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Abstract. In two new papers Biermé et al. (2012) and Nourdin and Peccati (2015),
sharp general quantitative bounds are given to complement the well-known fourth
moment theorem of Nualart and Peccati, by which a sequence in a fixed Wiener
chaos converges to a normal law if and only if its fourth cumulant converges to 0.
The bounds show that the speed of convergence is precisely of order the maximum
of the fourth cumulant and the absolute value of the third moment (cumulant).
Specializing to the case of normalized centered quadratic variations for stationary
Gaussian sequences, we show that a third moment theorem holds: convergence
occurs if and only if the sequence’s third moments tend to 0. This is proved for
sequences with general decreasing covariance, by using the result of Nourdin and
Peccati (2015), and finding the exact speed of convergence to 0 of the quadratic
variation’s third and fourth cumulants. Nourdin and Peccati (2015) also allows
us to derive quantitative estimates for the speeds of convergence in a class of log-
modulated covariance structures, which puts in perspective the notion of critical
Hurst parameter when studying the convergence of fractional Brownian motion’s
quadratic variation. We also study the speed of convergence when the limit is not
Gaussian but rather a second-Wiener-chaos law. Using a log-modulated class of
spectral densities, we recover a classical result of Dobrushin-Major/Taqqu whereby
the limit is a Rosenblatt law, and we provide new convergence speeds. The con-
clusion in this case is that the price to pay to obtain a Rosenblatt limit despite a
slowly varying modulation is a very slow convergence speed, roughly of the same
order as the modulation.
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Berry-Esséen, Breuer-Major, Second Chaos.

239

http://alea.impa.br/english/index_v13.htm
http://www.stat.purdue.edu/~viens/


240 L. Neufcourt and F. G. Viens

1. Introduction

We are inspired by the following reformulation of Theorem 1.2 in Nourdin and
Peccati (2015), which is itself based on ideas contained in Biermé et al. (2012).

Theorem 1.1 (4th moment theorem in total variation and convergence rates ).
If (Fn)n≥0 is a sequence in a fixed Wiener chaos (e.g. in the second chaos), and
V ar [Fn] = 1, then (Fn)n≥0 converges in law towards N (0, 1) if and only if E[F 4

n ] →
3 = E[N4], where N ∼ N (0, 1). Moreover the convergence rate in this case is
Mn := max(E[F 4

n ] − 3,
∣

∣E[F 3
n ]
∣

∣), in the sense of commensurability for the total
variation metric dTV (Fn, N) ≍ Mn, i.e.

∃c, C > 0 : cMn ≤ dTV (Fn, N) ≤ CMn. (1.1)

The first part of this theorem is known as the 4th moment theorem, proved
originally by Nualart and Peccati in Nualart and Peccati (2005). The second part,
i.e. relation (1.1), suggests that the third moment is just as important as the
4th moment when investigating the normal convergence of sequences in a fixed
Wiener chaos. Theorem 1.1 also provides new information about a rather successful
estimate for evaluating normal convergence speeds, which was established thanks to
a research program started in 2008 by Nourdin and Peccati in Nourdin and Peccati
(2009). Specifically, in Nourdin et al. (2010) an upper bound on dTV (Fn, N) of

the form C
√

E[F 4
n ]− 3 is established (see Theorem 5.2.6 in Nourdin and Peccati,

2012); Theorem 1.1 above shows that this estimate is not sharp in cases where the
third moment is dominated by the 4th moment minus 3 (a.k.a. the 4th cumulant
κ4 (Fn)), and in the other cases, leaves the question of sharpness of past results to a
comparison with the third moment. Such a discovery begs the question of how much
one might improve certain convergence results, e.g. of Berry-Esséen type, by using
Theorem 1.1 instead of Theorem 5.2.6 in Nourdin and Peccati (2012). The authors
of Nourdin and Peccati (2012) joined forces with Biermé and Bonami to produce
the first positive result in this direction, in Biermé et al. (2012): they worked with
a weaker notion of convergence than total-variation convergence, but were able to
show, in the case of the power variations of discrete fractional Brownian motion,
that the third moment seems to dominate the 4th cumulant in many cases, and
therefore determines normal convergence in those cases, yielding much improved
speeds as a consequence. In Nourdin and Peccati (2015), Nourdin and Peccati
improve this result by showing that it holds for the total variation distance, thanks
to the general Theorem 1.1.

Herein, we too base our analysis on the power afforded by Theorem 1.1, and
focus our attention on broadening the study of quadratic variations from Biermé
et al. (2012), to include general stationary Gaussian sequences with no reference to
Hölder-continuity or self-similarity.

In addition to what is described above, our motivation is to show that, in the case
of quadratic variations (which live in the 2nd chaos) the fourth moment theorem can
be replaced by a third moment theorem, with corresponding quantitative estimates
of the total variation distance and of the relation between the 3rd and 4th moments.
Another motivation is to keep our analysis as general as possible within the confines
of variations of stationary Gaussian sequences, with as little assumptions about
their covariance structure as we can.

In other words, we consider a sequence of centered identically distributed Gauss-
ian random variables (Xn)n∈Z

for which there exists a function ρ on Z such that
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for all integers k, n, E [XnXn+k] = ρ (k). We only assume that ρ is of constant sign,
and |ρ| decreases near +∞. Note that ρ is necessarily symmetric (even) and of pos-
itive type (meaning that (ρ (k − ℓ))k,ℓ is a non-negative definite matrix). Without

loss of generality, we assume that V ar [Xn] = ρ (0) = 1 throughout. We define the
normalized centered quadratic variation

Fn :=
Vn√
vn

,

where Vn := 1√
n

∑n−1
k=0 (X

2
k − 1), and vn := E[V 2

n ]. We prove the equivalence of

third and fourth moment theorems for the limit of Fn under this general framework
(Theorem 3.2 on page 246).

The presence of the “normalizing” term 1/
√
n in the definition of Vn is not

needed (Theorem 3.2 remains valid without it); it is a convention that comes from
working with sequences where vn is bounded, so that the normalization of the

discrete centered quadratic variation
∑n−1

k=0 (X
2
k − 1) needed to obtain a normal

limit is 1/
√
n, as one would hope for in a straightforward generalization of the

central limit theorem. This situation is the well-known framework for the classical
Breuer-Major central limit theorem (see Breuer and Major, 2011 or Theorem 7.2.4
in Nourdin and Peccati, 2012). Some might argue that the interesting cases are
those for which vn tends to infinity. See step 2 in the proof of Proposition 4.1 in
Section 4 for a class of log-modulated models where the transition from bounded
to unbounded vn occurs, i.e. where the Breuer-Major statement becomes invalid.
Generally speaking, we argue that this type of “phase transition” is an artefact of
the model class one uses.

We investigate this question of phase transitions in the Berry-Esséen rates for the
Breuer-Major central limit theorem, i.e. the rate at which dTV (Fn, N) converges
to 0. In the case of fractional Gaussian noise (fGn, for which ρ (k) is equivalent to

H (2H − 1) |k|2H−2
for large |k|), up until very recently, the rate of convergence of

dTV (Fn, N) to 0 was known to be the classical Berry-Esséen rate 1/
√
n only for

H < 5/8. Thanks to the results in Nourdin and Peccati (2015) and Biermé et al.
(2012), it is now known that this rate hold up to H < 2/3. The optimal rates for
fBm are even known, as can be seen in Biermé et al. (2012) (also see Proposition
4.3 in Nourdin and Peccati (2015)): the rate 1/

√
n is optimal for H < 2/3; then

for H = 2/3, the optimal rate is n−1/2 log2 n, whereas for H ∈ (2/3, 3/4), the
optimal rate is n6H−9/2. Therefore, speaking strictly about the fGn scale, this can
be interpreted as a “phase transition”, or a critical threshold H = 2/3. We argue
that for general sequences, insofar as optimal rates are given by (1.1) in Theorem 1.1
if they can be computed, the notion of critical threshold is model-class-dependent.

Herein, we show that the so-called critical threshold above can be investigated
in more detail, to reveal a range of possibilities for the convergence rate at the
Berry-Esséen critical threshold H = 2/3, for a class of covariance functions with
log-modulation. Our tools also enable us to compute rates for situations which were
left out in Nourdin and Peccati (2015) and Biermé et al. (2012): a second critical
threshold at H = 3/4 reveals another range of possibilities under our log-modulated
class where normal convergence holds. This subclass of models with “H = 3/4”
contains models for which the Breuer-Major theorem holds, and others for which
it does not. When normal convergence holds but the classical Breuer-Major nor-

malization fails, we find very slow rates of convergence: rate log−
3

2 (n) in all cases
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except one exceptional model which benefits from a log(log(n))−
3

2 correction. For
fGn, which is a special case of our results, we provide a slight improvement on the
only result we are aware of (Corollary 7.4.3 in Nourdin and Peccati, 2012) which
deals with the case “H = 3/4”: scaled quadratic variations for fGn with H = 3/4

have a speed of normal convergence of order log−1 (n). All our results mentioned
above are sharp, and are given in Proposition 4.1 on page 249.

Both this class of examples, given in Section 4, and our generic third moment
theorem given in Section 3, are based on a precise asymptotic expression for the
third moment of Fn, and a precise upper bound for the fourth moment of Fn, both
given for general ρ, in Theorem 2.4 in Section 2. This intrinsic study shows that
there is nothing special about the power rate of correlation decay when investigating
central limit theorems for quadratic variations. We also note that we are able to
develop a general third-moment theorem without needing a direct estimation of the
fourth cumulant κ4 (Fn), giving more credence to the claim that the third moment
theorem is the right tool for studying centered quadratic variations.

