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We've studied a variety of confidence interval (CI) procedures.  Their objective, when
used at 95 % confidence, is to establish a margin of error  for a statistical estimator: q

`

± (t or z) Var
` Hq`L .  In this notation q

`
 denotes an estimator of some parameter q and

Var
` Hq`L  denotes the estimator of the standard deviation of estimator q

`
.  When using

bootstrap we typically never see (t or z) or Var
` Hq`L  since the bootstrap method deliv-

ers an estimator of the entire package (t or z) Var
` Hq`L .

CI
Here is a brief summary of most CI studied in this course (ex indicates that the CI is
exact with perfect calculations, otherwise the CI is approximate as n -> ¶,  and other
assumptions including N - n -> ¶ when sampling finite populations).
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Tests from CI
Here is a brief description of how CI may be used to test hypotheses of the kind stud-
ied in tis course.  The idea is a simple one.  A CI is trying to locate (cover) a parame-
ter  q.   If  it  is  a  95% CI then P(CI covers q)  ~ 0.95.   So P(CI misses q)  ~ 1 -  0.95 =
0.05.  If could devise a test of (for example) the null hypothesis that q = 17 versus the
two-sided alternative hypothesis q ≠ 17 which 
                 rejects H0 : q = 17 if CI fails to cover 17.
If  truly  q  =  17  such  a  test  commits  type  I  error  precisely  when CI  fails  to  cover  17.
This has probability 0.05 as above.  So a = 0.05 for such a use of CI to test.

If, instead, we wish to perform a one-sided test
                  H0: q = 17 versus Ha: q > 17
we could harness the CI in the following way:
                 reject H0 if CI falls entirely to the right of 17.        
For this test, a = (1-0.95)/2 = 0.025 since the 0.05 probability of having the CI fail to
cover 17 is about equally divided between missing to the left or missing to the right.

Testing 
                  H0: q = 17 versus Ha: q < 17
we would
                 reject H0 if CI falls entirely to the left of 17. 
Once again, a = 0.025.
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0 - 1 data and tests
We might make a test for 
          H0: p = 0.1 versus Ha: p ≠ 0.1
 by

              rejecting H0 if CI  p̀ ± z p̀ I1-p̀M
n

fails to cover 0.1.

Then a ~ 0.05.  but that is not the preferred test.  If p = 0.1 then the population sd is
0.1µ0.9 and need not be estimated by p̀ H1 - p̀L .  The preferred test 

              rejects H0 if p̀ ± z 0.1µ0.9
n

fails to cover 0.1.

Two points:
              a.  The preferred test looks like it uses a CI, but does not.
              b.  The preferred test more closely achieves a ~ 0.05.
    
The one-sided counterpart
    H0: p = 0.1 versus Ha: p > 0.1           

               reject H0 if p̀ ± z 0.1µ0.9
n

falls entirely right of 0.1

is preferred over the CI test as well.  It more accurately achieves a ~ 0.025 than does
the one-sided CI test.

Comments.

z,  t  may  take  values  other  than  1.96,  or  the  t-values  related  to  95% confidence.   As
pertains to using 99% CI to z-test we have 
                    a ~ 1 - 0.99 = 0.01 in two-sided test
                    a ~ (1 - 0.99) / 2 = 0.005 in one-sided test.
                    
As for b, we limit ourselves to the types of plots and table uses found on exam 3.

Any of the CI can be used to test in the way just outlined.
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