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Abstract In this paper, an ambiguity-averse insurer (AAI) whose surplus
process is approximated by a Brownian motion with drift, hopes to manage
risk by both investing in a Black-Scholes financial market and transferring
some risk to a reinsurer, but worries about uncertainty in model parameter-
s. She chooses to find investment and reinsurance strategies that are robust
with respect to this uncertainty, and to optimize her decisions in a mean-
variance framework. By the stochastic dynamic programming approach, we
derive closed-form expressions for a robust optimal benchmark strategy and
its corresponding value function, in the sense of viscosity solutions, which al-
lows us to find a mean-variance efficient strategy and the efficient frontier.
Furthermore, economic implications are analyzed via numerical examples. In
particular, our conclusion in the mean-variance framework differs qualitatively,
for certain parameter ranges, with model-uncertainty robustness conclusions
in the framework of utility functions: Model uncertainty does not always re-
sult in an agent deciding to reduce risk exposure under mean-variance criteria,
opposite to the conclusions for utility functions in Maenhout (2006) and Liu
(2010). Our conclusion can be interpreted as saying that the mean-variance
problem for the AAI explains certain counter-intuitive investor behaviors, by
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which the attitude to risk exposure, for an AAI facing model uncertainty,
depends on positive past experience.

Keywords Stochastic optimization · mean-variance · ambiguity-averse
insurer · Black-Scholes · model uncertainty

1 Introduction

The mean-variance portfolio selection theory proposed in Markowitz (1952) is
recognized as a cornerstone of modern finance. By providing a clear framework
on how to find an optimal allocation strategy among risky assets in order to
achieve a given expected return with minimal variance, it has played a signifi-
cant role both in academia and industry due to its simplicity and practicality,
and has inspired literally hundreds of extensions and applications; see Hakas-
son (1971), Li & Ng (2000), Celikyurt & Özekici (2007), Wu & Li (2012) for
discrete-time problems.

For continuous-time markets, Zhou & Li (2000) introduced the linear-
quadratic (LQ) stochastic control approach to derive the optimal mean-variance
portfolio. Li et al. (2002) obtained the optimal mean-variance portfolio with
no-shorting constraints via the stochastic dynamical programming approach:
It turns out that the corresponding value function, solution to a Hamilton-
Jacobi-Bellman (HJB) equation, only exists in the sense of viscosity solutions.
They also illustrate that, generally, under mean-variance criteria, control con-
straints lead to non-smooth value functions, requiring the interpretation of
HJB solution in the sense of viscosity.

Bäuerle (2005) pointed out that mean-variance criteria can also be of in-
terest in insurance applications, and started research on optimal reinsurance
problems under benchmark and mean-variance criteria. In the meantime, go-
ing beyond the use and continued development of reinsurance as a traditional
risk-spreading approach, insurance practitioners and academics have looked
at risky investments as a viable and in some cases highly significant way to
utilize insurer surplus. Recently, some scholars investigated optimal reinsur-
ance and/or investment problems for insurers under utilities or mean-variance
framework, including the use of the Black-Scholes framework for modeling
market risk: see among others, Schmidli (2001), Yang & Zhang (2005), Gu et
al. (2012) for utilities, Bäuerle (2005), Delong & Gerrard (2007), Zeng et al.
(2010) and Zeng & Li (2011) for mean-variance criteria.

In a different direction, some scholars advocated and investigated the im-
pact of economic model uncertainty on portfolio selection. They pointed out
that in many cases, the parametric models used in theory, such as the Black-
Scholes model, contain significant uncertainties in parameter estimates, par-
ticularly in the so-called drift parameters. In practice, this means that the
expectation of the return process on a risky asset is not known a priori with
any adequate precision, and the investor usually has to account for a signifi-
cant level of error in drift parameter estimates. For an insurer who considers
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risky market investments in a Black-Scholes framework, the situation is neces-
sarily identical, and moreover, accurate estimation of the surplus model’s drift
parameter, i.e. its expectation, can also be called into question. A wise insurer
who faces uncertainty in all drift parameters would then hope for a systematic
and quantitative way to take such model uncertainty into account.

There are several strategies proposed in the literature to implement port-
folio selection under model uncertainty, and one could arguably take any one
of these several routes when embarking on the task of adapting these methods
to the insurance business. For example, Mataramvura & Øksendal (2008) and
Zhang & Siu (2009) investigated model uncertainty for investors/insurers via
stochastic differential game theory. In another study, Nietert (2003) disclosed
the difficulties caused by model uncertainty in practice: He showed that even
(options-based) portfolio insurance can not protect minimum investment goal-
s with probability one, because of model uncertainty on the market price of
risk. In this paper, we follow the approach advanced by Anderson et al. (1999),
which introduces the concept of ambiguity-aversion and formulates a robust
control problem for investors. Uppal & Wang (2003) extended Anderson et al.
(1999) by developing a model-uncertainty robustness framework with different
levels of ambiguity. Maenhout (2004, 2006) innovated a “homothetic robust-
ness” framework which allowed him to derive explicit closed-form solutions
to dynamic robust portfolio optimizations for an investor with constant rela-
tive risk aversion (CRRA) utility. Liu (2010) studied the optimal investment
and consumption strategy for an investor under “homothetic robustness”, and
obtained the robust optimal strategy under recursive preferences.

