PMoullipag Proberos STHETM wxusimsiodivnlepaco Thenonsinibl Sil

## 

 The overwhelming majority of samples of $n$ from a population of N can stand-in for the population.

## Mifinill s ixicinili

For a few characteristics at a time, such as profit, sales, dividend. Sample size n must be "large."


The overwhelming majority of samples of $n$ from a population of N can stand-in for the population.



For a few characteristics at a time, such as profit, sales, dividend.
Sample size n must be "large." SPECTACULAR FAILURES MAY OCCUR!


תחM UDOీద=2


With-replacement vs without replacement.

munimounly



With-replacement vs without replacement.


TMMTIDOMRMM
WITH-replacement samples have no limit to the sample size $n$.


ราMuleofine

## โษionimilili



Rule of thumb: With and without replacement are about the same if $\operatorname{root}[(N-n) /(N-1)] \sim 1$.

nombuiturid
samuleofu.

## 

WITH-replacement samples have no limit to the sample size $n$.


## TOMOEOM WOOTMIM

$H, T, H, T, T, H, H, H, H, T, T, H, H, H$, H, H, H, H, T, T, H, H, H, H, H, H, H, H, H, T, H, T, H, H, H, H, T, T, H, H, T, T,
T,T,T,T,T,H,H,T,T,H,T,T,H,H,H
T, $\mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{T}$,
$\mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}$, Samoleofme 100 .inien



## HOWMOM SAMPM



## 

They would have you believe the population is $\{8,9,12,42\}$ and the sample is $\{42\}$.
A SET is a collection of distinct entities.




## HOWMAMY SMPI


 Plot the average heights of tents placed at $\{10,14\}$. Each tent has integral 1 , as does their average.


Making the tents narrower isolates different parts of the data and reveals more detail.


DEMSITM OR HSTOCRMM Histograms lump data into categories (the black boxes), not as good for continuous data.


## MDEMAMMEOMVP

Narrower tents operate at higher resolution but they may bring out features that are illusory.


## THEDEMMTTV Blusin

With narrow tents.

 Plot of average heights of 5 tents placed at data $\{12,21,42,8,9\}$.


TMTE MTBAN (1) $A$ DGNOSGUV
 ㄴB TMT[S MM[BMTM] (1) TMG D DA] A


 Population of $\mathrm{N}=500$ compared with two samples of $\mathrm{n}=30$ each.

## POPmRonlas 002



Tillissumbiboinzo

## 

The same two samples of $\mathrm{n}=30$ each from the population of 500 . POPMROME 92002

| Sam |
| :---: |
| samp moan $=33003$ |

 coarse Bosolution ?



The same two samples of $n=30$ each from the population of 500 .

$$
\begin{aligned}
& \text { POPmeana } 3002 \\
& \text { รnM moane } 38003 \\
& \text { ssmpmoan } 30.50
\end{aligned}
$$



The same two samples of $n=30$ each from the population of 500 . POPMOOTH=3202

SnM moane 3003 sAMemoan =30.60

A sample of only $n=600$ from a population of $\mathrm{N}=500$ million. (medium resolution)
POPMOMz:2002
pange


A sample of only $\mathrm{n}=600$ from a population of $\mathrm{N}=500$ million.
(FINE resolution)
STMuleofimebil
POPMOOM= 3202



With-replacement:
$a=00-02 \quad b=03-05 \ldots . \quad z=75-77$
From Table 14 pg. 869:
$155990689290 \quad 8303$ etc...
15599068 etc... (split into pairs)
we have $15=\mathrm{f}, 59=\mathbf{t}, 90=$ none, etc...
(for samples without replacement just pass over any duplicates).

A sample of only $n=600$ from a population of $\mathrm{N}=500$ million.
(MEDIUM resolution)



THBBOROBROMOMOSMPMD

> IF THE OVERWHELMING MAJORITY OF SAMPLES ARE "GOOD SAMPLES" THEN WE CAN OBTAIN A "GOOD" SAMPLE BY RANDOM SELECTION.

## THITMP POMDS

1. The Great Trick of Statistics.

1a. The overwhelming majority of all samples of $n$ can "stand-in" for the population to a remarkable degree.
1b. Large n helps.
1c. Do not expect a given sample to accurately reflect the population in many respects, it asks too much of a sample.
2. The Law of Averages is one aspect of The Great Trick.

2a. Samples typically have a mean that is close to the mean of the population.
2b. Random samples are nearly certain to have this property since the overwhelming majority of samples do.
3. A density is controlled by the width of the tents used.

3a. Small samples zero-in on coarse densities fairly well
3b. Samples in hundreds can perform remarkably well.
3c. Histograms are notoriously unstable but remain popular.
4. Making a density from two to four values; issue of resolution.
5. With-replacement vs without; unlimited samples.
6. Using Table 14 to obtain a random sample.

The Great Trick is far more powerful than we have seen.
A typical sample closely estimates such things as a population mean or the shape of a population density.
But it goes beyond this to reveal how much variation there is among sample means and sample densities.
A typical sample not only estimates population quantities. It estimates the sample-to-sample variations of its own estimates. ${ }^{37}$

$s=\sqrt{\frac{\sum_{i=1}^{i=n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}}$

NOTE: Sample standard deviation s may be calculated in several equivalent ways, some sensitive to rounding errors, even for $\mathbf{n}=2$.

## 药

A random with-replacement sample of 50 stores participated in a test marketing. In 39 of these 50 stores (i.e. 78\%) the new package design outsold the old package design.
We estimate from this sample that $78 \%$ of all stores will sell more of new vs old.
We also estimate a "margin of error"
+/- 11.6\%
 TDO = [OM Bal


The average account balance is $\$ 421.34$ for a random with-replacement sample of 50 accounts.
We estimate from this sample that the average balance is $\$ 421.34$ for all accounts. From this sample we also estimate and display a "margin of error" 5 deno ${ }^{69}$ $\$ 421.34+/-\$ 65.22=\dot{x} \pm 1.96 \frac{\mathrm{~s}}{\sqrt{n}} \begin{gathered}\text { standipil } \\ \text { sisviation }\end{gathered}$


The following margin of error calculation for $\mathrm{n}=4$ is only an illustration. A sample of four would not be regarded as large enough.
Profits per sale $=\{12.2,15.3,16.2,12.8\}$.
Mean $=14.125, s=1.92765, \operatorname{root}(4)=2$.
Margin of error $=+/-1.96(1.92765 / 2)$
Report: $14.125+/-1.8891$.
A precise interpretation of margin of error will be given later in the course, including the role of 1.96 . The interval $14.125+/-1.8891$ is called a " $95 \%$ confidence interval for the population mean."
We used: $(12.2-14.125)^{2}+(15.3-14.125)^{2}$
$+(\mathbf{1 6 . 2 - 1 4 . 1 2 5})^{2}+(\mathbf{1 2 . 8}-14.125)^{2}=$ 11.1475 $_{40}$

