
STT 351 HW5
Due at the close of class 10 - 8 - 08.

Define function x/y2 + y for 0 < x < 1 and 1 < y < 2.

a.  Integrate the above function over the indicated domain of x, y values.

b.   From  the  above,  determine  the  probability  density  f(x,  y)  (or  fX, Y Hx, yLL that  is  a  constant
multiple of the function given there.

f(x, y) := 47 (x/y2 + y) (non-negative and integraltes to one)

Determine

c.  E X = Ÿ Ÿ x f Hx, yL „ x „ y

d.  E Y

  
 e.  E X2 = Ÿ Ÿ x2 f Hx, yL „ x „ y

  
 f.  E Y2

  
 g.  E (XY) = Ÿ Ÿ xy f Hx, yL „ x „ y

 
  
 h.  Var X
5/14 - H11 ê21L 2
 
 
 
 i.  sX = sd X
root of (h) 
 
 
 
j.   Var Y
17/7 - H4 ê3 + 2 HLog@2DL ê 7L 2
  
 k.  sY  = sd Y
root of (j) 
 
 
l.  Covariance of X with Y defined by E(XY) - (E X)(E Y)
2
21  H7 + Log@4DL - (11/21) (4 ê3 + 2 HLog@2DL ê 7L
 
  
m.  Covariance of X with X
(7/4) - (11/21) (11/21)  (just Var X)
 
n.   Correlation between X, Y defined by EXY- HE XL HE Y L

sX sY
2
21  H7+Log@4DL-H11ê21L H4ê3+ 2 HLog@2DL ê 7L
5ê14-H11ê21L 2  17ê7-H4ê3+ 2 HLog@2DL ê 7L 2

o.  marginal density for X defined by fXHxL = Ÿ1
2 f Hx, yL „ y

for 0 < x < 1.

p.  conditional density of y GIVEN x defined fy † xHyL = f Hx, yLfXHxL  

q.  conditional mean of y GIVEN x defined EIY † X = xL = Ÿ y fy † xHyL „ y

r.  using the definitions, prove that in general E Y = E (E(Y † X)), i.e.
                   Ÿ y fY HyL „ y = Ÿ  ( Ÿ y fy † xHyL „ y) fXHxL „ x
                         E Y                  E(Y † X = x)

Let's again calculate E Y directly from the joint density:               

 
For  comparison,  calculate  E  Y  from  the  marginal  density  for  Y.   In  Mathematica  it  is  neither
necessary nor convenient to use the subscripted notation fY HyLfor this density.  We'll just have to
pay attention when using f[y] to denote this density in Mathematica. 

Once again, we obtain the same expectation E Y by either of the two methods.  But there is even
a third way to calculate E Y.  It is to:

       For each value X = x calculate the conditional expectation of Y for that value x.  That
produces a function of x denoted E(Y † X = x).  This fuction of x, when evaluated at random
variable  X  is  denoted  E(Y  †  X).   The  expectation  of  this  r.v.  is  written  E  E(Y  †  X)  and  is
equal to E Y.  This may seem puzzling because we are, in the final step, calculating E Y (a y-
integral) as an x-integral 
                       E Y = E E(Y † X) = Ÿ ‚x fXHxL [ E(Y † X = x) ].

You can see why it works by carefully looking at the following.  I'll use some additional brackets
[ E[Y † X = x ] ] to keep track of that portion of the integrand.
         E[Y † X ] = Ÿ „ x fXHxL [ E(Y † X = x) ] = Ÿ „ x fXHxL [ Ÿ „ y  y fY † XHy † xL ]

          = Ÿ „ x fXHxL [ Ÿ „ y  y fX, Y Hx, yLfX,HxL ] = Ÿ „ x fXHxL [ Ÿ „ y  y fX, Y Hx, yLfX,HxL ]  = E Y 
 Here is the calculation of E Y done htis third way: 

E E(Y † X) above.

The whole idea of E Y = E E(Y † X) is really very simple.  Say I want to calculate the mean of Y
=  income  next  year  taking  into  account  X  =  income  this  year.   I  can  calculate  the  mean  of  Y
specific to each possible value of X = x then weigh these according to the probabilities of these
different x.  

Some motivational remarks.  
Why study such a thing as E{Y † X) anyway?  

Statistics is about expoiting simple relation ships of this kind.  for example, there
is  very  general  "Decomposition  of  Variance"  formula  we  can  easily  prove  once
we have  the  notios  of  conditional  expectation and conditional  variance in  hand.
It is:

        Var Y = E Var(Y † X) + Var( E(Y † X) )
        
I can briefly outline for you how this 
       "decomposition of variance Y in terms of X" 
informs us how to design more efficient sampling methods.  

Example:  You have a budget of n = 100 samples from a population that is 34%
Hispanic.  You can of course ignore that fact and just sample 100 people at ran-
dom from your combined population of Hispanics and nonHispanics.  

If you are interested in overall population mean income mY = E Y, you need to
know that the variance of your estimate is 

                  Var Y  = VarY100 = sY2

100 .

Using the above "decomposition of variance" formula we can improve upon our
sampling effort.