To adapt these general strategies to the insurance domain, recall that our
goal is to help our AAI manages her risk by taking advantage of risky Black-
Scholes markets to invest her surplus process, while agreeing with her premise
that the estimated models (also called the reference model) contain significant
parameter uncertainty, i.e. that the market (true models) may deviate from the
reference model. We will assume that she has some quantitative preferences
regarding model uncertainty, which must be taken into account by considering
alternative models which are close to the reference model. We will define a
strategy which is robust with respect to (w.r.t.) these alternatives. Very few
papers consider reinsurance-and-investment strategies for an insurer with in-
dividual preferences when facing model uncertainty, see Yi et al. (2013). In
particular, optimizing such strategies under a mean-variance framework is an
open question.

We will seek an answer to this question, specifically of finding an efficien-
t strategy for an AAI, with our insurer’s surplus process assumed to follow
a Brownian motion with drift, and investment being allowed in a standard
Black-Scholes financial market with one risk-free asset and one risky asset, for
simplicity. The level of ambiguity is weighted by a state-dependent preference
parameter (to be introduced further below). We firstly formulate a robust con-
trol problem for the AAI under a mean-variance criterion. Secondly, we derive
the closed-form expressions for an optimal benchmark strategy with reinsur-
ance and investment, as well as the corresponding value function. Then, this
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result is used to solve the mean-variance problem for the AAI. Finally, some
economic implications of our results and numerical illustrations are presented.

Comparing with the existing literature, we think that our paper has two
main innovations:

(i) An optimal mean-variance problem for an AAI with reinsurance and in-
vestment is advanced the first time. Given how pervasive the understanding
and use of mean-variance criteria is in the world of risky investments, this
choice should be well-received by AAIs. We also derive explicit expressions
for the efficient strategy, as well as for the corresponding value function.
These provide easily implemented quantitative tools for the AAI’s invest-
ment decision-making.

(ii) The impact of model-uncertainty robustness on mean-variance efficien-
t strategies is investigated, which Zhang & Siu (2009) did not consider.
Maenhout (2006) and Liu (2010) indicated that model uncertainty can be
regarded as one aspect of risk source, and thus, when facing model uncer-
tainty, investors should reduce their risk exposure undoubtedly. However,
under a mean-variance criterion, we find that the AAI should not always
keep a reduced risk exposure in the markets compared with the ambiguity-
neutral insurer (ANI). On the contrary, the AAI should even increase the
risk exposure in some circumstances, including those in which past invest-
ment decisions have been beneficial. Under these circumstances, this is the
reverse of the decisions dictated under the frameworks of utility functions
in Maenhout (2006) and Liu (2010), and can be interpreted as explaining
some investment behavior which could otherwise be considered irrational.

The remainder of this paper is organized as follows. In Section 2, the econ-
omy and assumptions are described. In Section 3, an optimal mean-variance
problem for an AAI is presented. Section 4 transforms the mean-variance prob-
lem into a benchmark problem, and obtains closed-form expressions for the
optimal strategy and the corresponding value function. In section 5, the result
for benchmark problem is used to solve the mean-variance problem for the
AAI. Consequently, the efficient strategy for the AAI is derived in this sec-
tion. Section 6 proposes economic implications, and analyzes our results with
numerical examples. Section 7 provides our conclusions, and proposes some
promising extensions of our work.

2 Economy and assumptions

In this paper, we assume that trading in the reinsurance and financial markets
is continuous, without taxes or transaction costs. Let (Ω,F , P ) be a complete
probability space with filtration {Ft}t∈[0,T ] generated by two related standard
one-dimension Brownian motions {Z1(t)}, {Z3(t)}, where Cov(Z1(t), Z3(t)) =
ρt and T is the time horizon. Any decision made at time t is based on Ft

which can be interpreted as the information available until time t.
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2.1 Surplus process

If both reinsurance and investment are absent, the insurer’s surplus process
can be assumed to satisfy a diffusion approximation (DA) model:

dR0(t) = µ0dt+ bdZ3(t), (1)

where µ0 represents the premium return rate of the insurer; b > 0 can be
understood as the volatility of the insurer’s surplus; {Z3(t)} is a one dimen-
sional standard Brownian motion. The DA model approximates the classical
Cramér-Lundberg model well as each claim is relatively small compared to the
size of the surplus, and this approximation has been widely used in the liter-
ature, such as Grandell (1991), Browne (1995), Promislow & Young (2005),
Gerber & Shiu (2006), Chen et al. (2010), Zeng & Li (2012) and so on.

