
CI Compared.

1.  Approximate z-Based CI for m for large n, equal-pr, with-repl.
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2.  Exact t-Based CI for m for every n > 1 provided the population is normal distrib-
uted ("in statistical control").
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For DF = ¶ we recover the z-based normal approximation CI.        
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3.  Approximate z-Based CI for m  for nÆ•  based on a proportionally stratified
equal-pr, with-repl, random sample.   We suppose the relative  sizes of sub-popula-
tions (strata) i are Wi  = NiN where N is the size of the overall population, and Ni  is the
size of stratum i.  Weights Wi are obviously probabilities summing to one.  A propor-
tionally  stratified,  equal-pr,  with-repl,  sample of  n  is  selected,  taking sub-samples  of
sizes ni = Wi n (we'll assume these are whole numbers for the sake of the exposition).
Simple  algebra  confirms  that  the  overall  sample  mean  is  also  equal  to  the  weighted
average of strata sample means,  X =  ⁄i Wi Xi, so has variance 
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where s2 is the overall population variance and si
2  is the variance for stratum i.  This

leads to the large n, z-based, CI for m, based on proportionally stratified sampling:
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Note that X  is an ordinary sample mean, but the sample is not an unrestricted random
sample of the full population as it is in (1).  CI (3) tends to be narrower for any given
sample confidence level,  and overall  sample size n,  to the degree that  the "between"
component is large.  This means that stratification does better to the degree that the
sub-population means differ.

4.  Approximate z-Based CI for m  for nÆ•  based on a  regression-based  estima-
tor.  We must avoid a potential conflict of notation since we've used x for sample but
regression treats x as the independent variable.  Suppose that the population mean of
interest is my,  we KNOW mx,  and we have equal-pr and with-repl samples of n pairs
(Xi, Yi).  An example would be trying to estimate the population average 2008 income
tax  my  due  our  municipality  when  we  KNOW the  average  tax  mx  collected  in  2007,
and we have a random sample of individuals i whose tax Xi  in 2007 we can look up,
but  whose  tax  Yi  for  2008  has  to  be  determined  by  an  audit  (that  we  will  pay  for).
There may also be an incentive we pay each participant i.  This will be a costly study
so every way we have of reducing the sample size required for the same information
is important to us.  Regression-based estimator of  my is not Y  but instead: 

         m̀y regr = Y  + (mx - X) XY- X Y
X2 - X2
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If, for example,  r ~ 0.866 then the CI produced using regression will be around half
as wide as that produced by the CI using y-scores alone.  To accomplish that greater
precision using y-scores alone we would have to increase n to 4n (since 1
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n

).

If  it  costs  the  municipality  $600  to  audit  each  sample  2008  tax  (y-score)  regression
affords great savings.  
  Note:  None of the usual assumptions of the regression model (normal errors, etc.) is
used.   This  CI  is  simply  a  consequence  of  the  fact  that  2007  tax  is  correlated  with
2008 tax and we draw a large number n of random samples.  We need not know the
population correlation before selecting the sample, as only the sample correlation r =

XY- X Y
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2

is used.

5.  Approximate z-Based CI for m  for nÆ•  based on a  multiple  regression-based
estimator.  The data is (1, Xi 2, ..., Xi d, Yi)      
    modify the usual estimator Y  of my as below (assume mi are known)
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    rmult = sample correlation between Yi and fitted values Yi
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 .
Multiple  correlation  rmult  is  the  same  as  †r†  in  the  straight  line  regression  setup,  is
never negative, ranges in [0, 1], and its square plays the usual role.
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