The key to this surprising shortcut is Proposition 3.1, which shows that one can

bound the third moment κ3 (Fn) below by n1/4κ4 (Fn)
3/4

. This implies that κ3 (Fn)
is always the dominant term in the exact rate of convergence of dTV (Fn, N) to zero,
showing in particular that if κ3 (Fn) → 0 then κ4 (Fn) → 0, which is sufficient to
conclude that Fn → N . This in turn implies the exact total-variation convergence
rate (1.1) from Theorem 1.1. The converse statement, that κ4 (Fn) → 0 implies
κ3 (Fn) → 0, follows immediately from Theorem 1.1.

The remainder of the paper after Section 4 deals with what happens when no
normal convergence holds, i.e. when none of the equivalent conditions in Theorem
3.2 hold. Here, as is typical for studies of non-normal convergence on Wiener space,
the Malliavin calculus-based tools such as Theorem 1.1 are no longer useful. In such
cases one may expect that normalized centered quadratic variations of stationary
Gaussian sequences will converge in distribution towards second-chaos laws.

The classical result in this direction is a special case of what is often known as
the Dobrushin-Major–Taqqu theorem. This theorem refers to two separate results
from 1979 on non-linear functionals of fractional Brownian motion (fBm). In the
special case of centered quadratic variations, Taqqu (1979) implies a convergence in
the mean-square for the normalized centered quadratic variations of fBm on [0, 1],
towards the law of a Rosenblatt r.v. F∞. On the other hand Dobrushin and Major
(1979) prove convergence to the same law, but only in law, not in the mean-square,
for the increments of fBm over intervals of length 1, as the horizon increases. This
second setting is the same as the one we use here: the increments of fBm on unit
intervals are known as fractional Gaussian noise (fGn), and as mentioned above,
fGn is the canonical power-scale example of a stationary Gaussian sequence with
unit variance. The self-similarity of fBm implies that Taqqu’s result and Dobrushin
and Major’s result are equivalent in the setting we have chosen here, i.e. stationary
Gaussian sequences. For the historical reasons given above, it is legitimate to refer
to such a result as a Dobrushin-Major theorem.

Herein, we investigate the question of speed of convergence in the Dobrushin-
Major theorem. As we said, results of the type of Theorem 1.1 are of no use here,
since the convergence we seek is of second-chaos type, not normal. Instead, as in
Breton and Nourdin (2008), we refer to a result of Davydov and Martynova (1989),
which enables one to compare the total-variation distance of two chaos variables
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with the square-root of their difference’s L2 norm. This requires the use of a
change of probability space, which is why the convergence cannot hold in L2 (Ω).
In the spirit of Dobrushin and Major, we consider the spectral representation of
the stationary Gaussian sequence, and obtain first a general strategy for estimating
the speed of convergence for sequences whose spectral density has a certain type
of functional asymptotic behavior under dilation of the Fourier space’s unit circle
(Section 5). Then we specialize to cases where the spectral density is a power times
a slowly-varying function, in order to present results similar to those for our log-
modulated class of examples. Our computational technique must go beyond the
calculations in Breton and Nourdin (2008), since the limit we obtain is the same for
all log-modulated processes for a fixed H , and therefore no self-similarity arguments
may be used. Our results in Section 6 show that the speed of convergence itself
does not depend on the modulation parameter: for modulations of the form logβ |x|,
dTV (Fn, F∞) = O

(

log−2 n
)

, for any β > 0 (Theorem 2 on page 256).
We do not know if this result is sharp, but it does provide a sobering extension

to known speed-of-convergence results in the Dobrushin-Major theorem, as com-
pared for instance with the case β = 0, where we get the much faster power rate
dTV (Fn, F∞) = O

(

n3/4−H
)

(see Theorem 7.4.5 in Nourdin and Peccati, 2012). One
can interpret our result as saying that the price to pay for a mild “universality”
result whereby a slowly-varying perturbation of fGn still leads to a Rosenblatt limit
in law, is that the speed of convergence will be roughly as slow as the perturbation.

Summarizing the descriptions above, the remainder of this paper is structured as
follows. In Section 2 we find sharp estimates of the variance, third, and fourth cu-
mulants of the normalized centered quadratic variation Fn. We use these in Section
3 to prove a third-moment theorem for normal convergence, with precise speed of
convergence, for general stationary Gaussian sequences (Theorem 3.2). In Section
4, we apply this theorem to a class of log-modulated covariance structures, identi-
fying a number of critical cases in the convergence rates (Proposition 4.1), which
go beyond the phase transitions recently identified for fGn in Biermé et al. (2012).
In Section 5, we define a strategy for estimating speeds of non-normal convergence
for general Fn , based on a classical estimate in Davydov and Martynova (1989)
and spectral representation of stationary sequences (Corollary 1). In Section 6, we
apply this strategy for sequences with power spectral density and log modulation,
proving that compared to the fGn case with H > 3/4, the speed deteriorates to

log−2 n instead of n3/4−H (Theorem 2).

2. Estimates for the second, third, and fourth cumulants

In this section we get precise estimates for the variance and the 3rd and 4th

cumulants of Fn. Let us define first the comparison relations that are used in what
follows.

Definition 2.1 (Comparison relations). Given two deterministic numeric sequences
(an)n≥0 , (bn)n≥0 in a metric space, we use the following notations and definitions
for respectively domination, commensurability, equivalence:

an = O (bn) ⇐⇒ ∃C > 0 : an ≤ Cbn for n large enough
an ≍ bn ⇐⇒ ∃c, C > 0 : cbn ≤ an ≤ Cbn for n large enough
an ∼ bn ⇐⇒ ∃cn, Cn > 0 : limn→∞ cn = limn→∞ Cn = 1 and cnbn ≤ an ≤ Cnbn

for n large enough.
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Remark 2.2. O is an order relation, while ≍ and ∼ are equivalence relations. More-
over, an≍bn is equivalent to {an = O (bn) and bn = O (an)}.
Remark 2.3. The quantities κ3(Fn) := E(F 3

n) and κ4(Fn) := E[F 4
n ] − 3 are called

the 3rd and 4th cumulants of Fn. That κ3(Fn) coincides with the third moment
is because Fn is centered. Moreover, κ4(Fn) is strictly positive because Fn is a
non-Gaussian chaos r.v. (see Nourdin and Peccati, 2012, Appendix A for details
on cumulants on Wiener chaos).

Theorem 2.4. Let (Fn)n≥0 be the sequence of normalized centered quadratic vari-
ations of a centered stationary Gaussian sequence (Xn)n∈Z

with covariance ρ,
i.e. with E [XnXn+k] = ρ (k) for n, k ∈ Z, we let Fn := Vn/

√
vn, where Vn :=

n−1/2
∑n−1

k=0 (X
2
k − 1), and vn := E[V 2

n ]. Let κ3(Fn) and κ4(Fn) be defined in Re-
mark 2.3. Assume that the sequence of correlations ρ has a constant sign, and that
|ρ| is decreasing near +∞, and ρ (0) = 1. Then for large n,

1

4

8

v
3/2
n

√
n





∑

|k|<n

|ρ(k)|3/2




2

≤ |κ3(Fn)| ≤
8

v
3/2
n

√
n





∑

|k|<n

|ρ(k)|3/2




2

, (2.1)

κ4(Fn) = O







1

v2nn





∑

|k|<n

|ρ(k)|4/3




3





, (2.2)

vn = −1 + 2

n−1
∑

k=0

(

1− k

n

)

ρ2 (k) ≍
n−1
∑

k=0

ρ2(k). (2.3)

Proof : We state the proof for the case of positive ρ; for negative ρ, one only needs
to replace ρ by |ρ| in the computations.

Step 1: Computation for the 3 rd cumulant.

In Nourdin and Peccati (2015) the following upper bound is proved:

κ3(Fn) ≤
8

v
3/2
n

√
n





∑

|k|<n

ρ(k)3/2





2

.

That reference Nourdin and Peccati (2015) contains the following explicit expression
for the third cumulant:

κ3(Fn) =
8

v
3/2
n

√
n





1

n

n−1
∑

j=0

n−1−j
∑

k,l=−j

ρ(k)ρ(k − l)ρ(l)



 .

By discarding the terms with j > 0, we thus obtain the lower bound:

κ3(Fn) ≥
8

v
3/2
n

√
n

(

n−1
∑

k=0

n−1
∑

l=0

(1 − k

n
)ρ(k)ρ(k − l)ρ(l)

)

.

Since ρ is decreasing near +∞, ρ(k + l) ≤
√

ρ(k)ρ(l) for large k, l. Thus we get

κ3(Fn) ≥ 8

v
3/2
n

√
n

n−1
∑

k=0

(1− k

n
)ρ(k)3/2

n−1
∑

l=0

ρ(l)3/2
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≥ 8

v
3/2
n

√
n

n−1
∑

l=0

ρ(l)3/2
1

n

n−1
∑

k=0

Sk (2.4)

where in line (2.4) we used an Abel summation given below in (2.5) (this rela-

tion is the subject of Step 2) on the sum
∑n−1

k=0 (1 − k
n )ρ(k)

3/2, and where Sn =
∑n−1

l=0 ρ(l)3/2. However, since ρ is positive and decreasing, we have

Sn = O
(

1

n

n−1
∑

k=0

Sk

)

because S2n ≤ 2Sn and S2n ≥ Sn for large n, so that 1
n

∑n−1
k=0 Sn ≥ 1

2S[n−1

2
] ≥ 1

4Sn

for large n. That proves the lower bound, and the Theorem’s estimate on κ3,
modulo estimate (2.5).

