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Abstract. The performance of an automatic fingerprint authentication
system relies heavily on the quality of the captured fingerprint images.
In this paper, two new quality indices for fingerprint images are devel-
oped. The first index measures the energy concentration in the frequency
domain as a global feature. The second index measures the spatial co-
herence in local regions. We present a novel framework for evaluating
and comparing quality indices in terms of their capability of predict-
ing the system performance at three different stages, namely, image en-
hancement, feature extraction and matching. Experimental results on
the IBM-HURSLEY and FVC2002 DB3 databases demonstrate that the
global index is better than the local index in the enhancement stage
(correlation of 0.70 vs. 0.50) and comparative in the feature extraction
stage (correlation of 0.70 vs. 0.71). Both quality indices are effective in
predicting the matching performance, and by applying a quality-based
weighting scheme in the matching algorithm, the overall matching per-
formance can be improved; a decrease of 1.94% in EER is observed on
the FVC2002 DB3 database.

1 Introduction

Fingerprint images are usually obtained under different conditions of the skin of
a finger (e.g., dry, wet, creased/wrinkled, or abraded), the ergonomics of the ac-
quisition system (e.g., ease of use, alignment and positioning), and the inherent
limitations of the sensing equipment (e.g., shadow from optical sensors and elec-
trical noise from capacitive sensors). These conditions, in turn, affect the quality
of the acquired fingerprint images (see Figures 1 (a-c)). Fingerprint quality is
usually defined as a measure of the clarity of the ridge and valley structures, as
well as the “extractability” of features (such as minutiae and singularity points).
Poor quality fingerprint images often result in spurious and missed features, and
thus severely degrade the performance of an authentication system by increas-
ing the false reject and false accept rates. Recently, NIST [1] has shown that the
performance of a fingerprint authentication system is mostly affected, among
other factors, by fingerprint image quality. Therefore, it is desirable to assess the
quality of a fingerprint image to improve the overall performance of a fingerprint
authentication system.



Many on-going and past efforts have tried to address the problem of assessing
fingerprint image quality. Bolle et al. [2] used ratio of directional area to nondi-
rectional area as a quality measure. Hong et al. [3] and Shen et al. [4] applied
Gabor filters to identify blocks with clear ridge and valley patterns as good qual-
ity blocks. Ratha and Bolle [5] computed the ratio of energy distribution in two
subjectively selected frequency bands based on the WSQ (Wavelet Scalar Quan-
tization) compressed fingerprint images. Lim et al. [6] combined local and global
spatial features to detect low quality and invalid fingerprint images. The most
recent work by Tabassi et al. [1] presented a novel definition of fingerprint qual-
ity as a predictor for matching performance. They consider quality assessment
as a classification problem and use the quality of extracted features to estimate
the quality label of a fingerprint image. This approach is effective only when the
feature extraction algorithm is reliable and is computationally efficient.

In this paper, we propose two new fingerprint quality indices. The first index
measures the entropy of the energy distribution in the frequency domain. The
second estimates the local coherence of gradients in non-overlapping blocks. We
propose a framework for evaluating and comparing quality indices by assessing
how well they predict the system performance at three processing stages: (i)
image enhancement, (ii) feature extraction and (iii) matching. Our goal is to
determine how each processing stage will be affected by the image quality, and to
compare the two quality indices in terms of their predictive capabilities. We also
adopt a quality-based weighting scheme to improve the matching performance.
To the best of our knowledge, this systematic framework is novel.

The rest of the paper is organized as follows. Section 2 describes in detail
the algorithms of each proposed quality index. Section 3 introduces the new
framework for evaluating fingerprint quality indices. In Section 4, experimental
results are provided and discussed. Summary and future work are included in
Section 5.

2 Fingerprint Quality Indices

2.1 A Quality Index in the Frequency Domain

Given a digital image of size M×N , the two-dimensional Discrete Fourier Trans-
formation (DFT) evaluated at the spatial frequency (2πk

M , 2πl
N ) is given by

F (k, l) =
1

NM

N−1∑

i=0

M−1∑

j=0

f(i, j)e−ι2π( ki
N + lj

M ), ι =
√−1 , (1)

where f(i, j) refers to the gray level intensity at pixel (i, j) of the image. Although
DFT produces a complex-valued output, only the power spectrum P (k, l) ≡
|F (k, l)|2 is often used as it contains most of the information regarding the
geometric structure of an image.

