methods employed in (b)?
$$P(u \times 95\% CI FR M) \approx .6$$

c. What claim is made for the CI methods employed in (b)?
$$P(u \times 95\% \text{ CI } FeR \times 1) \approx .95$$

$$e P(u \times 10 \times \pm 1.96 \text{ Nm}) \approx .95 \text{ (LANNOT } 50\text{ N}) \approx .95$$
d. What is the margin of error of xBAR?

$$E5P^{\alpha} \text{ MOE} = 4PUF \text{ WIDTIN OF } 95\% \text{ CI } ABOVE$$

$$17 \text{ Is o or } 1 \text{ (...)}$$

7. A population has		FRAC, MEN IN	Bp = 500	$\frac{1}{1000} = \frac{1}{3}$
mean age men = 55.4 mean age women = 62.4	Nmen = 500 Nwomen = 1000		50011	
a. Determine the mean age of the		= & Mmen 7	7 2 KNOWN	=N/
		\$ (55.4)+		
b. Give the proportionally strati				
xBARmen = 52.5				- f mEN
xBARwomen = 64.3		I STRAPIFIED S N, JAME AS T		
50 天 = 1	$\frac{1}{3}(52.5) + \frac{2}{3}$	(64.3). WE &	DO NOT NEED DOLM:	<i>770</i>
c. Give the sample mean age for	the sample in (b).			
SAME AS	(6), THE PROP POP MEN	ON MISTRATIFIED	ESTIMATE & THE SAMPS	OF OFTRALC FMEAN.
d. Give the number of men in th	e sample if the overall s	ample size in (b) is 30	10. 1/20	(0) = 100
			3 (2%)) - , -
VSE e. Determine a 95% CI for the o	verall population mean	based on the stratified	estimate (b) if th	e samples give
sample sd sMEN = 6.2 sample sd sWOMEN = 7.4	文 ±1.96包	51 50 OF X	~ E570 50	OF 3X+3Xw
	From (b) $ \frac{1}{x} = \frac{1}{1},96 = \frac{6}{12} $ e in kiln, $y = \text{strength of } \frac{1}{12}$	20 D 7.42	15/(3)	2/2 /2/2/2
8. A sample of 45 pairs ($x = time$	e in kiln, $y = $ strength of	glaze) finds	V < >	nm (3) -w
xBAR = 2.5 $sx = 0.9$	 0.7		DECAUSE	WE ARE NO EACH
yBAR = 6.1 sy = 1.3 It is known that the population m	r = 0.7 ean mux = 2.3.		STRA	TUM //
a. The regression estimate of mu	ıy is			
yBAR + (mux – xBAR Give the estimated margin of erro	•	/	9/1/12	- dy
		//	10 11-12	Vn
		= 1.96 //	1-,72/13	V
b. By what factor is the margin of	of error of the regression	•	<i>(/ .</i>	error of
YBAR? FACTOR 15 1/	1-,72 x,76	AL50]		
, , , , , , , , , , , , , , , , , , , ,	,,			
c. If the estimator yBAR require	<u>-</u>	a given precision in e	stimating muy are	ound how many
samples are required by the regre	, // //	1 /20 -	1 1/0	20 - 2 - 0
TO REDUCE BY FACTOR:		.72/100-	1-,49	7-200
REGAURES MINEREASE 9. Given data	1 y =	11/05		2 dy = 3
xBAR = 4 sx = 3			4 = 3	1 COINCIDENCE
$yBAR = 7 \qquad sy = 5$	r = 0.6	REGRLINE	12-3	С.
a. Sketch a regression line of y	on x.	+++++++++++++++++++++++++++++++++++++++		$-\chi$
		7		١ ، ١٨
b. For each increase of 5 in x w	hat is the average increa	se in y (according to t	the regression line)! 510P=3=1
b. For each increase of 5 in x w	> X+3 PROLUCES	y → y +5 (ON	KFGR CINT	(YINCREASES)
				e'

10. Manufactured parts are classified as Best, Good, Average, Worst. We wish to prepare a random sample of 40 parts in order to test the hypothesis that the probabilities of these categories have remained at their established levels 0.2, 0.3, 0.3, 0.2.

a. Determine the expected count for category Best. Is it at least 5? If so, none of the four categories will cause trouble with the 5-criterion, so we may proceed to sampling 40.

EXPECT (0.2)40 = 8 IN BEST (WITH RANDOM SANGE OF 40)

b. The sample data finds observed counts 4, 12, 14, 10. Determine the contribution of category Best to a chi-

square test of the model.

X2 = [(O-E) CATEGORY (CELL) "BEST"

4 CELLS CONTRIBUTES (4-8) 7/8 = 1/8

c. Determine DF for test (b). DF = k - l = 4 - l = 3RUBRIC'

NOUL NYP MODEL

FOLL MODEL P₁ P₂ P₃ P₄ 15 SPECIFIED BY P₁ P₂ P₃ . HAS OF REE

DETERMINETER

d. Use chi-square table to evaluate pSIG if the chi-square statistic works out to 6.1 (it does not).

PSIG = P(X2 >6.1) >.100 BY TABLE VII (OFFTABLE)

e. From (d) what action is taken if we test the null hypothesis H0 that the given model is correct? FOR REJ. Ho: $\{.2, .3, .3, .2\}$ IF $f_{SIG} < \alpha = .05(SAY)$. IN TAIS CASE WE FAIL TO REJECT HOSINCE . 10 15 NOTCES THAN .05.