We assume that the insurer can control her insurance risk by purchasing
proportional reinsurance or acquiring new business (by acting as a reinsurer
of other insurers, see i.e. Bäuerle (2005)). For each t ∈ [0, T ], the proportional
reinsurance or new business level is denoted by the value of risk exposure q(t) ∈
[0,+∞). When q(t) ∈ [0, 1], it corresponds to a proportional reinsurance cover;
in this case, reinsurance premium will be paid by the cedent at the rate of (1−
q(t))η, where η ≥ µ0 is the premium return rate of the reinsurer; meanwhile,
the insurer pays 100q(t)% while the reinsurer pays the rest 100(1 − q(t))%
for each claim occurring at time t. When q(t) ∈ (1,+∞), this is interpreted
as acquiring new business. We define the process of risk exposure {q(t) : t ∈
[0, T ]} as the reinsurance strategy, and the DA dynamics for the surplus process
associated with such a strategy {q(t) : t ∈ [0, T ]} is given by

dR(t) = [λ+ ηq(t)]dt+ bq(t)dZ3(t), (2)

where λ = µ0 − η.

2.2 Financial Market

The financial market we consider consists of one risk-free asset (e.g., a bond)
and one risky asset (e.g., a stock). The price process S0(t) of the risk-free asset
follows the ordinary differential equation (ODE)

dS0(t) = rS0(t)dt, (3)

where S0(0) = s0 > 0 and r > 0 is the risk-free interest rate. The price pro-
cess S1(t) of the risky asset evolves according to Geometric Brownian Motion
(GBM)

dS1(t) = S1(t) [(r + u)dt+ σdZ1(t)] , (4)

with S1(0) = s1 > 0. Here u > 0 and σ > 0 are the risk-premium and
volatility, Z1(t) and Z3(t) are two one-dimensional standard Brownian motions
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mentioned at the beginning of section 2. In addition, Z3(t) can be rewritten
as

dZ3(t) = ρdZ1(t) + ρ0dZ2(t), (5)

where ρ0 =
√
1− ρ2 and Z2(t) is a standard Brownian motion which is inde-

pendent of Z1(t).

2.3 Wealth process

In addition to the insurer’s ability to purchase proportional reinsurance or
acquire new business, we also assume she is allowed to invest her surplus in
the risky financial assets over t ∈ [0, T ]. We consider the case of a single risky
asset S1 defined above, in order to keep the mathematics to a manageable level
of complexity. In practice, this means that our framework can be interpreted
as allowing investment into a single index fund or other type of aggregate risky
fund.

Our insurer’s trading strategy is therefore a pair of scalar stochastic pro-
cesses π = {q(t), l(t)}t∈[0,T ], where q(t) represents the value of risk exposure,
as described above, and l(t) is the dollar amount invested in the risky asset
S1 at time t. The remainder Wπ(t) − l(t) is invested in the risk-free asset S0

defined above, where Wπ(t) is the wealth process associated with strategy π.
When the initial wealth is w0, the wealth process Wπ(t) can be described by
the following stochastic differential equation (SDE) system

dWπ(t) =[λ+ ηq(t) + ul(t) + rWπ(t)]dt+ [σl(t) + bρq(t)]dZ1(t)

+ bq(t)ρ0dZ2(t),

Wπ(0) =w0.

(6)

3 Robust control problem under mean-variance criterion

In Bäuerle (2005), an insurer is assumed to be an ANI, i.e. one who does
not worry about model uncertainty. The ANI aims to find a strategy such
that the expected terminal wealth satisfies EP [Wπ(T )] = K where K is a
predetermined objective, while minimizing the variance of the terminal wealth
VarPWπ(T ) = EP [Wπ(T ) − K]2 over all strategies π in a specific set Π̃ of
admissible strategies (see note following Definition 1 for an explanation of Π̃).
Thus the optimization problem for the ANI can be stated as

(MV ) min
π∈Π̃

EP [Wπ(T )−K]2, (7)

subject to EP [Wπ(T )] = K,

where

K > w0e
rT +

λ

r
(erT − 1). (8)
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The expectation is computed under the probability measure P that reflects
the ANI’s certainty about the model. The reason for requiring the lower bound
(8) on the objective K is that if K were no bigger than this level, the insurer
could easily exceed the objective with a risk-free strategy (put all the money in
the risk-free asset and get not involved to reinsurance business), which would
then have zero variance; this would make the minimization problem ill-posed
mathematically and of no economic interest.