The ridge frequency in a fingerprint image is generally around 60 cycles per
image width/height [8]. Since the image width/height is usually between 120 and
1000 pixels, the dominant ridge frequencies should be between 60/1000 = 0.06
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Fig. 1. Computing the quality index Qf from the power spectrum: Panels (a-c) show
three fingerprint images in the decreasing order of quality; Panels (d-f) show their cor-
responding power spectrums; Panels (g-i) show the energy concentrations in the region
of interest. The values of Qf for the three images are 1.0, 0.6, and 0.3, respectively.

and 60/120 = 0.5. Therefore, the region of interest (ROI) of the power spectrum
is defined to be an annular band with radius ranging from 0.06 to 0.5. Figures
1(a-c) show three fingerprint images of varying quality with their corresponding
power spectrums in the ROI shown in Figures 1(d-f). Note that, the fingerprint
image with good quality (Figure 1(a)) presents strong ring patterns in the power
spectrum (Figure 1(d)), while a poor quality fingerprint (Figure 1(c)) presents
a more diffused power spectrum (Figure 1(f)). The global quality index will be
defined in terms of the energy concentration in this ROI.

We use a family of Butterworth low-pass filters to extract the ring features
from the ROI. A Butterworth function [7], indexed by m and n, is defined as

H(k, l |m,n) =
1

1 + 1
m2n ((k−a

M )2 + ( l−b
N )2)n

, (2)

where (k, l) is the pixel index in the power spectrum corresponding to the spatial
frequency ( 2πk

M , 2πl
N ) and (a, b) is the location of the center of the power spectrum

corresponding to spatial frequency (0,0). The Butterworth function generates a
low-pass filter with the cutoff frequency given by m and the filter order given by
n. The value of n controls the steepness of the drop at the cutoff frequency; the
larger the value of n, the closer H is to an idealized step function.



0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

m
t+1

m
t

(a) (b) (c)

Fig. 2. Taking the differences of two consecutive low-pass filters (a) H(k, l |mt+1, n)
and (b) H(k, l |mt, n) (n = 20) to obtain a bandpass filter (c) Rt(k, l).

We construct a total of T equally spaced bandpass filters, Rt, by taking
differences of two consecutive Butterworth functions, that is,

Rt(k, l) = H(k, l |mt+1, n)−H(k, l |mt, n) , (3)

where mt = 0.06 + t 0.5−0.06
T and t = 0, 1, 2, . . . , (T − 1). The construction of

Rt(k, l) from H(k, l |mt+1, n) and H(k, l |mt, n) is shown graphically in Figure
2. For every t, Rt captures the energy in an annular band with frequencies from
mt to mt+1. The energy concentrated in the t-th band is computed by

Et =
N−1∑

k=0

M−1∑

l=0

Rt(k, l)P (k, l) , (4)

and the normalized energy for the t-th bandpass filter is defined as Pt = EtPT−1
t=0 Et

.

In Figures 1(g-i), we plot the distribution of Pt for T = 15 bandpass filters. A
good quality image has a more peaked energy distribution while poor ones have
more diffused distribution. The extent of energy concentration is given by the
entropy

E = −
T−1∑
t=0

Pt log Pt , (5)

which achieves the maximum value log T when the distribution is uniform and
decreases when the distribution is peaked. Our quality score is defined as

Qf = log T − E , (6)

so that a fingerprint image with good (bad) quality will have a higher (lower)
value of Qf . We have normalized Qf on the database so that the values lie
between 0 and 1.

2.2 A Quality Index in the Spatial Domain

To assess fingerprint image quality in a local region, we partition a given image
into a lattice of blocks of size b× b. An algorithm to distinguish the fingerprint



foreground from the background is then applied as described in [2]. For each
foreground block B, let gs = (gx

s , gy
s ) denote the gradient of the gray level inten-

sity at site s ∈ B. The covariance matrix of the gradient vectors for all b2 sites
in this block is given by

J =
1
b2

∑

s∈B

gsg
T
s ≡

[
j11 j12
j21 j22

]
. (7)

The above symmetric matrix is positive semidefinite with eigenvalues

λ1 =
1
2
(trace(J) +

√
trace2(J)− 4 det(J))

λ2 =
1
2
(trace(J)−

√
trace2(J)− 4 det(J)) ,

(8)

where trace(J) = j11 + j12, det(J) = j11j22 − j2
12 and λ1 ≥ λ2. The normalized

coherence measure is defined as

k̃ =
(λ1 − λ2)2

(λ1 + λ2)2
=

(j11 − j22)2 + 4j2
12

(j11 + j22)2
, (9)

with 0 ≤ k̃ ≤ 1. This measure reflects the clarity of the local ridge-valley orien-
tation in each foreground block B. If the local region has a distinct ridge-valley
orientation, then λ1 À λ2 results in k̃ ≈ 1. On the contrary, if the local region
is of poor quality, we obtain λ1 ≈ λ2 and consequently k̃ ≈ 0.