If  you can manage it,  instead sample 34 (at  random) from the subpopulation of
Hispanics and 66 from the subpopulation of non-Hispanics.  If you do this, then
your overall sample mean Y* will have E Y* = overall population mean and Var

Y* = 
EIVarIY ¢ XL M

100  which is only one part of Var Y
100  as a consequence of the for-

mula above.  

So it is best to divide the sample of 100, sampling 34 at random from Hispanics
and 66 at random from non-Hispanics, if possible, rather than to sample all 100
at random from the combined population! 

The part of variance that dropped away when we chose to sample the "strata" of

Hispanics  vs  nonHispanics  separately  is  
VarI EIY ¢ XL M

100 .   So  sampling  strata
reduces variance to the extent that Hispanics have a different mean income than
the nonHispanics (i.e. E(Y † X = x) varies with X = 1 for Hispanics and X = 0 for
non-Hispanics).

These insights are possible precisely because we have the concepts of conditional
mean and conditional variance and the decomposition of variance which follows.
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2 f Hx, yL „ y

for 0 < x < 1.

p.  conditional density of y GIVEN x defined fy † xHyL = f Hx, yLfXHxL  

q.  conditional mean of y GIVEN x defined EIY † X = xL = Ÿ y fy † xHyL „ y

r.  using the definitions, prove that in general E Y = E (E(Y † X)), i.e.
                   Ÿ y fY HyL „ y = Ÿ  ( Ÿ y fy † xHyL „ y) fXHxL „ x
                         E Y                  E(Y † X = x)

Let's again calculate E Y directly from the joint density:               

 
For  comparison,  calculate  E  Y  from  the  marginal  density  for  Y.   In  Mathematica  it  is  neither
necessary nor convenient to use the subscripted notation fY HyLfor this density.  We'll just have to
pay attention when using f[y] to denote this density in Mathematica. 

Once again, we obtain the same expectation E Y by either of the two methods.  But there is even
a third way to calculate E Y.  It is to:

       For each value X = x calculate the conditional expectation of Y for that value x.  That
produces a function of x denoted E(Y † X = x).  This fuction of x, when evaluated at random
variable  X  is  denoted  E(Y  †  X).   The  expectation  of  this  r.v.  is  written  E  E(Y  †  X)  and  is
equal to E Y.  This may seem puzzling because we are, in the final step, calculating E Y (a y-
integral) as an x-integral 
                       E Y = E E(Y † X) = Ÿ ‚x fXHxL [ E(Y † X = x) ].

You can see why it works by carefully looking at the following.  I'll use some additional brackets
[ E[Y † X = x ] ] to keep track of that portion of the integrand.
         E[Y † X ] = Ÿ „ x fXHxL [ E(Y † X = x) ] = Ÿ „ x fXHxL [ Ÿ „ y  y fY † XHy † xL ]

          = Ÿ „ x fXHxL [ Ÿ „ y  y fX, Y Hx, yLfX,HxL ] = Ÿ „ x fXHxL [ Ÿ „ y  y fX, Y Hx, yLfX,HxL ]  = E Y 
 Here is the calculation of E Y done htis third way: 

E E(Y † X) above.

The whole idea of E Y = E E(Y † X) is really very simple.  Say I want to calculate the mean of Y
=  income  next  year  taking  into  account  X  =  income  this  year.   I  can  calculate  the  mean  of  Y
specific to each possible value of X = x then weigh these according to the probabilities of these
different x.  

Some motivational remarks.  
Why study such a thing as E{Y † X) anyway?  

Statistics is about expoiting simple relation ships of this kind.  for example, there
is  very  general  "Decomposition  of  Variance"  formula  we  can  easily  prove  once
we have  the  notios  of  conditional  expectation and conditional  variance in  hand.
It is:

        Var Y = E Var(Y † X) + Var( E(Y † X) )
        
I can briefly outline for you how this 
       "decomposition of variance Y in terms of X" 
informs us how to design more efficient sampling methods.  

Example:  You have a budget of n = 100 samples from a population that is 34%
Hispanic.  You can of course ignore that fact and just sample 100 people at ran-
dom from your combined population of Hispanics and nonHispanics.  

If you are interested in overall population mean income mY = E Y, you need to
know that the variance of your estimate is 

                  Var Y  = VarY100 = sY2

100 .

Using the above "decomposition of variance" formula we can improve upon our
sampling effort.

If  you can manage it,  instead sample 34 (at  random) from the subpopulation of
Hispanics and 66 from the subpopulation of non-Hispanics.  If you do this, then
your overall sample mean Y* will have E Y* = overall population mean and Var

Y* = 
EIVarIY ¢ XL M

100  which is only one part of Var Y
100  as a consequence of the for-

mula above.  

So it is best to divide the sample of 100, sampling 34 at random from Hispanics
and 66 at random from non-Hispanics, if possible, rather than to sample all 100
at random from the combined population! 

The part of variance that dropped away when we chose to sample the "strata" of

Hispanics  vs  nonHispanics  separately  is  
VarI EIY ¢ XL M

100 .   So  sampling  strata
reduces variance to the extent that Hispanics have a different mean income than
the nonHispanics (i.e. E(Y † X = x) varies with X = 1 for Hispanics and X = 0 for
non-Hispanics).

These insights are possible precisely because we have the concepts of conditional
mean and conditional variance and the decomposition of variance which follows.
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