To incorporate the model uncertainty into the mean-variance problem for
an ambiguity-averse insurer (AAI), we assume that our insurer’s knowledge
with ambiguity is described under the probability measure P , namely the ref-
erence probability (or model), but that she is skeptical about this reference
model, and hopes to consider some alternative models. She seeks a robust op-
timal strategy, and her thinking will follow the lines of Anderson et al. (1999).
Loosely speaking, the AAI takes the model P as her reference model, but she
recognizes that it is only an approximation of the true model and also takes
account of alternative models. She is willing to consider all alternative mod-
els which can be represented as probability measures Q which are equivalent
to (share the same sets of measure 0 as) the original P ; in other words, she
considers all Q in the set of probability measures Q defined by

Q := {Q|Q ∼ P}. (9)

We assume the AAI attains robustness by considering a worst-case scenario
Q∗ ∈ Q and a strategy π∗ to guard against facing the worst-case scenario. We
will determined these worst-case options in the following way: For every fixed
admissible strategy π, we propose a measure Q∗(π) ∈ Q which provides the
biggest possible penalized variance (worst-case model when strategy π is fixed);
Note that this defines Q∗(·) as a function from the set of admissible strategies
into Q. Then, we minimize the resulting worst-case penalized variance over all
admissible strategies π. This gives us the minimized worst-case value function,
attained at a specific optimal strategy π∗. Finally, we say that our worst-case
model Q∗ is the one corresponding to π∗, namely Q∗ = Q∗(π∗).

The details of how to acquire an adequate and analytically tractable for-
mula for the measure-valued function Q∗(·) are in Section 4; here we mention
that since Q is a very large (non-compact) set, finding a non-infinite maximiz-
er Q∗(π) for any π requires using a way to penalize those models in Q which
seems likely the negative term in (10) below. In the meantime, assuming Q∗(·)
has been determined, or more generally, for any Q-valued map Q∗(·) defined
on strategies, we may define the set of admissible strategies relative to it.

Definition 1 A trading strategy π = {q(t), l(t)}t∈[0,T ] is said to be admissi-
ble, if

(i) ∀t ∈ [0, T ], q(t) ≥ 0 and Q∗(π) ∈ Q,

(ii) ∀w0 ∈ R, the corresponding SDE (6) has a pathwise unique solutionWπ(t),
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(iii) the progressively measurable pair π satisfies EQ∗(π)
[∫ T

0
∥π∥4dt

]
<∞ and

EQ∗(π)
[∫ T

0
|Wπ(t)|4dt

]
<∞.

Denote by Π the set of all admissible strategies.

Note that this definition of admissibility requires that Q∗(π) be absolutely
continuous w.r.t. P . Also note that the set of admissible strategies Π̃ we
mentioned on Page 6 can be taken as in the above definition replacing Q∗(π)
by fixed P therein.

Thus, we formulate a robust mean-variance problem inspired by Anderson
et al. (2003) and Maenhout (2004) to modify problem (MV ) as follow

(RMV ) min
π∈Π

EQ∗(π)

{
[Wπ(T )−K]2 −

∫ T

0

1

ϕ(s, w)
D(P,Q∗(π))ds

}
,

(10)

subject to EQ∗(π)[Wπ(T )] = K,

where Q∗(π) will be defined later as a worst-case-scenario model which is de-
pendent on π (see definition in (17)), EQ∗(π) represents the expectation under
Q∗(π) for every admissible π ∈ Π, the penalization term D(P,Q∗(π)), also a
function of π, is a measure of discrepancy between the probability measures
P and Q∗(π), 1 and the penalty factor ϕ is a function of time and wealth, i.e.
of the pair (t, w), for which we provide a description on Page 10.

In the remainder of this Section, fixing a strategy π ∈ Π for the insurer, we
give some background material and explanations of how to define an element
of Q, and what the resulting dynamics of the wealth process become for the
fixed π and a fixed Q ∈ Q.

According to the celebrated (Cameron-Martin-)Girsanov theorem, the set
of all Q ∈ Q can be represented as the set of models that differ from the
2-dimensional vector of correlated models (2) and (4) by the addition of a
(bounded variation) drift term; more specifically, it turns out that those Q’s
are those for which there exists a progressively measurable pair of processes
θ(t) = (θ1, θ2) such that

dQ

dP
= ν(T ). (11)

where ν(t) = exp
{∫ t

0
θ1dZ1(s) +

∫ t

0
θ2dZ2(s)− 1

2

∫ t

0
(θ21 + θ22)ds

}
and this pro-

cess ν is a (Z1, Z2)-martingale under P . To ensure the martingale property, in
this paper, we assume that θ(t) satisfies bounded condition

∃ constant C > 0, ∀t ∈ [0, T ], ∥θ(t)∥2 < C, a.s.. (12)

1 In fact, we will try to construct a map Q∗(π) from π to Q, see the rest of Section 3 and
the beginning of Section 4
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This then ensures that ν is a martingale under P relative to the filtration
{Ft}t∈(0,T ) of the pair (Z1, Z2), and will allow us to perform computations
under P and under all the Q in Q which satisfy (12).