A single quality score can be computed as the weighted average of the block-
wise coherence measures given by

Qs =
1
r

r∑

i=1

wik̃i , (10)

where r is the total number of foreground blocks, and the relative weight ωi for
the i-th block centered at li = (xi, yi) is determined by

ωi = exp{− ‖ li − lc ‖2 /(2q)} , (11)

where lc is the centroid of foreground fingerprint, and q is a normalization con-
stant, which reflects the contribution for blocks with respect to the distance
from the centroid [5]. Generally, regions near the centroid of a fingerprint re-
ceive higher weights, since they are likely to provide more information than the
peripheral.

Figure 3 shows the local quality maps of the three fingerprint images and
their overall quality indices. We have also normalized Qs on the database so
that the values lie between 0 and 1.

3 Evaluation Criteria

In this section, an evaluation criteria is developed for assessing the performance
of image enhancement, feature extraction and matching with respect to the
proposed quality indices.
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Fig. 3. Computing the quality index Qs using the spatial coherence measure. Panels
(a-c) are the fingerprint images. Panels (d-f) are the block-wise values of k̃; blocks
with brighter color indicate higher quality in the region. The values of Qs for the three
fingerprint images are 0.95, 0.56, and 0.20, respectively.

3.1 Predicting the Image Enhancement Performance

Our goal is to first quantify the robustness of enhancement for varying values of
Qf and Qs. A fingerprint image with high values of Qf and Qs should be less
sensitive (or more robust) to the tuning parameters of an enhancement algorithm
than those with low Qf and Qs values. The following method is developed to
quantify this sensitivity with regard to the tuning of an enhancement algorithm.

Given an enhancement algorithm E, we tune the parameters to obtain a
modified version called E′. Run E and E′ separately on a fingerprint image
to generate two enhanced images I and I ′. Let A = (g1, g2, . . . , gu) and B =
(h1, h2, . . . , hv) be the sets of minutiae detected, respectively, from I and I ′.
Compute p as the number of paired minutiae in A and B: minutiae gi (i =
1, . . . , u) and hj (j = 1, . . . , v) are said to be paired if their distances in posi-
tion and orientation are within a tolerance bound of 8 pixels and 30 degrees,
respectively. The robustness index (RI) of a fingerprint image is given by

RI =
p

u + v − p
, (12)

where (u + v − p) represents the total number of minutiae detected in both
enhanced images. A low RI value indicates large variance in the number of
minutiae detected and hence poor image quality due to its sensitivity to the
turning of parameters. On the contrary, high RI value indicates consistency in
minutiae extraction and consequently, good image quality due to its robustness
to parameter tuning (Figure 4).



(a) (b) (c)

(d) (e) (f)

Fig. 4. Sensitivity to the tuning parameters of an enhancement algorithm. Input images
are those shown in Figures 3(a-c). Panels (a-c) are obtained using E while panels (d-
f) are obtained using E′. Minutiae consistently extracted from both algorithms are
considered robust (◦), whereas minutiae detected only by E or E′ are non-robust (×).

3.2 Predicting the Feature Extraction Performance

The effects of image quality with regard to feature extraction performance can
be measured using the goodness index (GI) defined as

GI =
p

t
− a + b

u
, (13)

where p, a, b, respectively, represent the total number of paired, missed and spu-
rious minutiae among the u detected minutiae when compared to the number
of ground truth minutiae t in the given fingerprint image. Here, missed minu-
tiae refers to a ground truth minutiae that is missed by the feature extraction
whereas spurious minutiae represents an extracted minutiae that is not matched
with a ground truth minutiae. A low GI value is obtained when the number of
missed or spurious minutiae is much larger than the paired minutiae, indicating
poor image quality. A high GI value, on the contrary, indicates good quality as
most minutiae are correctly matched.

3.3 Predicting the Matching Performance

When matching scores are available, a Receiver Operating Characteristic (ROC)
curve is plotted to reflect the performance of the matching algorithm. One effec-
tive evaluation criterion for a quality index is to rank the ROC as a function of
image quality. More specifically, we can divide the quality scores into r equally
numbered bins (from low to high) and plot r ROC curves, with the i-th curve
reflecting the matching performance after images in the first i, 0 ≤ i ≤ 4 bins
are pruned. The 0-th bin is by convention, the original database with no images



removed. If a quality index is a good predictor of the matching performance, the
ROC curves should consistently rise as more poor quality images are excluded.