Step 2. Computation of the Abel summation.

To compute
n−1
∑

k=0

(1 − k

n
)ρ(k)3/2 = Sn − 1

n

n−1
∑

k=0

kρ(k)3/2,

we use Abel’s summation-by-parts argument:

n−1
∑

k=0

kρ(k)3/2 =
n−1
∑

k=1

k(Sk+1 − Sk) =
n−1
∑

k=1

((k − 1)− k)Sk + (n− 1)Sn + ρ(0)3/2

= −
n−1
∑

k=1

Sk + (n− 1)Sn + ρ(0)3/2

so that
n−1
∑

k=0

(1 − k

n
)ρ(k)3/2 =

1

n
(Sn − ρ(0))3/2 +

n−1
∑

k=1

Sk. (2.5)

Step 3. Upper bound estimation for the 4 th cumulant.

In Nourdin and Peccati (2015) the following upper bound is proved: κ4(Fn) ≤
c

v2
n
n

(

∑

|k|<n ρ(k)
4/3
)3

. This is our theorem’s estimate on κ4 (Fn).

Step 4. Asymptotic equivalent for the variance.

Let T (n) :=
∑n−1

k=0 ρ
2 (k). Using a change of summation variables, we find

nvn =

n−1
∑

k=0

n−1
∑

ℓ=0

ρ (k − ℓ)
2
= −nρ2 (0) + 2U (n)

where

U (n) :=

n−1
∑

k=0

ρ2 (k) (n− k) .

Applying the same arguments as in steps 1 and 2, we find that U (n) ≍ nT (n).
With ρ (0) = 1, this finishes the proof of the theorem. �
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3. A third-moment theorem for normal convergence

In this section, we establish our third-moment theorem for the normalized cen-
tered quadratic variation Fn of our stationary Gaussian sequence (Xn), with the
assumptions as in Theorem 2.4.

Proposition 3.1. Let Fn and ρ be as in Theorem 2.4. Then n1/4κ4(Fn)
3/4 =

O (|κ3(Fn)|).

Proof : To lighten the notation, we assume that ρ is positive. The estimates ob-
tained in Theorem 2.4 lead to

κ3(Fn)

κ4(Fn)3/4
≥ cn1/4







∑

|k|<n ρ(k)
3/2

(

∑

|k|<n ρ(k)
4/3
)9/8







2

.

Hölder’s inequality with p = 9
4 , q = 9

5 implies

∑

|k|<n

ρ(k)2/3ρ(k)2/3 ≤





∑

|k|<n

ρ(k)3/2





4/9



∑

|k|<n

ρ(k)6/5





5/9

so that






∑

|k|<n ρ(k)
3/2

(

∑

|k|<n ρ(k)
4/3
)9/8







2

≥







(

∑

|k|<n ρ(k)
3/2
)2/3

(

∑

|k|<n ρ(k)
6/5
)5/6







3/2

.

Jensen inequality shows that
(

∑

|k|<n ρ(k)3/2
)2/3

≥
(

∑

|k|<n ρ(k)6/5
)5/6

, which

allows us to conclude the proof. �

This proposition leads to the following.

Theorem 3.2 (Third-moment theorem in total variation and convergence rates).
Let (Fn)n≥0, (vn)n≥0,and ρ be as in Theorem 2.4. Denote N ∼ N (0, 1). Then the
following four statements are equivalent:

(i): (Fn)n≥0 converges in law towards N (0, 1);
(ii): limn→∞ E[F 3

n ] = E[N3] = 0;
(iii): limn→∞ E[F 4

n ] = E[N4] = 3;

(iv):
(

∑

|k|<n |ρ(k)|
3/2
)2

= o
(

v
3/2
n

√
n
)

.

Moreover the convergence rate in this situation is
∣

∣E[F 3
n ]
∣

∣, in the sense that for
some n0 > 0

∃c, C > 0 : ∀n > n0, c
∣

∣E[F 3
n ]
∣

∣ ≤ dTV (Fn, N) ≤ C
∣

∣E[F 3
n ]
∣

∣ .

We also have the following commensurability for this convergence rate:

∣

∣E[F 3
n ]
∣

∣ ≍

(

∑

|k|<n |ρ(k)|
3/2
)2

(

∑

|k|<n |ρ(k)|
2
)3/2 √

n

.
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Proof : By the 4th moment theorem (non-quantitative statement in Theorem 1.1),
(i) and (iii) are equivalent. By the commensurability relation (2.1 ) in Theorem
2.4, (ii) and (iv) are equivalent. For the first statement of the theorem, it is now
enough to show (ii) and (iii) are equivalent. By Proposition 3.1, we have κ4(Fn) =

O
(

|κ3(Fn)|4/3 n−1/3
)

, thus if κ3(Fn) → 0 then κ4(Fn) → 0, i.e. (ii) implies (iii).

On the other hand, if (iii) holds, by Theorem 1.1, the convergence in (i) holds in total
variation, and the theorem’s lower bound in (1.1) implies (ii). The second statement

of the theorem follows from (1.1) and the estimate κ4 (Fn) = O
(

n−1/3 |κ3 (Fn)|4/3
)

which shows that κ4 (Fn) = o (|κ3 (Fn)|). The third statement combines relations
(2.1) and (2.3) in Theorem 2.4. The theorem is proved. �

The following result can be useful when dealing with non-normal convergence.

Corollary 3.3. If ρ /∈ ℓ2 (Z) then vn ∼ 2
∑n−1

k=0

(

1− k
n

)

ρ2 (k) . This situation holds
as soon as (Fn)n≥0 does not converge in law towards N (0, 1).

Proof : We use the notation and estimates from Step 4 in the proof of Theorem 2.4.
Since U (n) ≍ nT (n), we have that U (n) ≍ n iff T (n) converges, i.e. ρ ∈ ℓ2 (Z).
Therefore if ρ /∈ ℓ2 (Z) (i.e. T (n) → ∞ ), then since U (n) ≥ (n/2)T (n/2) ≫ n, we
can ignore the first term in the equivalent (2.3), proving the asymptotic equivalent
of the corollary.

To prove the corollary’s second statement, by Theorem 3.2, it is sufficient to
show that ρ ∈ ℓ2 (Z) implies condition (iv) of the theorem. Since ρ ∈ ℓ2 (Z) implies

that vn is bounded, we only need to show that S (n) :=
∑

|k|<n |ρ(k)|
3/2

= o
(

n1/4
)

.

The case of S (n) bounded is trivial, so we assume S (n) is unbounded. For any

fixed ε > 0, since ρ ∈ ℓ2, there exists n1 such that
∑∞

k=n1
ρ (k)2 ≤ ε. Also, since

S (n1) is fixed, and S (n) diverges, there exists n2 > n1 such that for all n ≥ n2,
S (n) ≥ 2S (n1). Hence we have

S (n) = S (n)− S (n1) + S (n1) ≤ S (n)− S (n1) + 2−1S (n)

so that

S (n) ≤ 2 (S (n)− S (n1)) .

We have by Jensen’s inequality, for all n ≥ n2,

S (n)− S (n1) = 2
n−1
∑

k=n1

|ρ(k)|3/2 = 2 (n− n1)





(

n−1
∑

k=n1

1

n− n1
|ρ(k)|3/2

)4/3




3/4

≤ 2 (n− n1)
1/4

[

n−1
∑

k=n1

1

n− n1
|ρ(k)|2

]3/4

≤ 2ε3/4 (n− n1)
1/4

.

This finishes the proof of the corollary. �

4. Example: sequences with log–modulated power covariance

Assume here that the correlation function ρ satisfies

|ρ(n)| ∼ n2H−2 log2β(n), (4.1)
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for large n, with H ∈ [0, 1] and β ∈ R. A stationary sequence (Xn)n∈Z
with this

property can easily be constructed as a Gaussian Fourier integral

Xn =

∫

S1

√

q (x) cos (xn)W (dx) +

∫

S1

√

q (x) sin (xn) W̃ (dx)

with Fourier coefficients q (x) = x1−2H log−2β(x−1), where x is the Fourier param-

eter on the unit circle S1, and W and W̃ are independent white noises on S1. The
details are omitted here; some can be found in the Appendix (see Section 7.1). We
also assume, as in the past, that ρ is of constant sign and |ρ| decreases for large
n. The process constructed above by Gaussian Fourier integral satisfies this as-
sumption. A arbitrary constant scaling factor should be added to the asymptotics
of |ρ| (like the H |2H − 1| for fBm), but we omit this in this section for notational
simplicity.

The case of discrete-time fractional Gaussian noise (fGn), treated in Nourdin and
Peccati (2015) and Biermé et al. (2012), falls within the special case of H ∈ (0, 3/4)
and β = 0. An extension of the fGn is developed in Biermé et al. (2011) contains
a correction term added to the the power spectral density of fractional Brownian
motion, which decays like a faster power at high frequency. This means that the
additional term is treated like a lower-order remainder, for continuous-time data.
Strictly speaking, this type of model is not immediately comparable to the discrete-
time models we consider here. However, a similar study for discrete time could be
done, for instance, on correlation structures of the form |ρ(n)| ∼ n2H−2+r (n) where
the remainder r (n) = O

(

n2H−2−γ
)

for some γ > 0. Such a class is contained in our
assumption (4.1) with β = 0; the corresponding convergence results and speeds of
convergence would then depend only on H , not γ. We omit any further discussion
of this point for the sake of brevity.