It may seem that the boundedness of condition (12) is a restrictive technical
assumption, e.g. one may wonder whether it was introduced for the sole pur-
pose of applying Lemma 12, thereby making it easy to solve problem (RMV ),
at the cost of imposing an artificial constraint. We will see that this is not the
case. Condition (12) is actually not a restriction in terms of the AAI’s decision,
since we will find that the worst-case scenario’s measure Q∗ features a bounded
θ∗. This feature is specific to our setup, in which we use a Black-Scholes market,
and the ambiguity-aversion preference parameter ϕ introduced by Maenhout
(2004, 2006). A more complicated market, e.g. including a stochastic volatility,
would not have this feature, and would require more technical difficulties to
establish existence and uniqueness for problem (RMV ).

We denote the set of θ satisfying (12) by Θ. Furthermore, as alluded to
above, by Girsanov’s theorem, the 2-dimensional Brownian motion differential
(dZ1 (t) , dZ2 (t)) to which one adds the drift term −θ (t) dt, i.e. the pair of
processes

dZQ
1 (t) =dZ1(t)− θ1(t)dt, (13)

dZQ
2 (t) =dZ2(t)− θ2(t)dt, (14)

has the law of standard 2-dimensional Brownian motion under the Q ∈ Q
defined by its Radon-Nykodym derivative dQ

dP = ν(T ) given above. Abusing
notation slightly, we now use the letter Q to denote those measures Q as
above in which θ ∈ Θ, i.e. θ satisfies condition (12). By using Girsanov’s
theorem to define this set of alternative models which the AAI may take into
account, we are achieving a description of model uncertainty by allowing the
drift parameters in the reinsurance market and the financial market to be
undetermined. This is most useful in practice, because it is a notorious fact in
financial markets, particularly in questions of portfolio selection, that returns,
which are determined solely by drift parameters like θ above, are difficult to
estimate with any reasonable precision.

In particular, for a given admissible π and Q ∈ Q, inserting (13) and (14)
into (6), the wealth process under the alternative model Q can be described
as that which satisfies the following dynamics:

dWπ(t) = [ul(t)+rWπ(t) + λ+ q(t)η + θ1(t)(σl(t) + bρq(t)) + bρ0θ2(t)q(t)]dt
(15)

+ [σl(t) + bρq(t)]dZQ
1 (t) + bρ0q(t)dZ

Q
2 .

We notice that the wealth process under the alternative model in the class Q
differs only in the drift term, as it should.

2 Lemma 1 is based on bounded θ(t), and will be used to verify the viscosity solution
technically, see Page 16 for details.
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We may also be more specific about what the map Q∗(·) looks like. Since
every Q ∈ Q is defined via a pair of drift processes (θ1, θ2) as in (13)-(14), our
map Q∗(·) will be determined by a map taking any given strategy π to a pair
of processes (θ1, θ2) satisfying (12).

We finish this section with comments on penalization. We follow Hansen &
Sargent (2001), and measure the discrepancy between P and Q as the function

D(P,Q) :=
1

2
(θ21 + θ22)

(see, e.g., Dupuis & Ellis (1997)). For problem (RMV ), the AAI will choose
one of alternative models as a worst-case scenario by maximizing the vari-
ance of the terminal wealth. Furthermore, she is well aware of the fact that
the reference model is statistically the best representation of the existing da-
ta, thus large penalties are incurred for alternative models when they deviate
far from the reference model. According to Maenhout (2004), D(P,Q) mea-
sures the discrepancy between the reference model and an alternative model,
and the function ϕ represents a preference parameter for ambiguity aversion,
which measures the degree of confidence in the reference model. Stated in an-
other way, the magnitude of the deviation penalty depends on the preference
parameter.

In any case, extreme choices of aversion parameters easily lead to the fol-
lowing information. In the case ϕ = 0, the insurer is entirely convinced that
the true model is P , since any deviation from P will be penalized infinite-
ly heavily by 1

ϕD(P,Q). Thus, Q∗(π) should be chosen as P , which yields

D(P,Q∗(π)) = 0 to guarantee 1
ϕD(P,Q∗(π)) = 0. Problem (10) then degen-

erates to problem (7) where the AAI becomes an ANI. At the opposite end
of the spectrum, in the case ϕ = ∞, the insurer has no information about
the true model. Thus, the penalty vanishes, which implies that the insurer
should consider all alternative models on equal footing, ignoring any degree of
confidence (see Uppal & Wang (2003)).

4 Optimal strategy under benchmark criterion

Since problem (RMV ) is an optimization problem with a constraint, a La-
grange multiplier L ∈ R can be introduced to tackle the equality constrain
EQ∗(π)[Wπ(T )] = K. By using this approach, for any given Q∗(π), problem
(RMV ) can be solved via following Lagrangian dual problem

(DP ) max
L∈R

min
π∈Π

EQ∗(π)

{
[Wπ(T )−K]2 −

∫ T

0

1

ϕ
D(P,Q∗(π))ds

+2L[Wπ(T )−K]

}
.

