Exam 2 PREP

Evaluate but only reduce if it is requested.

1. Define $\mathrm{G}(\mathrm{x}, \mathrm{y})=x^{2} \mathrm{y}+\mathrm{x}, 1<\mathrm{x}<5,3<\mathrm{y}<4$ (elsewhere zero).
a. Determine the integral $\iint d x d y g(x, y)$ over the plane. Reduce to a number.
b. From (a) define the probability density $f(x, y)$ proportional to g.
c. From (b) determine the marginal density of r.v. X.
d. From (c) determine E X.
e. From (c) determine

E X^{2}

Var X
f. From (c) determine the probability density of r.v. $Y=X^{2}$ using the method pd of $\mathrm{Y}=\mathrm{h}(\mathrm{X})$ is $f_{Y}(y)=f_{X}(x) /\left|h^{\prime}(x)\right|$
for $1: 1$ differentiable function $\mathrm{y}=\mathrm{h}(\mathrm{x})$ with derivative $\mathrm{h}^{\prime} \neq 0$ with probability 1 .
g. From (f) determine $\mathrm{E} \mathrm{Y}=\mathrm{E} X^{2}$ and compare with your calculation done in (e).
h. E(X Y)
2. Define cumulative distribution $\mathrm{F}(\mathrm{x})=1-x^{-3}, x>1$ (zero elsewhere).
a. Determine probability density f from cumulative F .
b. Determine E X.
3. For random variables X, Y suppose

E X = 3
sd $X=1$
E Y = 7 sd $\mathrm{Y}=4$
a. $\mathrm{E}(2 \mathrm{X}-\mathrm{Y}+3)$
b. If X, Y are independent, $\operatorname{Var}(2 \mathrm{X}-\mathrm{Y}+3)$
c. $\mathrm{E}(\mathrm{X} \mathrm{Y})$
4. Random variables X , Y have

$$
E X=3 \quad E Y=7
$$

$$
\begin{array}{ll}
\operatorname{sd} X=1 & \text { sd } Y=4 \\
E(X Y)=20 &
\end{array}
$$

a. Covariance $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(\mathrm{XY})-(\mathrm{E} \mathrm{X})(\mathrm{E} Y)$
b. Correlation $\mathrm{R}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{sd} X \operatorname{sd} Y}$ (must be a number in [-1 and 1])
c. The regression line of y on x is the line passing through the point ($\mathrm{E} X, \mathrm{E} Y$) with slope R (sd Y) / (sd X). Plot this line by
laying off sd X to the right of (E X, E Y)
going up R sd Y from EY
making the line thru (E X, E Y) and (E X + sd $\mathrm{X}, \mathrm{E} Y+\mathrm{R}$ sd Y)
d. If (X, Y) are jointly normal distributed the density has elliptical contours around the regression line. Here is a plot of samples from such a joint distribution. By eye, draw in the regression line

e. What does the plot of $E(Y \mid X=x)$ vs x look like in (d)?
5. A random sample of $\mathrm{n}=7$ from a NORMAL population finds
sample mean $=111.69$
sample sd s $=84.77$
a. Estimate of population mean μ is
b. Estimate of population sd σ is
c. Estimate of sd of sample mean $\overline{\boldsymbol{x}}$ is
d. t -score for $95 \% \mathrm{CI}$ for μ is
e. $95 \% \mathrm{CI}$ for μ is
f. $\mathrm{P}(\mu$ in $95 \% \mathrm{CI})($ exactly in this case $)=$
g. Why can we not use this method for sample size $\mathrm{n}=1$?
h. If $\frac{\bar{x}-\mu}{s / \sqrt{n}}=1.647$ and we change location and scale to (new) $\mathrm{x}=3 \mathrm{x}-4$ what is the (new) value of $\frac{\bar{x}-\mu}{s / \sqrt{n}}$?
6. Bootstrap CI for population mean μ typically involves thousands of bootstrap samples $X_{1}^{*}, \ldots, X_{n}^{*}$ (equal pr with repl from our sample $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$). For illustration only, we will illustrate bootstrap using 20 bootstrap sample means. They are plotted on the line below as asterisks. The sample mean is a large plus sign. By eye, draw in the bootstrap 95% CI for μ.
*

7. Joint pmf is given below.

$\mathrm{x} \backslash \mathrm{y}$	4	8
5	.3	.4
7	.2	.1

a. Give pmf (marginal density) for r.v. X.
b. E X from (a).
c. E XY
d. $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=1)$
e. $\operatorname{Var}(\mathrm{Y} \mid \mathrm{X}=1)$
f. $\mathrm{E} \operatorname{Var}(\mathrm{Y} \mid \mathrm{X})+\operatorname{Var} \mathrm{E}(\mathrm{Y} \mid \mathrm{X})=($ something simple $)$
g. Which of the two parts of (f) is "between" component?
8. Calculate sample sd s for data $\{6,6,14,10\}$.