We will see below in Proposition 4.1, that we can cover the case H = 3/4
for any β, and that within the two presumed “critical thresholds” H = 2/3 and
H = 3/4, there arise further “critical log-thresholds” β = −1/3 and β = −1/4
respectively; moreover, the thresholds H = 2/3 and H = 3/4 only give rise to
“exotic” convergence rates (i.e. with “log corrections”) for certain ranges of the
parameter β . In this sense, the notion of critical value or of phase transition
is model-class-dependent. The reader could further convince herself of this by
considering a class of processes with H = 2/3, β = −1/3, and an additional factor
log log2γ (n), to find out that the “critical pair” (H = 2/3, β = −1/3) which we
exhibit harbors further ranges and cutoff values of the parameter γ, some of which
may be considered more exotic than others. In other words, the so-called critical
cases do not have any fundamental significance, but just appear as consequences
of the models’ scaling choices (power-scale in the fractional Brownian example,
log+power-scale in our class of examples).

Also notice that by Proposition 3.1, the asymptotics of dTV (Fn, N) are always
given by those of κ3 (Fn), even when the Breuer-Major theorem fails. This is not a
robust result, however. For instance, one can check from the calculations in Biermé
et al. (2012) and Nourdin and Peccati (2015) that for q ≥ 3 and certain values of H ,
the third and fourth cumulants take turns at determining the speed of convergence
of qth-power variations of fBm. As soon as the limit of Fn is not normal, the
question of determining an optimal speed of convergence for Fn becomes unresolved.
It is known that for fBm and other self-similar processes, when H > 3/4, the
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normalized quadratic variation converges to a so-called Rosenblatt distribution,
which is a law in the second chaos, which depends on the parameter H (see Tudor
and Viens (2009) and references therein). Estimating the rate of this convergence
from above, for fBm and for log-modulated processes, is the topic of Sections 5
and 6; therein we will see that unlike the case of normal convergence, the rate is
determined by the modulation rather than H .

Returning to the topic of normal convergence of Fn, under the asymptotics in
(4.1) we now compute the equivalents of the convergence rates exactly, thanks to
Theorem 2.4. Let us recall the following well-known result about Bertrand series.

Property 1 (Equivalents of Bertrand series). The series Sn(α, β) :=
∑

n>0 n
α logβ(n)

converges if and only if α < −1 or α = −1 and β < −1. When the series diverges,
we have the following equivalents for its partial sum:

• Sn(−1,−1) ∼ log(log(n));

• Sn(−1, β) ∼ 1
β+1 log

β+1(n) if β > −1;

• Sn(α, β) ∼ 1
α+1n

α+1 logβ(n) if α > −1, β > −1.

We may now use this lemma and Theorem 2.4 to obtain the asymptotic order
of the third and fourth cumulants, which gives us the rate of convergence to the
normal law for (Fn), as a consequence of Theorem 3.2.

Proposition 4.1. With the notation and assumptions as in Theorem 3.2, there
are positive constants c, C such that cMn ≤ dTV (Fn, N) ≤ CMn where

• Mn = 1√
n
if H < 2

3 or H = 2
3 , β < − 1

3 ,

• Mn = log(log(n))2√
n

if H = 2
3 , β = − 1

3 ,

• Mn = 1√
n
log2(3β+1)(n) if H = 2

3 , β > − 1
3 ,

• Mn = n6H− 9

2 log6β(n) if 2
3 < H < 3

4 or H = 3
4 , β < − 1

4 ,

• Mn = log−
3

2 (n) log(log(n))−
3

2 if H = 3
4 , β = − 1

4 ,

• Mn = log−
3

2 (n) if H = 3
4 , β > − 1

4 .

Since Mn → 0 in all these cases, dTV (Fn, N) → 0 at the same rates. The
normalizing factor vn converges if and only if { H < 3

4 or H = 3
4 , β < − 1

4}.

Remark 4.2. If {H = 3
4 , β ≥ − 1

4} or if H > 3/4, the Breuer-Major theorem fails by

definition because Vn := n−1/2
∑n−1

k=0 (X
2
k − 1) does not converge to a normal (its

variance diverges). However the last two cases in the previous proposition show
that normal convergence still holds for all cases where H = 3/4. In other words,
one must distinguish between (i) a Breuer-Major-type theorem, which attempts to
characterize situations where a central limit theorem might hold for partial sums
of highly dependent sequences X2

k − 1, where the familiar normalization n−1/2 can
still be used, and (ii) other normal convergences where the dependence of the terms
X2

k − 1 is too strong for a central-limit normalization, but hold under a stronger
normalization.

Proof of Proposition 4.1: All the computations below are based on the sharp esti-
mates of Theorem 2.4. By Theorem 3.2, it is sufficient to compute a commensurable
equivalent of κ3(Fn).

Step 1: computing the series
∑

|k|<n ρ(k)
3/2.
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Using our class of examples for ρ, we have that
∑

|k|<n ρ(k)
3/2 diverges if and only

if
∑

|k|<n |k|3(H−1) log3β(|k|) diverges, and is equivalent to this divergent partial

sum in that case. Therefore, by the equivalents for Bertrand series,
∑

|k|<n ρ(k)
3/2

is equivalent to

∗: a constant l(H, β) > 0 if H < 2
3 or H = 2

3 , β < − 1
3

∗: log(log(n)) if H = 2
3 , β = − 1

3

∗: 1
3β+1 log

3β+1 n if H = 2
3 , β > − 1

3

∗: 1
3H−2n

3H−2 log3β n if H > 2
3

Step 2: computing vn.

Again, by definition of ρ, we have that the following quantities are divergent si-
multaneously and the following equivalences hold in that case: vn ≍∑|k|<n ρ(k)

2 ∼
∑

|k|<n |k|4(H−1) log4β(|k|). Therefore vn is equivalent to

∗: a constant l′(H, β) > 0 if H < 3
4 or H = 3

4 , β < − 1
4

∗: log(log(n)) if H = 3
4 , β = − 1

4

∗: 1
3β+1 log

4β+1 n if H = 3
4 , β > − 1

4

∗: 1
4H−3n

4H−3 log4β n if H > 3
4

Step 3: computing κ3(Fn).

We can now compute a commensurable equivalent for κ3(Fn) thanks to relation
(2.1).

∗: κ3(Fn) ≍ 1√
n
if H < 2

3 or H = 2
3 , β < − 1

3

∗: κ3(Fn) ≍ log(log(n))2√
n

if H = 2
3 , β = − 1

3

∗: κ3(Fn) ≍ 1√
n
log2(3β+1)(n) if H = 2

3 , β > − 1
3

∗: κ3(Fn) ≍ n6H− 9

2 log6β(n) if 2
3 < H < 3

4 or H = 3
4 , β < − 1

4

∗: κ3(Fn) ≍ log−
3

2 (n) log(log(n))−
3

2 if H = 3
4 , β = − 1

4

∗: κ3(Fn) ≍ log−
3

2 (n) if H = 3
4 , β > − 1

4

Theorem 3.2 now allows us to conclude. �

5. Strategy for non-normal convergence

In Theorem 3.2, we saw that (Fn)n≥0 converges to a normal if and only if Con-

dition (iv) therein is satisfied. When this condition does not hold, one may wonder
what kind of other convergence we could get. The celebrated theorem of Do-
brushin and Major (1979); Taqqu (1979) spells out the possible second-chaos limits
of (Fn)n≥0 which occur for slowly-varying perturbations of fGn. In this section, we
detail a general methodology, based on the context used by Dobrushin and Major,
to determine whether convergence to a second-chaos limit holds.

We are not able to provide general criteria as sharp and as explicit as those which
we gave in the previous section for normal convergence; we are not aware of any
such works in the literature. However, a classical result of Davydov and Martynova
(1989) enables us to define a strategy for establishing speed of convergence in total
variation to second-chaos limits. Section 6 shows how to apply this methodology
when the slowly-varying terms are logarithmic, similarly to the class of examples
presented in Section 4.
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It was recently established in Nourdin and Poly (2012) that the only limits in
distribution for sequences in a 2nd Wiener chaos are of the form L (N + F ) where
F and N are independent and F is the law of a second-chaos rv, and N is Gaussian.
It is conceivable that one could find a choice of law for our sequence X such that
(Fn)n≥0 converges in law to such a convolution. We will avoid such a situation,

and investigate how to prove instead that (Fn)n≥0 converges in law to the law of a
second-chaos random variable.

As in Taqqu (1979), we can express our stationary sequence X as a Fourier
integral over the unit circle S1 ≡ [−π, π). Let q be the Fourier transform of the
even sequence ρ on Z, defined on S1 by

q (x) :=
∑

n∈Z

ρ (n) cos (nx) .

Assume that q ∈ L1
(

S1
)

. It is known that q is non-negative, with
∫

S1 q (x) dx =
ρ (0) = 1. Since we are interested in sequences X such that (Fn)n≥0 does not
converge to a normal, we will find that typically we have a long memory property,
i.e. ρ /∈ ℓ1 (Z), so that the Fourier series defining q is not absolutely convergent.
In fact, for ρ decreasing, we saw in Corollary 3.3 that ρ is not even in ℓ2 (Z).
However, if q ∈ L1

(

S1
)

is given exogenously, the classical theorem on pointwise
convergence of Fourier series (see Stein and Shakarchi, 2003, Chapter 3, Theorem
2.1) implies that the Fourier series of q converges to q at all points where q is
differentiable. The assumption q ∈ L1

(

S1
)

and its differentiability will be verified
in our examples in Section 6. We will also need to ensure that ρ satisfies a Fourier
inversion theorem. Since ρ /∈ ℓ1 (Z), we cannot appeal directly to the classical
Fourier inversion theorem, and we must thus check that it holds on a case-by-case
basis. In Section 6, we will work with covariances ρ which are defined in terms of
their Fourier transform q, so that Fourier inversion is automatic.