(16)
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To solve problem (DP ), the interior minimization problem in (DP ) is imme-
diately seen to be equivalent to

min
π∈Π

EQ∗(π)

{
[Wπ(T )−K + L]2 −

∫ T

0

1

ϕ
D(P,Q∗(π))ds− L2

}
.

Under fixed L, we may first consider the following benchmark problem

(RBM) min
π∈Π

EQ∗(π)

{
[Wπ(T )−B]2 −

∫ T

0

1

ϕ
D(P,Q∗(π))ds

}
,

where B := K − L can be regarded as a benchmark for each fixed L.
We are now ready to define the alternative model which we take to describe

a worst-case scenario:

Q∗(π) := argmax
Q∈Q

EQ

{
[Wπ(T )−B]2 −

∫ T

0

1

ϕ
D(P,Q)ds

}
. (17)

As mentioned in Section 3, this means that for problem (RMV ), by defin-
ing our worst-case model as Q∗ := Q∗(π∗), we are first finding a worst-case
scenario probability measure function Q∗(π) for each fixed π under problem
(RBM), and then optimizing over π to get the π∗ which attains the minimal
penalized variance in for problem (RBM). This is a legitimate way to proceed
in terms of the original problem (RMV ), as long as the minimum is attained,
and even more crucially, as long as the final measure Q∗(π∗) that we obtain
via (RBM) does not depend on the Lagrange multiplier L. Fortunately, with
our particular setup, we are able to verify that our Q∗(π∗) has this feature
(see Remark 2).

Under the above definition of Q∗(π), problem (RBM) can be rewritten as

min
π∈Π

max
Q∈Q

EQ

[
[Wπ(T )−B]2 −

∫ T

0

1

ϕ
D(P,Q)ds

]
. (18)

This means that we may adopt a stochastic dynamical programming approach
to solve problem (18). Define the corresponding value function for problem (18)
as

J(t, w) = min
π∈Π

max
Q∈Q

EQ
t,w

[
[Wπ(T )−B]2 −

∫ T

t

1

ϕ
D(P,Q)ds

]
, (19)

where EQ
t,w[·] = EQ[· | W (t) = w]. To solve this problem, we follow Theorem

3.4 in Talay & Zheng (2002) (see Lemma 1 on Page 16) to establish and
solve the corresponding HJB equation, also known in this case as a so-called
Hamilton-Jacobi-Bellman-Isaacs (HJBI)) equation, which is

min
π∈Π

max
θ1,θ2∈Θ

{
AπJ − 1

2ϕ
(θ21 + θ22)

}
= 0, (20)
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with the boundary condition J(T,w) = (w −B)2, where differential operator
Aπ is computed as

AπJ = Jt + Jw[ul(t)+wr + λ+ ηq(t) + θ1σl(t) + θ1bρq(t) + bρ0θ2q(t)]

+
1

2
Jww

[
(σl(t) + bρq(t))2 + b2ρ20q

2(t)
]
.

(21)

Here, Jt, Jw, Jww represent the partial derivatives of the value function w.r.t.
the corresponding variables. Following the idea suggested by Maenhout (2004,
2006), we have to impose a “homothetic” preference parameter ϕ > 0, which
renders problem (RBM) analytically tractable, and ensures that the penalty
in problem (RBM) is reasonable. Maenhout (2004) indicates the preference
parameter should change with the state variable (in our case, the state variable
is the current wealth w). For example, it is stands to reason that the AAI would
have more robustness when her economic condition is favorable. Specifically,
we follow Maenhout (2004, 2006) to choose the preference parameter ϕ as

ϕ(t, w) =
β

J(t, w)
> 0. (22)

This can be interpreted in the following way: Lower values of J correspond
to a favorable condition under the benchmark criterion, and this leads to a
greater preference parameter ϕ, which implies the AAI would consider more
robustness in model uncertainty, i.e. would be more willing to take on higher
levels of model uncertainty risk, thereby minimizing her reliance on parametric
models. Although we do not know the precise form of J until we solve the
problem, it is not hard to conjecture that the structure of J is a polynomial
in w with undetermined functions of time as its coefficients. See Page 959-961
in Maenhout (2004) for further detail, also see Maenhout (2006), Liu (2010),
Branger et al. (2013) for “Homothetic” robustness.

Remark 1 The preference parameter ϕ = β/J can be interpreted as the in-
dividual preference for ambiguity-aversion, where β > 0 is the ambiguity-
aversion level describing individual attitude to model uncertainty.

In order to solve HJB equation (20), we first propose an ansatz for the
structure of the value function, in which variables are separated. Then, we
aim to derive the drift for the worst-case scenario Q∗(π) and the optimal
strategy π∗ under Q∗(·). Finally, we hope that the variables can be separated
and solved explicitly to verify the ansatz.

