1. Given a list of scores $\left\{x_{i}\right\}=\{10,9.7,6.8,8.8,10.2,10.5,11\}$ determine the height of the probability historgram for the class interval $[10,10.5$). Show your method and evaluate (plug in) but do not reduce.
2. Given two data values 10,11 , with bell curves centered on each as shown below, hand plot by hand the function $\mathrm{f}=$ average height of the two bell curves. This is the probability density. The one on the right is with samller bandwidth.

3. For 0-1 scores $\left\{x_{i}\right\}$ the sample mean \bar{x} and sample standard deviation s simplify to

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{\text { number of } 1 \text { scores }}{n}=\hat{p} \\
& \mathrm{~s}=\sqrt{\sum(x-\bar{x})^{2} /(n-1)}=\sqrt{\frac{n}{n-1}} \sqrt{\hat{p}(1-\hat{p})}
\end{aligned}
$$

a. Toss a coin $\mathrm{n}=25$ times, recording the sequence of H, T scoring $\mathrm{H}=1$ and $\mathrm{T}=0$.
b. From (a) determine
b1. Sample mean $\bar{x}=\hat{p}=$
b2. Sample standard deviation $\mathrm{s}=$
b3. Margin of error $1.96 \frac{s}{\sqrt{n}}=$
b4. There is probability of around 0.68 that the population mean 0.5 will be covered by the interval o0btained from your data as

$$
\bar{x}-1.0 \frac{s}{\sqrt{n}} \text { to } \bar{x}+1.0 \frac{s}{\sqrt{n}}
$$

Determine this interval and say whether your interval has indeed covered the true population mean of 0.5 .
b5. Around 68% of class members should answer yes to $b 4$. What percentage of the class answered yes?