With q ∈ L1
(

S1
)

as above, and assuming that Fourier inversion holds for ρ, then
as for instance in Dobrushin (1979), the following spectral representation holds for
the centered Gaussian sequence X whose covariance is ρ: there exists a standard
complex-valued white noise W on S1 such that

X(k) =

∫

S1

eikx
√

q(x)W (dx). (5.1)

This appellation for W means that for x ∈ [0, π], W (dx) = B1 (dx) + iB2 (dx),
where B1 and B2 are two real-valued independent white noise measures on [0, π]
with scaling constant (2π)−1/2 (i.e. V ar[Bi([0, π])] = 1/2 ), and for every x ∈
[0, π], W (−dx) = W (dx) = B1 (dx) − iB2 (dx). It is helpful to realize that the
representation (5.1) is equivalent to

X (k) =

∫ π

−π

√

q (x) cos (kx)W1 (dx) +

∫ π

−π

√

q (x) sin (kx)W2 (dx)

whereW1 and W2 are i.i.d. real-valued white noises on [−π, π], standardized so that
V ar (Wi [−π, π]) = 1. Details on the properties of W are given in the Appendix in
Section 7.1. In the remainder of this section and in Section 6, it will be sufficient
for us to know the following special case of the isometry formula for double Wiener

integrals with respect to W : for f ∈ L2
(

(

S1
)2

,C
)

, if f satisfies the Hermitian
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evenness property f (−x,−y) = f (x, y), then

E
[

I2 (f)
2
]

=

∫∫

[−π,π]2
|f (x, y)|2 dxdy

(2π)2
=: ‖f‖2L2((S1)2) . (5.2)

See Section 7.1 for a proof. Note in addition that the isometry formula (5.2) for
double Wiener integrals against a complex-valued white noise does not contain the
usual factor of 2 associated with the isometry property for double Wiener integrals
with respect to a real-valued white noise.

From formula (5.1) and the product formula for Wiener integrals, we can write

X (k)
2 − 1 =

∫∫

(S1)2
W (dx)W (dy) eik(x+y)

√

q (x) q (y).

Using the stochastic Fubini theorem, justified because q ∈ L1
(

S1
)

implies that

(k, x, y) 7→ eik(x+y)
√

q (x) q (y) is in L2
(

(

S1
)2
)

× ℓ2 (Z), we get

Fn =
1√
nvn

∫∫

(S1)2
W (dx)W (dy)

ein(x+y) − 1

ei(x+y) − 1

√

q (x) q (y).

To prove that (Fn)n≥0 converges in law to a second-chaos distribution, it is suffi-

cient to prove that there exists a Wiener space
(

Ω̂, F̂ , P̂
)

such that for every n there

is a random variable F̂n with the same law as Fn, and another second-chaos random

variable F∞ on
(

Ω̂, F̂ , P̂
)

(not dependent on n), such that Ê

[

(

F∞ − F̂n

)2
]

→ 0.

Furthermore, since d (F∞, Fn) = d
(

F∞, F̂n

)

for any distance d on the set of laws,

to estimate the total-variation distance between the law of F∞ and the law of Fn,
one may rely on a theorem of Davydov and Martynova (1989), by which, if indeed
(

F̂n

)

n>0
converges in L2 (Ω) to F∞, then

dTV

(

F̂n, F∞
)

≤ cF∞

(

Ê

[

(

F̂n − F∞
)2
])1/4

(5.3)

where cF∞
is a finite constant depending only on the law of F∞.

We now change variables from (x, y) to (x′, y′) := (xn, yn), omitting the primes
for parsimony of notation, and we write In := [−πn, πn) for the corresponding
scaled circle. The self-similarity of W (dx) with index 1/2 means that W

(

n−1dx
)

has the same law as n−1/2W (dx). Therefore the random variable Fn has the same

law as the variable F̂n defined as follows under a standard complex-valued white

noise measure Ŵ on R scaled by (2π)
−1/2

(in particular
(

Ω̂, F̂ , P̂
)

is the C-valued

Wiener space of Ŵ , and
∣

∣

∣Ŵ (dx)
∣

∣

∣

2

= dx/ (2π) ):

F̂n =
1√
nvn

∫∫

R2

1In (x) 1In (y)

√

q
(x

n

)

q
( y

n

)

× 1/n

ei(x+y)/n − 1

(

ei(x+y) − 1
)

Ŵ (dx) Ŵ (dy) .

We note that gn : x 7→ (1/n)
(

eix − 1
)

/
(

einx − 1
)

converges pointwise and

boundedly to the bounded function g : x 7→
(

eix − 1
)

/ (ix), including at x = 0; this
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is proved using elementary calculations and the inequality
∣

∣eix − 1− ix
∣

∣ ≤ |x|2 for
|x| ≤ 1/2. This implies by dominated (bounded) convergence that gn and g can be
interchanged in expressions which are L2-convergent. We also recall that we may

use the expression nvn = −n+2
∑n−1

k=0 (n− k) ρ2 (k) which was established in (2.3)
in Theorem 2.4.

Now using estimate (5.3) and the isometry property (5.2 ), the above discussion

proves the following criterion for convergence in law of F̂n, which includes a possible
quantitative estimate. We emphasize that the convergence-in-law portion of this
strategy is not new, since it was used by Dobrushin and Major in the case of fGn
with slowly varying modulation.

Theorem 1 (Rate of convergence in total variation to the Rosenblatt law). Let
(Fn)n≥0 be the sequence of normalized quadratic variations of a centered sta-
tionary Gaussian sequence (Xn) with covariance ρ, i.e. Fn := Vn/

√
vn, where

Vn := n−1/2
∑n−1

k=0 (X
2
k − 1), and vn := E[V 2

n ] = n−1
∑n−1

k=0

∑n−1
ℓ=0 ρ (k − ℓ)

2
=

−1+ 2
∑n−1

k=0 (1− k/n) ρ2 (k). Assume that the spectral density q of X , defined by

q (x) :=
∑

n∈Z

ρ (n) cos (nx)

exists as a member of L1 ([−π, π)) Assume that Fourier inversion holds, i.e. that
∫ π

−π
eikxq (x) dx

2π = ρ (k) for all k ∈ Z. Assume ρ (0) = 1. Let

In := [−πn, πn), g (x) :=
eix − 1

ix
.

Assume there exists a real function f ∈ L2
loc

(

R2
)

which is even in both variables

and such that (x, y) 7→ (nvn)
−1/2

√

q
(

x
n

)

q
(

y
n

)

1In (x) 1In (y) g (x+ y) converges in

L2
(

R2
)

to f (x, y) g (x+ y).
Then Fn converges in law to the law of a second-chaos variable F∞, and we have

the representation

F∞ =

∫∫

R2

f (x, y)
ei(x+y) − 1

i (x+ y)
W (dx)W (dy)

where W is a complex white noise on R with scale determined by |W (dx)|2 =
dx/ (2π).

Moreover, with cF∞
the constant in (5.3), the speed of convergence in total

variation is bounded above as

dTV (Fn, F∞)
4 ≤ (cF∞

)
4
∫∫

R2

∣

∣

∣

∣

1In (x) 1In (y)
1√
nvn

√

q
(x

n

)

q
( y

n

)

× n−1
(

ei(x+y) − 1
)

ei(x+y)/n − 1
− f (x, y)

ei(x+y) − 1

i (x+ y)

∣

∣

∣

∣

∣

2

dxdy

Proof : See above development. �

Remark 1. The examples in Section 6 satisfy the assumption on q and ρ in Theorem
1.

Remark 2. The last inequality above, and Corollary 1 below, hold with y replaced
by −y since f is even in each variable, and q and In are even.
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Remark 3. Under the assumptions of Theorem 1, the law of (Fn)n>0 cannot con-
verge to a normal law. Consequently by Theorem 3.2, the other three equivalent
conditions (ii), (iii), (iv) therein fail. In particular, by Corollary 3.3, ρ /∈ ℓ2 (Z).

The following corollary is useful to estimate the speed of convergence in The-
orem 1. It enables one to introduce a trade-off between the speed of conver-

gence of the improper integral defining ‖fg‖2L2(R2) and the speed of convergence of
√

q
(

x
n

)

q
(

y
n

)

n−1/vn to f .

Corollary 1. Under the assumptions and notation of Theorem 1, for any α ∈ (0, 1),

with h (x) := min
(

1, |x|−1
)

, and nvn = −n+ 2
∑n−1

k=0 (n− k) ρ2 (k),

1

(cF∞
)
4 dTV (Fn, F∞)

4 ≤ 5

∫∫

R2\(Inα )2
|f (x, y)|2 h2 (x+ y) dxdy (5.4)

+ 16

∫∫

(In)
2

∣

∣

∣

∣

∣

√

q
(

x
n

)

q
(

y
n

)

nvn
− f (x, y)

∣

∣

∣

∣

∣

2

h2(x+ y)dxdy (5.5)

+
4

n2−2α

∫∫

R2

|f (x, y)|2 h2 (x+ y) dxdy. (5.6)

Proof : Write g (x) =
(

eix − 1
)

/ (ix) as above, and

fn (x, y) = (nvn)
−1/2

√

q
(x

n

)

q
( y

n

)

; gn (x) =
n−1

(

eix − 1
)

eix/n − 1
.