11. Same setup as (10) except we wish to test the null hypothesis H0: p1 = p4 and p2 = p3. That is, the

probabilities are symmetric as were 0.2, 0.3, 0.3, 0.2. As in (10b) suppose observed counts 4, 12,14, 10.

a. Determine the expected count for category Best. Hint: If the probabilities are symmetric we estimate

p1 = p4 = (4 + 10) / (2 40) = 7 / 40p2 = p3 = (12 + 14) / (240) = 13 / 40 (all together sum to one). FIRST ESPIMATE PI = 41/0 = 40

b. Determine the contribution of category Best to the chi-square statistic.

c. Determine the DF of the chi-square test of H0: the probabilities are symmetric.

DF = #ARAMITIK - # PARAMITHO = 3-1=2

d. Are all expected counts at least 5?

BEST E. 15 7 (SOME AS WORSD)
GOOD EC 15 13 (AVG OF 12 AND 14)
YES!

GOOD E_C 15 13 (AVG OF 12 ANO 14) $= 5NCE \rho_2 = (1-2\rho_1)$ 12. A process is in statistical control. Based on a sample of n = 5 we will test the null hypothesis that mu versus the alternative that mu is no 8.4 (2-sided) at alpha = 0.1.

a. Sketch the curve P(test rejects H0 | mu) vs mu. In your sketch clearly identify H0 and alpha.

TES1

b. For your sketch, locate mu = 9.7 on the mu-axis if the power there is 0.8. Do this by eye. Clearly show the power in your sketch.

c. In (b) show the type two error beta at mu = 9.7.

13. Refer to 12.
a. Give the t-value (critical value) required from the table for this two-sided t-test with alpha = 0.1 and n = 5 .
m=5 DF=m-1=4 2TAILED TEST P(1+
m=5 DF=m-1=4 27A/LED TEST P(testinal >
b. If the data is xBAR = 8.7, sx = 0.4 what is the t-statistic? $OF = 9$
$t - x - u_0 = 8.7 - 8.4$
b. If the data is xBAR = 8.7, sx = 0.4 what is the t-statistic? $ \frac{\mathcal{L}}{\text{SINT/SP/C}} = \frac{\bar{\chi} - \mathcal{M}_0}{\text{A/VN}} = \frac{8.7 - 8.4}{0.4/15} \text{REJECT Ho} = \frac{1}{5000} \times \frac{1}{2.132} $
c. If the t-statistic works out to 2.5 (it does not) what action will the test take and why?
c. If the t-statistic works out to 2.5 (it does not) what action will the test take and why? 2.5 > 2.132 So REJECT Ho: $1.28.4$ ISING $2-510ED$ t-TEST FOR $1.28.4$ ISING $1.28.4$ IS
d. If the t-statistic works out to -2.5 (it decidedly does not) what action will the test take and why?
-2,5 > 2,132 SO REJECT HO AS WITH (1),
14. A sample of electronic modules i = 1 to 100 are each scored for yi = reliability
x1i = 1 if supplier A 0 if supplier B
x2i = insulation value of the circuit board
x3i = price
$x3i = price$ A least squares fit is made to the data finding estimated model $y = 0.4 - 0.1 \text{ x} 1 + 0.6 \text{ x} 2 + 0.2 \text{ x} 3 \text{ (i.e. betaHAT values } 0.4, -0.1, 0.6, 0.2)}.$ Taking the fitted model at face value,
$y = 0.4 - 0.1 \text{ x}1 + 0.6 \text{ x}2 + 0.2 \text{ x}3 \text{ (i.e. betaHAT values } 0.4, -0.1, 0.6, 0.2).}$
a. What is the indicated average change in reliability switching from supplier A to supplier B? -O.1 X1 GOES FROM (-O.1) (FOR A) TO(-O.1) (O) (FOR B) 50 SWINGHAME
To SUPPLIER B INCREASES (MODEL) MEAN RECIABILITY O.I. b. What is the combined indicated average change in reliability switching from supplier A to supplier B while
at the same time doubling insulation value of the circuit board? Since the model is linearly XI,XL
THE (MODEL) EFFECTS ROD. ANS. 0.1 + 0.6 (2/2-X2) = 0./+0.6 X2
TAIS DEPENDS ON X2. c. What is the fitted value for a module supplied by B, with board insulation value 5.2 and price 1.34?
y=0.4-0.1(0)+0.6(5.2)+0.2(1.34)
d. Refer to (c). What is the residual for that module if its reliability (determined by testing it) is $y = 3.51$?
$y-\hat{y} = 3.51-(c)$.
e. If this sample was with replacement and equal probability on modules on hand and if it were known that the
population mean values for all such parts were
mu of $x1$ = fraction of parts supplied by $A = 0.4$
mu of x^2 = average insulation value of all parts = 9.3
mu of $x3$ = mean price of all parts = 2.67 what would be the regression-based estimate of the population mean muy?
SIMPLY INSERT INFORMATION ON X-MEANS INTO FITTED MODEL. CORPEN
f. If the multiple correlation (i.e. the correlation between y and fitted y values) is 0.8 and the sample sd of
residuals is 1.4 what is the estimated margin of error of (d)?
11-R = 11-08 Than male
SIMPLY INSERT INFORMATION ON X-MEANS INTO FITTED IMODE (CORRECTION of the multiple correlation (i.e. the correlation between y and fitted y values) is 0.8 and the sample sd of the residuals is 1.4 what is the estimated margin of error of (d)? $ \sqrt{1-R^2} = \sqrt{1-8^2} = \sqrt{1-8^2} $ About the sample sd of the graph of of the