3.4 Incorporating Local Quality into the Matching Algorithm

We propose to incorporate the local coherence measure, k̃i, into the fingerprint
matching algorithm [12] that accounts for the reliability of the extracted minutiae
points. Prior to finding the matching score between a pair of fingerprint images,
we need to align them to remove effects of any translation and rotation of the
finger. This is done by maxmizing

W =
p∑

i=1

√
k̃A

f(i) × k̃B
g(i) , (14)

where p is the total number of paired minutiae between A and B, k̃A
f(i) and

k̃B
g(i) are the local coherence measures associated with the i-th paired minutiae

in A and B, respectively; functions f and g return index of the block that
contains the paired minutiae belonging to A and B, respectively. Once W is
maximized, its corresponding transformation parameters are applied to align the
orientation field of the pair, with both results determining the final matching
score. Therefore, if the quality is high for both minutiae in a pair, this pairing
will contribute more to the estimation of transformation parameters as well as
the matching score than a pairing of low quality minutiae.

4 Experimental Results

The quality indices are tested using two databases, namely the IBM-HURSLEY
database and FVC2002 DB3 [11]. The IBM-HURSLEY database contains mul-
tiple impressions of 269 fingers (a total of 900 images) taken at significantly
different times, resulting in large variability in fingerprint quality. The images
have different sizes but the same resolution of 500 dpi, with “true” minutiae
marked by a human expert. The FVC2002 DB3 contains 800 images from 100
fingers (8 impressions per finger), all with the same size (300×300) and the same
resolution (500 dpi). This database is the most difficult among the four data-
bases in FVC2002 in terms of image quality [11]. No ground-truth is provided
for this database, and hence, the quality indices for this database are tested at
the matching stage, while the quality indices for IBM-HURSLEY are tested at
the enhancement and the feature extraction stages.

To evaluate the enhancement performance with regard to the proposed qual-
ity indices, we employed the enhancement algorithm proposed in [9], and the
minutiae feature extraction algorithm given in [10]. We apply a new combi-
nation of three tuning parameters of the enhancement algorithm, namely, the
minimum inter-ridge distance, the window width and height. The default com-
bination was E = [12, 11, 11] and the new one is E′ = [7, 11, 7]. The RI value
for each fingerprint is obtained as in equation (12) and the quality indices Qf

and Qs are obtained as in Section 2. Figures 5(a-b) show the scatter plots of RI



versus Qf and RI versus Qs on the IBM-HURSLEY database. We also sort the
images in the increasing order of quality and divide them into r = 5 bins (180
images per bin). The median and the lower and upper quartiles of the quality
indices in each bin are calculated and shown in the box plots in Figures 5(c-
d). It is demonstrated that Qf has a stronger predictive capability for RI, as
it acquires a larger Pearson’s correlation (0.70) than Qs (0.50). In a similar
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Fig. 5. The effect of the proposed quality indices on image enhancement. (a) gives the
scatter plot and (c) the box plot of RI versus Qf , and (b) gives the scatter plot and
(d) the box plot of RI versus Qs.
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Fig. 6. The effect of the proposed quality indices on feature extraction. (a) gives the
scatter plot and (c) the box plot of GI versus Qf , and (b) gives the scatter plot and
(d) the box plot of GI versus Qs.
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Fig. 7. Improving the matching performance by (a) pruning poor quality images with
regard to Qf and (b) Qs, and (c) adopting a quality-based weighting scheme in the
matcher.

manner, the performance of the feature extraction algorithm (measured by GI
in equation (13)) is evaluated with respect to Qf and Qs. Here, default settings
of the enhancement algorithm is used. Figure 6 gives the corresponding results.



Both Qf and Qs are effective in predicting the feature extraction performance
with Qs achieving a slightly higher correlation than Qf (0.71 vs. 0.70).

Finally, a matcher proposed in [12] is adopted for evaluating and improving
the matching performance with respect to the quality indices on FVC2002 DB3.
Five ROC curves are plotted in Figures 7(a-b) as suggested in Section 3.3. Figure
7(c) shows the overall improvement in the matching performance when local
coherence measures are incorporated by a quality-based weighting scheme in the
matcher (see Section 3.4).

5 Conclusion and Future Work

This paper proposes two quality indices, global (Qf ) and local (Qs), for finger-
print images. We compare the two in a generic evaluation framework and observe
the following: (1) Qf has better predictive capabilities at the image enhancement
stage than Qs. This is because the image enhancement algorithm we use is based
on Gabor filtering in the frequency domain, and is therefore directly related to
Qf . (2) Qs is slightly more effective than Qf at the feature extraction stage. This
is because feature extraction concentrates on local details which is measured di-
rectly by Qs. (3) Both Qf and Qs are effective in predicting and improving the
matching performance. Future work includes expanding the current framework
to other possible representation of fingerprints and biometric identifiers.
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