The function g is bounded by 2h (x). Elementary calculations with n ≥ 3 and
x, y ∈ In lead to

|gn (x+ y)− g (x+ y)| ≤ |g (x+ y)|
1 + n/ |x+ y| ≤

2h (x+ y)

1 + n/ |x+ y| . (5.7)

From Theorem 1,

dTV (Fn, F∞)

≤
∫∫

R2\(In)2
|f (x, y)|2 h2 (x+ y) dxdy

+

∫∫

(In)
2

(

|fn (x, y)− f (x, y)|2|gn (x+y)|2+|f (x, y)|2|gn (x+y)− g (x+y)|2
)

dxdy

≤
∫∫

R2\(In)2
|f (x, y)|2 h2 (x+ y) dxdy

+ 16

∫∫

(In)
2

|fn (x, y)− f (x, y)|2 h2 (x+ y)dxdy

+

∫∫

(In)
2

|gn (x+ y)− g (x+ y)|2 |f (x, y)|2 dxdy.

All three terms above converge to 0, the first two by assumption, the last by dom-
inated convergence. However, to derive quantitative estimates, it is best to exploit
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relation (5.7) more specifically. Therefore, for α ∈ (0, 1) fixed, we write
∫∫

(In)
2

|gn (x, y)− g (x, y)|2 |f (x, y)|2 dxdy

=

(

∫∫

(In)2\(Inα )2
+

∫∫

(Inα )2

)

|gn (x, y)− g (x, y)|2 |f (x, y)|2 dxdy

≤ 4

∫∫

R2\(Inα )2
|f (x, y)|2 h2 (x+ y) dxdy +

4

n2−2α

∫∫

R2

|f (x, y)|2 h2 (x+ y) dxdy.

The corollary easily follows. �

6. Example: log-modulation and second-chaos limits

We have in mind the same class of examples as in Section 4. If H > 3
4 , one gets,

by relation (2.1) in Theorem 2.4 , that κ3(Fn) converges to a non-zero constant.
Theorem 3.2 then proves that Fn cannot converge to a normal law. We now study
the possible convergence of Fn to non-normal laws.

In order to streamline the presentation, since our strategy is to use Corollary 1, it
turns out to be more convenient to make assumptions on q and derive corresponding
estimates on ρ and other quantities of interest. The reader may see below, by
comparing our definition of q in (6.1) and the estimate on ρ in Proposition 1, that
assumptions on q and ρ of log-modulated power type are asymptotically equivalent.

Let β ≥ 0 and H ∈ (3/4, 1). Consider the positive function q on the unit circle
S1 = [−π, π] defined, except at x = 0, by

q (x) := CH,β |x|1−2H log2β
(

eπ

|x|

)

. (6.1)

The constant CH,β is chosen in such a way that
∫ π

−π q (x) dx/ (2π) = 1, i.e.

CH,β := 2π/

∫ π

−π

|x|1−2H
log2β

(

eπ

|x|

)

dx, (6.2)

in order to stay with the assumption that our stationary sequence has unit variance,
but other normalizing constants pose no additional difficulty. The case β = 0
corresponds to fGn. The case β < 0 has slightly different properties than the case
β ≥ 0, and requires further computations; we omit it for the sake of conciseness.
To simplify the notation, we introduce

L (y) := log2β (|y|)
and notice that L (eπ/ |x|) ≥ 1 for all x ∈ [−π, π]. Moreover, q is in L1

(

S1, dx
)

and is C∞ everywhere except at 0, and therefore q coincides with the Fourier series
of its Fourier inverse ρ; in other words, the stationary Gaussian process X with
covariance function ρ given by

ρ (k) :=
1

2π

∫ π

−π

q (x) cos (kx) dx (6.3)

has spectral density q. The relation (6.3), which is our definition of ρ, serves as the
Fourier inversion property required for applying Theorem 1 and its corollary. The
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other needed assumption is q ∈ L1
(

S1
)

, which holds since H < 1. We recompute
ρ by changing variables and using the definition of q, to get

ρ (k) =
CH,β

2π
k2H−2

∫ kπ

−kπ

|x|1−2H
cos (x)L

(

k
eπ

|x|

)

dx. (6.4)

Here normalizations are such that ρ (0) = 1. The asymptotics of ρ are the following.

Proposition 1. With ρ in (6.4), with CH,β in (6.2) and with

KH :=
1

π

∫ ∞

0

|x|1−2H cos (x) dx = 2Γ (2− 2H) cos (π (1−H)) ,

we have for large k

ρ (k) = CH,βKHL (k) k2H−2

(

1 +O
(

1

L (k)

))

.

The proof of this proposition is given in Section 7.2 in the Appendix. The next

proposition, which gives the behavior of nvn = V ar
(

∑n−1
k=0 X

2
k

)

using Proposition

1, is also proved in the Appendix, in Section 7.3. Recall from (2.3) in Theorem 2.4

that nvn = n+ 2
∑n−1

k=1 (n− k) ρ2 (k).

Proposition 2. With ρ in (6.4) and nvn = n+ 2
∑n−1

k=1 (n− k) ρ2 (k), for n large

nvn = (CH,β)
2
K ′

H n4H−2 L2 (n)

(

1 +O
(

1

logn

))

where CH,β is given in (6.2) and

K ′
H :=

(2Γ (2− 2H) cos (π (1−H)))
2

(4H − 2) (4H − 3)
.

With Proposition 2 in hand, we can use Corollary 1 to establish a speed of
convergence result for the Dobrushin-Major theorem.

Theorem 2. Let (Fn)n≥0 be the sequence of normalized quadratic variations of a
centered stationary Gaussian sequence (Xn) with unit variance, i.e. Fn := Vn/

√
vn,

where Vn := n−1/2
∑n−1

k=0 (X
2
k − 1), and vn := E[V 2

n ] = n−1
∑n−1

k=0

∑n−1
ℓ=0 ρ (k − ℓ)

2
,

with the covariance ρ of X given by (6.4). Assume H ∈ (3/4, 1) and β ≥ 0. Then
Fn converges in law to the law of a second-chaos variable F∞, and we have the
representation

F∞ =

∫∫

R2

|xy|H−1/2

√

K ′
H

ei(x+y) − 1

i (x+ y)
W (dx)W (dy)

whereW is a complex-valued white noise onR with scale determined by |W (dx)|2 =
dx/ (2π) and K ′

H is given in Proposition 2. Moreover, the speed of convergence in
total variation is bounded above as

dTV (Fn, F∞) ≤ c

log1/2 n

where the positive constant c depends only on H and β.

Before concluding our article with the proof of this theorem, we rephrase the
result to match the usual normalizations found in the literature when H > 3/4.
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Remark 4. According to Theorem 2, with (Xn) the correlated sequence of standard
normal random variables defined therein, the sequence

∑n−1
k=0 (X

2
k − 1)

n2H−1

converges in distribution to the law of the second-chaos variable represented by

CH,β

∫∫

R2

|xy|H−1/2 ei(x+y) − 1

i (x+ y)
W (dx)W (dy)

whereW is a complex-valued white noise onR with scale determined by |W (dx)|2 =
dx/ (2π) and CH,β is given in (6.2). The speed of convergence in total variation is

of order log−1/2 n for any β > 0 and any H ∈ (3/4, 1). When β = 0, this speed
can be improved to n3/4−H as can be seen in Nourdin and Peccati (2012, Theorem
7.4.5).

Proof of Theorem 2. Since, as mentioned above, q and ρ satisfy the assumptions of
Theorem 1, according to Corollary 1, and using its notation, it is sufficient to prove

that, with f (x, y) = |xy|H−1/2 /
√

K ′
H , the three terms in lines (5.4), (5.5), and

(5.6) all converge to 0 at least as fast as log−2 n. In all calculations below, it will
be convenient to change variables and replace y by −y; this only entails replacing
h (x+ y) by h (x− y); all other expressions are invariant by this change of variables
since In and q are even and f is even in y; see Remark 2.

Step 1. We use Proposition 2 to handle the term in line (5.5). With γ = 2 − 2H ,
this term is bounded above by a constant times

I (2) : =

∫∫

(In)
2

∣

∣

∣

∣

∣

∣

√

q
(

x
n

)

q
(

y
n

)

nvn
− f (x, y)

∣

∣

∣

∣

∣

∣

2

h2 (x− y) dxdy

=

∫∫

(In)
2

|xy|γ−1

K ′
H

∣

∣

∣

∣

∣

∣

∣

∣

√

L
(

eπn
x

)

L
(

eπn
y

)

(

1 +O
(

1
log n

))

L (n)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

2

min
(

1, |x− y|−2
)

dxdy.

We can write
L
(

eπn
x

)

L (n)
=

(

1− log |x|
log (eπn)

)2β

.

In order to use a uniform bound on the first order Taylor expansion for this expres-
sion, we will fix δ ∈ (0, 1) and consider u ∈ [−δ, 1]; then there is a positive finite

constant c = c (β, δ) such that for large n,
∣

∣

∣(1− u)β − 1 + βu
∣

∣

∣ ≤ cu2. Hence for

|x| ∈ [n−δ, πn] and n large enough,
√

L
(

eπn
x

)

L
(

eπn
y

)

(

1 +O
(

1
logn

))

L (n)
= 1 +O

(

1

logn

)

− β
log |x|+ log |y|

logn
+ c

log2 |x|+ log2 |y|
log2 n

.