Step 1: propose the ansatz.
We conjecture that the value function has the following structure

J(t, w) = L(t)w2 +M(t)w +N(t), (23)

where L(t),M(t) and N(t) are three functions to be determined. The assump-
tion Jww > 0 implies L(t) > 0 for all t ∈ [0, T ], and boundary condition
J(T,w) = (w −B)2 implies that

L(T ) = 1, M(T ) = −2B, N(T ) = B2. (24)
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A direct calculation yields

Jt = Ltw
2 +Mtw +Nt, Jw = 2Lw +M, Jww = 2L. (25)

Step 2: derive the worst-case drifts and optimal strategy.
Differentiating (20) w.r.t. θ1 and θ2 to maximize over Q, the first-order

conditions are

θ∗1(t, w) = Jw[σl(t) + bρq(t)]ϕ(t,W ), θ∗2(t, w) = Jwbρ0q(t)ϕ(t, w). (26)

Substituting (22) and (25) into (26), we have

θ∗1(t, w) =
2βL(t)[σl(t) + bρq(t)]

2wL(t) +M(t)
, θ∗2(t, w) =

2bρ0βL(t)q(t)

2wL(t) +M(t)
. (27)

The drift terms θ∗1 and θ∗2 govern the worst-case scenario which is considered
by the AAI, and the optimal strategy will be derived under this alternative
model to attain the robustness. Inserting (27) into HJB equation (20) yields

min
π∈Π

{
Ltw

2 +Mtw+Nt + (2Lw +M)[ul(t) + wr + λ+ ηq(t)]

+ (β + 1)L[σ2l2(t) + 2σbρq(t)l(t) + b2q2(t)]
}
= 0

(28)

According to the first-order conditions3 for π = {q(t), l(t)}t∈[0,T ], we have

q∗(t, w) =
(ubρ− ησ)

b2σρ20(1 + β)

(
w +

M(t)

2L(t)

)
, l∗(t, w) =

(σρη − bu)

bσ2ρ20(1 + β)

(
w +

M(t)

2L(t)

)
.

(29)
To consider the constraint q ≥ 0, we need to separate the plane (t, w) into the
following two regions:

A1 =
{
(t, w) ∈ Ō, q∗(t, w) ≥ 0

}
,

A2 =
{
(t, w) ∈ Ō, q∗(t, w) < 0

}
,

where O := (0, T )×R and Ō denotes the closure of O.

Step 3: separate and derive the variables.
Due to the form of q∗(t, w), we discuss the following two cases, respectively.

(1) The case of ubρ− ησ ≥ 0.
(i) If (t, w) ∈ A1, the candidate optimal strategy (q∗, l∗) is allowed. Inserting
(29) into (28), we obtain

LLtw
2 + wLMt + LNt + (2wL2 + LM)(wr + λ)−A(2wL+M)2 = 0, (30)

where

A =
(bu− ρση)2 + ρ20σ

2η2

b2σ2ρ20(β + 1)
> 0. (31)

3 According to the assumption Jww > 0, one can easily verify that the second-order
conditions can be fulfilled to ensure the minimization.
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By separating the terms with w2, with w and without w, in order to ensure
(30), we only need that the following system of ODEs is satisfied:

LLt + 2rL2 −AL2 = 0, L(T ) = 1,

LMt + rLM + 2λL2 −AL2 = 0, M(T ) = −2B,

LNt + λLM − AM2

4
, N(T ) = B2,

(32)

Direct calculation yields the solution to ODEs (32) as

L(t) = e−(A−2r)(T−t), M(t) = −2g(t)e−(A−r)(T−t), N(t) = g2(t)e−A(T−t),
(33)

where

g(t) = B +
λ

r

[
1− er(T−t)

]
. (34)

Thus the regions A1 and A2 can be rewritten as

A1 =
{
(t, w) ∈ [0, T ]×R, w − g(t)e−r(T−t) > 0

}
,

A2 =
{
(t, w) ∈ [0, T ]×R, w − g(t)e−r(T−t) ≤ 0

}
.

(ii) If (t, w) ∈ A2, the candidate for optimal strategy (29) is not allowed
due to the fact that q < 0 is not allowed. Notice that the left side of (28) is a
decreasing function w.r.t. q in the interval [0,+∞); this implies that we obtain
q∗(t, w) = 0 and insert it into (29). By the first-order condition for l(t, w), we
arrive at

q∗2(t, w) = 0, l∗2(t, w) = − u

σ2(1 + β)

(
w +

M̃(t)

2L̃(t)

)
, (35)

and the corresponding value function is J(t, w) = L̃(t)w2 + M̃(t)w + Ñ(t),
∀(t, w) ∈ A2.

