Supplemental review of CI and testing. 12-01-08

We've studied a variety of confidence interval (CI) procedures. Their objective, when used at 95 % confidence, is to establish a margin of error for a statistical estimator: $\hat{\theta} \pm (t \text{ or } z) \sqrt{\hat{Var}(\hat{\theta})}$. In this notation $\hat{\theta}$ denotes an estimator of some parameter θ and $\sqrt{\hat{Var}(\hat{\theta})}$ denotes the estimator of the standard deviation of estimator $\hat{\theta}$. When using bootstrap we typically never see (t or z) or $\sqrt{\hat{Var}(\hat{\theta})}$ since the bootstrap method delivers an estimator of the entire package (t or z) $\sqrt{\hat{Var}(\hat{\theta})}$.

CI

Here is a brief summary of most CI studied in this course (ex indicates that the CI is exact with perfect calculations, otherwise the CI is approximate as $n \rightarrow \infty$, and other assumptions including N - n -> ∞ when sampling finite populations).

$$\hat{\theta} \pm (t \text{ or } z) \sqrt{\hat{Var}(\hat{\theta})}$$
 caveat

 $\overline{x} \pm t \frac{s}{\sqrt{n}} ex \qquad eq-pr w/r sam of n from$ *normal*pop $\overline{x} \pm z \frac{s}{\sqrt{n}} eq-pr w/r sample of n$ $\overline{x} \pm z \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} eq-pr without/r sample of n$ $\hat{p} \pm z \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} eq-pr w/r sample of n$ $\hat{p} \pm z \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} eq-pr without/r sample of n$ $\overline{x} \overline{y} \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}} \sqrt{\frac{p_x(1-\hat{p}_x)}{n_x} + \frac{\hat{p}_y(1-\hat{p}_y)}{n_y}}}$

 \hat{p} 2 | review12-01-08.nb $\sqrt{\frac{N-n}{N-1}}$ \hat{p} $\overline{x} - \overline{y} \pm z \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$ indep x, y sam, eq-pr, w/r $\hat{p}_x - \hat{p}_y \pm z \sqrt{\frac{\hat{p}_x(1-\hat{p}_x)}{n_x} + \frac{\hat{p}_y(1-\hat{p}_y)}{n_y}}$ same as just above $\hat{\theta} \pm 95$ -th (or other) percentile of $|\hat{\theta}^* - \theta|$ as approp $\overline{x} \pm z \frac{\sqrt{\sum_{i=1}^{K} W_i s_i^2}}{\sqrt{n}}$ prop'l eq-pr w/r strat sam $\hat{p} \pm z \frac{\sqrt{\sum_{i=1}^{K} W_i \hat{p}_i (1-\hat{p}_i)}}{\sqrt{n}}$ prop'l eq-pr w/r strat sam $(\overline{y} + (\overline{x} - \mu_x) \operatorname{r} \frac{\hat{\sigma}_y}{\hat{\sigma}_x}) \pm z \frac{s_y}{\sqrt{n}} \sqrt{1 - r^2} \operatorname{eq-pr w/r prs}(\mathbf{x}, \mathbf{y})$ $\hat{\beta}_i \pm z \sqrt{(i, i)}$ entry of $(x^{\text{tr}} x)^{-1} \frac{n-1}{n-d} s [\text{resid}]^2$ with $\{\epsilon_i\}$ ind N(0, σ^2) $\hat{\beta} = PseudoInverse[x].y$ $\hat{y} = \mathbf{x}.\hat{\boldsymbol{\beta}}$ resid = y - \hat{y}

Tests from CI

Here is a brief description of how CI may be used to test hypotheses of the kind studied in tis course. The idea is a simple one. A CI is trying to locate (cover) a parameter θ . If it is a 95% CI then P(CI covers θ) ~ 0.95. So P(CI misses θ) ~ 1 - 0.95 = 0.05. If could devise a test of (for example) the null hypothesis that θ = 17 versus the two-sided alternative hypothesis $\theta \neq 17$ which

rejects $H_0: \theta = 17$ if CI fails to cover 17. If truly $\theta = 17$ such a test commits type I error precisely when CI fails to cover 17. This has probability 0.05 as above. So $\alpha = 0.05$ for such a use of CI to test.

$$H_0$$
 H_a H_0

If, instead, we wish to perform a one-sided test

 $H_0: \theta = 17$ versus $H_a: \theta > 17$

we could harness the CI in the following way:

reject H_0 if CI falls entirely to the right of 17.

For this test, $\alpha = (1-0.95)/2 = 0.025$ since the 0.05 probability of having the CI fail to cover 17 is about equally divided between missing to the left or missing to the right.

Testing

 $H_0: \theta = 17$ versus $H_a: \theta < 17$

we would

reject H_0 if CI falls entirely to the left of 17. Once again, $\alpha = 0.025$.

0 - 1 data and tests

We might make a test for

$$H_0$$
: p = 0.1 versus H_a : p \neq 0.1

by

rejecting
$$H_0$$
 if CI $\hat{p} \pm z \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ fails to cover 0.1.

Then $\alpha \sim 0.05$. but that is not the preferred test. If p = 0.1 then the population sd is $\sqrt{0.1 \times 0.9}$ and need not be estimated by $\sqrt{\hat{p}(1-\hat{p})}$. The preferred test

rejects H_0 if $\hat{p} \pm z \frac{\sqrt{0.1 \times 0.9}}{\sqrt{n}}$ fails to cover 0.1.

Two points:

a. The preferred test looks like it uses a CI, but does not.

b. The preferred test more closely achieves $\alpha \sim 0.05$.

The one-sided counterpart

*H*₀: p = 0.1 versus *H_a*: p > 0.1
reject *H*₀ if
$$\hat{p} \pm z \frac{\sqrt{0.1 \times 0.9}}{\sqrt{n}}$$
 falls entirely right of 0.1

is preferred over the CI test as well. It more accurately achieves $\alpha \sim 0.025$ than does the one-sided CI test.

Comments.

z, t may take values other than 1.96, or the t-values related to 95% confidence. As

pertains to using 99% CI to z-test we have

 $\alpha \sim 1 - 0.99 = 0.01$ in two-sided test $\alpha \sim (1 - 0.99) / 2 = 0.005$ in one-sided test.

As for β , we limit ourselves to the types of plots and table uses found on exam 3.

Any of the CI can be used to test in the way just outlined.