Step 1.1. For n large enough, by symmetry, the portion of I (2) for |x| ≥ n−δ and
|y| ≥ n−δ is bounded above by a constant times
∫ πn

0

∫ x

0

(xy)γ−1
( 1

logn
+

|log x|+ |log y|
logn

+
log2 x+ log2 y

log2 n

)2

min
(

1, |x− y|−2
)

dydx.
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Since (xy)
γ−1 (

1 + |log x|+ log2 x
) (

1 + |log y|+ log2 y
)

10≤y≤x is integrable for x

near 0, the contribution of the above integral for x ∈ [0, 2] is O
(

log−2 n
)

. Therefore,
by separating this set and the diagonal set x− 1 < y < x from the rest, the above
integral is bounded above by a constant times

1

log2 n
+

∫ πn

2

∫ x

x−1

yγ−1 log
2 x+ log2 y + log4 x+ log4 y

log2 n
dydx

+

∫ πn

2

∫ x−1

0

yγ−1 (x− y)
−2 log2 x+ log2 y + log4 x+ log4 y

log2 n
dydx.

This is itself bounded above by

1

log2 n
+

4

log2 n

∫ πn

2

(x− 1)γ−1 log4 x dx

+
1

log2 n

∫ πn

2

∫ 1

0

yγ−1 (x− y)
−2 (

log2 (x/y) + log4 (x/y)
)

dydx

+
4

log2 n

∫ πn

2

log4 x

∫ x−1

1

yγ−1 (x− y)
−2

dydx

≤ 1

log2 n
+

4

log2 n

(∫ ∞

1

xγ−1 log4 (x+ 1)dx

)

+
1

log2 n

∫ πn

2

xγ−2

∫ 1/x

0

zγ−1 (1− z)
−2 (

log2 z + log4 z
)

dzdx

+
4

log2 n

∫ πn

2

xγ−2 log4 x

∫ 1−1/x

1/x

zγ−1 (1− z)
−2

dydx

≤ c

log2 n

(

∫ πn

2

xγ−2x−γ+εdx+

∫ πn

2

xγ−2 log4 xdx
[

4

∫ 1/2

1/x

zγ−1dz + 4

∫ 1/2

1/x

z−2dz
])

≤ c

log2 n

(

1 +

∫ πn

2

xγ−2
(

x−γ+ε + x−γ + x−1
)

log4 xdx
)

,

for any constant ε > 0, where c depends only on γ and ε. By choosing ε < γ, we
get that this portion of I (2) goes to 0 as fast as log−2 n.

Step 1.2. For n large enough, by symmetry, the portion of I (2) for |x| ≤ n−δ or
|y| ≤ n−δ is bounded above by a constant times

∫ πn

0

yγ−1dy

∫ n−δ

0

xγ−1



1 +
L
(

eπn
x

)

L (n)
+

L
(

eπn
y

)

L (n)



min
(

1, |x− y|−2
)

dx

≤
∫ n−δ

0

yγ−1dy

∫ n−δ

0

xγ−1

(

2 + L

(

1

x

)

+ L

(

1

y

))

dx

+

∫ 1

n−δ

yγ−1dy

∫ n−δ

0

xγ−1

(

3 + L

(

1

x

))

dx

+

∫ πn

n−δ

yγ−1 4

y2
dy

∫ n−δ

0

xγ−1

(

3 + L

(

1

x

))

dx.
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Therefore, for any ε > 0, and n large enough, the above expression is bounded
above by a constant times

∫ n−δ

0

yγ−1dy n−γδ
(

2 + L
(1

y

)

+ nε
)

+

∫ 1

n−δ

yγ−1dy n−γδ (3 + nε)

+

∫ πn

1

yγ−3dy n−γδ (3 + nε)

≤ γ−1n−γδ
(

2 + nε + n2ε
)

+ 4γ−1n−γδ+ε + 4 (2− γ)
−1

n−γδ+ε

≤ cn−γδ+2ε

for some constant c depending only on γ and ε. For ε < γδ/2, we get that this
portion of I (2) goes to 0 faster than log−2 n. Hence I (2) = O

(

log−2 n
)

.

Step 2. We now consider the term in line (5.4). By symmetry, this is bounded
above by a constant times

I (1) :=

∫ ∞

0

xγ−1

∫ ∞

nα

yγ−1min
(

1, |x− y|−2
)

dydx.

That is in turn bounded above by

∫ nα−1

0

xγ−1
(

∫ ∞

nα

yγ−1(y−x)−2dy
)

dx+2

∫ ∞

nα−1

xγ−1

∫ x

nα−1

yγ−1min
(

1, |x−y|−2
)

dydx

which is itself bounded above by

nα(γ−1)

∫ nα−1

0

xγ−1 (nα − x)
−1

dx+ 2

∫ ∞

nα−1

xγ−1

∫ x−1

nα−1

yγ−1 (x− y)
−2

dydx

+ 2

∫ ∞

nα−1

xγ−1

∫ x

x−1

yγ−1dydx

≤ nα(γ−1)

(

2

nα

∫ nα/2

0

xγ−1dx+

(

2

nα

)γ−1 ∫ nα/2

1

x−1dx

)

+ 2

∫ ∞

nα−1

yγ−1

∫ ∞

x+1

(x− y)−2 dxdy + 2

∫ ∞

nα−1

(x− 1)2γ−2 dx

= n2α(γ−1)

(

21−γ

γ
+ 2γ−1 log

(

nα

2

))

+
2

1− γ
(nα − 1)

γ−1
+

2

1− 2γ
(nα − 2)

2γ−1
.

Since γ = 2− 2H and H ∈ (3/4, 1), we have 0 > 2γ− 1 > γ− 1 > 2γ− 2, and thus

the last expression above is a O
(

n−α(1−2γ)
)

which goes to 0 faster than log−2 n.

I.e. I (1) = O
(

n−α(1−2γ)
)

≪ log−2 n.

Step 3. Finally we consider the term in line (5.6). By symmetry, this is bounded
above by a constant times

I (3) :=
1

n2−2α

∫ ∞

0

xγ−1

∫ x

0

yγ−1min
(

1, (x− y)
−2
)

dydx.

To show that this I (3) = o
(

log−2 n
)

it is sufficient to prove that the integral above
is finite. Since γ − 1 > −1, The portion of that integral corresponding to x ∈ [0, 2]
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is finite. We thus only need to study the portion corresponding to x > 2 :
∫ ∞

2

xγ−1

∫ x

0

yγ−1min
(

1, (x− y)
−2
)

dydx

≤
∫ ∞

2

xγ−1

(

(x

2

)−2
∫ x/2

0

yγ−1dy +
(x

2

)γ−1
∫ x−1

x/2

(x− y)−2 dy +

∫ x

x−1

yγ−1dy

)

dx

≤
∫ ∞

2

xγ−1

(

(x

2

)−2

γ−1
(x

2

)γ

+
(x

2

)γ−1
(∫ ∞

1

y−2dy

)

+ (x− 1)
γ−1

)

dx

≤ γ−122−γ

∫ ∞

2

x2γ−3dx+ 22−γ

∫ ∞

1

x2γ−2dx.

This is finite, given that H > 3/4 =⇒ 2γ − 2 < −1. The proof of the theorem is
complete. �

7. Appendix: technical elements used in Sections 5 and 6.

7.1. Representations of stationary Gaussian processes using the complex-valued
white noise measure. For the reader’s convenience, and for the sake of being self-
contained to some extent, we briefly recall the construction and properties of the
complex-valued white noise W . As indicated in Section 5, W is the indepen-
dently scattered C-valued centered Gaussian measure on S1 = [−π, π] such that
for x ∈ [0, π], W (dx) = B1 (dx) + iB2 (dx), where B1 and B2 are two real-valued
independent white noise measures on [0, π] such that V ar[Bi([0, π])] = 1/2, and for

every x ∈ [0, π], W (−dx) = W (dx) = B1 (dx)− iB2 (dx).
This definition of W , where one notes that unlike in the real case, the restrictions

of W to [−π, 0] and to [0, π] are not independent, implies the following properties,
using the usual shorthand differential notation for Itô’s rule: for all x ∈ [0, π],

• first Itô rule: W (dx)W (−dx) = W (dx)W (dx) = |W (dx)|2 = dx/ (2π) ,

• second Itô rule: W (dx)W (dx) = W (dx)2 = 0,
• W (dx) and W (dy) are independent for x 6= y and xy ≥ 0,

For X defined as in (5.1) using a non-negative function q ∈ L1
(

S1
)

, i.e. for
k ∈ Z,

X(k) =

∫

S1

eikx
√

q(x)W (dx),

we can rewrite this expression by expanding W according to its definition above:
for all k ∈ Z,

X (k) = 2

∫ π

0

√

q (x) cos (kx)B1 (dx)− 2

∫ π

0

√

q (x) sin (kx)B2 (dx) (7.1)

=

∫ π

−π

√

q (x) cos (kx)W1 (dx) +

∫ π

−π

√

q (x) sin (kx)W2 (dx) (7.2)

where the second equality is in law, with W1 and W2 two independent real-valued
white noise measures on [−π, π] with scale determined by V ar [Wi ([−π, π])] = 1.

Representation (7.2) is more commonly found in the literature than Represen-
tation (7.1). From either representation, it is evident that X is real valued. From
(5.1), one can check that X has the announced covariance, as follows. Using the
fact that X is real-valued, and the product rule for Wiener integrals, we have
X (k)X (l) = X (k)X (l), which is the sum of a mean-zero second-chaos variable
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and of a constant formally expressed as
∫

S1 e
ikx
√

q(x)W (dx)e−ilx
√

q(x) W (dx).
Thus, by Itô’s rule,

E [X (k)X (l)] =

∫ π

−π

ei(k−l)xq(x)
dx

2π
= ρ (k − l) ,

where the last equality assumes that Fourier inversion holds for ρ. We can extend
this type of calculation in general to express the isometry property in the second
chaos of the complex-valued W . For a function f ∈ L2

(

[0, π]2,C
)

we can write

I2
(

f
)

=

∫∫

[0,π]2
f (x, y)W (dx)W (dy) +

∫∫

[0,π]×[−π,0]

f (x, y)W (dx)W (dy)

+

∫∫

[−π,0]2
f (x, y)W (dx)W (dy) +

∫∫

[−π,0]×[0,π]

f (x, y)W (dx)W (dy)

=

∫∫

[0,π]2
f (x, y)W (dx)W (dy) +

∫∫

[0,π]2
f (−x,−y)W (dx)W (dy)

+

∫∫

[0,π]2
f (x,−y)W (dx)W (dy) +

∫∫

[0,π]2
f (−x, y)W (dx)W (dy) .

When squaring I2 (f) and taking its expectation, by the second Itô rule above, the
only terms that remain are those for which a product of the form W (dx)W (dx)
or W (dy)W (dy) does not appear. Thus we get only two terms left:

E
[

I2 (f)
2
]

= 2

∫∫

[0,π]2
f (x, y) f (−x,−y)

dxdy

(2π)
2 + 2

∫∫

[0,π]2
f (x,−y) f (−x, y)

dxdy

(2π)
2 .

When f satisfies the Hermitian evenness property f (−x,−y) = f (x, y), this for-
mula easily yields the isometry property (5.2) announced earlier:

E
[

I2 (f)
2
]

=

∫∫

[−π,π]2
|f (x, y)|2 dxdy

(2π)
2 =: ‖f‖2L2((S1)2) .

7.2. Proof of Proposition 1.

Proof : The constant
∫

R

|x|1−2H
cos (x)L

(

eπ

|x|

)

dx

is finite because x 7→ |x|1−2H
L (eπ/ |x|) decreases to 0 as x → ∞ . Thus by (6.4),

we get

ρ (k)

CH,β
=

k2H−2

π

∫ ∞

0

|x|1−2H
cos (x)L

(

k
eπ

|x|

)

dx− k2H−2

π

∫ ∞

kπ

|x|1−2H
cos (x) dx

After integrating by parts, the second term on the right-hand side above can be
written as

k2H−2

π
lim

N→∞

∫ N

kπ

x1−2H cos (x) dx

=
k2H−2

π
lim

N→∞

(

N1−2H sinN + (2H − 1)

∫ N

kπ

x−2H sin (x) dx

)

= O
(

k−1
)

.
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Therefore to prove the proposition, it is sufficient to show that

1

π

∫ ∞

0

x1−2H cos (x)L
(

k
eπ

x

)

dx = KHL (k)

(

1 +O
(

1

L (k)

))

.

There is a positive constant c (β) such that for |y| < 1, we have 1 − c (β) |y| ≤
(1 + y)β ≤ 1 + c (β) |y|. Thus for 0 ≤ y ≤ 1, we can write (1 + y)β = 1 + O (y)
where |O (y) /y| is bounded by c (β). We also use |cosx| ≤ 1 when x is small. We
compute, for any ε > 0, for k large,
∫ ∞

0

x1−2H cos (x)L
(

k
eπ

x

)

dx

=

∫ eπ/k

0

x1−2H cos (x)L
(

k
eπ

x

)

dx+

∫ ∞

eπ/k

|x|1−2H
cos (x) log2β k

(

1 +
log( eπ|x|)

log k

)2β

dx

= O
(

∫ eπ/k

0

x1−2HL
(

k
eπ

x

)

dx

)

+

∫ ∞

eπ/k

|x|1−2H
cos(x) log2β k

(

1 +O
( log

(

eπ
|x|
)

log k

))

dx

= O
(

k2−2H

∫ k−2

0

y1−2H log2β
(

y−1
)

dy

)

+ L (k)

∫ ∞

eπ/k

|x|1−2H
cos (x) dx

+O
(

L (k)

log k

)∫ ∞

eπ/k

|x|1−2H cos (x) log

(

eπ

|x|

)

dx

= O
(

k2−2Hk−2(2−2H−ε)
)

+ L (k)πKH − L (k)

∫ eπ/k

0

|x|1−2H
cos (x) dx

+O
(

L (k)

log k

)∫ ∞

0

|x|1−2H
cos (x) log

(

eπ

|x|

)

dx

= O
(

k−(2−2H)+ε
)

+ L (k)πKH + L (k)O
(

k−(2−2H)
)

+O
(

L (k)

log k

)

.

We used the facts that y 7→
∫ y

0 x1−2Hdx = O
(

y2−2H
)

near 0, that for any ε > 0,

y 7→
∫ y

0
x1−2H logβ

(

x−1
)

dx = O
(

y2−2H−ε
)

near 0, and that
∫∞
0

|x|1−2H cos(x) log( eπ|x|)dx is a converging series. By taking ε ∈ (0, 2− 2H), this

proves the proposition. �

7.3. Proof of Proposition 2. Let α ∈ (0, 1). We compute nvn by splitting its series
up at the value k = nα. We use the notation γ := 2 − 2H for compactness; note
that 1 > H > 3/4 implies 2γ ∈ (0, 1).

To lighten the notation slightly, we write KH,β := KHCH,β . From Proposition
1, we compute

nvn = n+ 2K2
H,β





[nα]
∑

k=1

+

n
∑

k=[nα]+1



 (n− k) k−2γL2 (k) (1 +O (1/L (k)))
2

= n+ 2K2
H,β (1 +O (1))n1+α

[nα]
∑

k=1

k−2γL2 (k) (1 +O (1/L (k)))
2

(7.3)

+ 2K2
H,β n2−2γ 1

n

n
∑

k=[nα]+1

(

1− k

n

)(

k

n

)−2γ

L2 (k) (1 +O (1/L (nα)))
2
. (7.4)
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In line (7.3), the term n is negligible in front of the remainder of that line (we

already knew this from Corollary 3.3), which is of order at least n1+α
∑[nα]

k=1 k
−2γ ≍

n1+α+α(1−2γ) = n1+α(1−2γ) and no greater than n1+α(1−2γ)L2 (n). Thus the term
in line (7.3) is O

(

n1+α(1−2γ)L2 (n)
)

. On the other hand, we set up the term in line
(7.4) to draw a precise comparison with a Riemann sum; thus modulo the factor

L2 (k) (1 +O (1/L (nα)))2 which is smaller than any power, we have an expression
which is asymptotically equivalent to a constant times n2−2γ . However we find
1 + α (1− 2γ) < 2− 2γ ⇐⇒ 2γ < 1. Thus the terms in line (7.4) dominate those
in line (7.3) by a factor greater than a small power. In other words, we have proved
that for some ε > 0,

nvn = 2K2
H,β (1 +O (1/L (nα)))

2 (
1 +O

(

n−ε
))

× n2−2γ 1

n

n
∑

k=[nα]+1

(

1− k

n

)(

k

n

)−2γ

L2 (k) .

Since L (nα) = O (L (n)) trivially, and (1 +O (1/L (n)))
p
= (1 +O (1/L (n))) for

p > 0, and for any integer k ≥ nα we can write

L (k) = log4β (n)

(

1 +
log (k/n)

logn

)4β

= L (n)

(

1 +O
(

1

logn

))

,

we get

nvn = 2K2
H,β

(

1 +O
(

1

L (n)

))

n2−2γ L2 (n)
1

n

n
∑

k=[nα]+1

(

1− k

n

)(

k

n

)−2γ

.

We must now compute the asymptotics of the series in the last line above. Let
hγ (x) := (1− x)x−2γ defined on (0, 1]. We compute h′

γ(x) = x−2γ(2γ−1−2γ/x) <

0 and find
∣

∣h′
γ (x)

∣

∣ ≤ 2x−2γ−1. We thus have
∣

∣

∣

∣

∣

∣

1

n

n
∑

k=[nα]+1

hγ

(

k

n

)

−
∫ 1

0

hγ (x) dx

∣

∣

∣

∣

∣

∣

≤ 1

n

∫ 1

nα−1

2x−2γ−1dx+

∫ nα−1

0

x−2γdx

= O
(

n2γ(1−α)−1
)

+O
(

n2γ(1−α)−1+α
)

= O
(

n−(1−α)(1−2γ)
)

.

This proves that for any choice of α ∈ (0, 1)

nvn = 2K2
H,β

(

1 +O
( 1

L(n)

))

n2−2γL2(n)

∫ 1

0

hγ (x) dx
(

1 +O
(

n−(1−α)(1−2γ)
))

= 2K2
H,β

(∫ 1

0

hγ (x) dx

)

n2−2γ L2 (n)

(

1 +O
(

1

L (n)

))

which is the proposition’s claim, given γ = 2− 2H and the computation
∫ 1

0

hγ (x) dx =

∫ 1

0

x−2γdx+

∫ 1

0

x−2γ+1dx =
1

(1− 2γ) (2− 2γ)
.
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