Inserting (35) into (28) and separating the terms with w2, w and without
w, we arrive at the following ODEs:

L̃L̃t + 2rL̃2 −A1L̃
2 = 0, L̃(T ) = 1,

L̃M̃t + rL̃M̃ + 2λL̃2 −A1L̃
2 = 0, M̃(T ) = −2B,

L̃Ñt + λL̃M̃ − A1M̃
2

4
, Ñ(T ) = B2,

(36)

where

A1 =
u2

σ2(β + 1)
> 0. (37)

Direct calculation yields

L̃(t) = e−(A1−2r)(T−t), M̃(t) = −2g(t)e−(A1−r)(T−t), Ñ(t) = g2(t)e−A1(T−t),
(38)
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where g(t) is given by (34). Moreover, we let C1,2(Ō) be the set of all functions
φ : [0, T ]×R → R such that φt, φw and φww are all continuous in (t, w). Denote
the boundary between A1 and A2 as

A0 =
{
(t, w) ∈ [0, T ]×R, w − g(t)e−r(T−t) = 0

}
.

This generates a difficulty for J(t, w): It cannot be considered as a classical
solution to the HJB equation (20); indeed, since L(t) ̸= L̃(t) on A0, we cannot
say that J(t, w) ∈ C1,2(Ō). Therefore, because of the discontinuity of J (t, w)
in the parameter t on the set A0, we may and must assert that J(t, w) satisfies
(20) in the sense of viscosity solution. To be specific, we recall what this means.

Definition 2 J ∈ C(Ō) is called a viscosity subsolution to (20) at the fixed
value (t, w) ∈ Ō, if for any test function φ ∈ C1,2(Ō) such that J(t, w) =
φ(t, w), whenever J − φ attains a local maximum at (t, w) ∈ O, we have

min
π∈Π

max
θ1,θ2∈Θ

{
Aπφ− φ2

w

2βφww
(θ21 + θ22)

}
≥ 0; (39)

similarly, J ∈ C(O) is called a viscosity supersolution to (20) if the inequality
“≥” is changed to “≤” in (39) and “local maximum” is changed to “local
minimum”. Finally, J(t, w) ∈ C(O) is a viscosity solution to (20), if it is both
a viscosity subsolution and viscosity supersolution.

Remark 2 Inserting the optimal strategy (29) into the worst-case drift (27),
we notice that the optimal drifts are independent of L, whatever pair (t, w) is
in A1 or A2. This feature reveals that Q

∗ is independent of the benchmark B:
It only depends on the parameters of reinsurance market and financial market.

(2) The case of ubρ − ησ < 0. Using the same approach as the case of
ubρ− ησ ≥ 0, we can obtain the similar results.

Combining the situations of two cases and Definition 2, the viscosity solu-
tion to the HJB equation (20) can be described as following theorem.

Theorem 1 In the case ubρ − ησ ≥ 0, a viscosity solution to HJB equation
(20) is given by

J(t, w) =

{
L(t)w2 +M(t)w +N(t), if (t, w) ∈ A1,

L̃(t)w2 + M̃(t)w + Ñ(t) if (t, w) ∈ A2.

In the case ubρ − ησ < 0, a viscosity solution to HJB equation (20) is given
by

J(t, w) =

{
L(t)w2 +M(t)w +N(t), if (t, w) ∈ A2,

L̃(t)w2 + M̃(t)w + Ñ(t) if (t, w) ∈ A1,

where L(t), M(t), N(t) and L̃(t), M̃(t), Ñ(t) are given in (33) and (38),
respectively.



16 Bo Yi et al.

Proof We only prove the case ubρ−ησ ≥ 0, the case ubρ−ησ < 0 can be proved
similarly. As mentioned above, A0 is the only region where the nonsmoothness
occurs. Thus, we have to find a solution in the sense of viscosity solutions.
According to Definition 2, let φ ∈ C1,2(Ō) be such that J − φ attains a local
maximum at (t, w) ∈ A0. We arrive at φ = φt = φw = 0 and φww ≥ 2L(t) to
verify the following inequalities

min
π∈Π

max
θ1,θ2

{
Aπφ− φ2

w

2βφww
(θ21 + θ22)

}
=min

π∈Π
max
θ1,θ2

{
1

2
φww

[
(πσ + bρq(t))2 + b2ρ20q

2(t)
]}

=min
π∈Π

{
1

2
φww

[
(πσ + bρq(t))2 + b2ρ20q

2(t)
]}

≥min
π∈Π

{
L(t)

[
(πσ + bρq(t))2 + b2ρ20q

2(t)
]}

≥ 0.

Therefore, J(t, w) is a viscosity subsolution to the HJB equation (20). We
can prove that it is also a viscosity supersolution by definition, and hence a
viscosity solution to the HJB equation (20). �

For problem (RBM), one could apply Theorem 3.4 in Talay & Zheng
(2002) to verify the viscosity solution to HJB equation (20) is indeed the
value function of problem (RBM), which can be shown as

Lemma 1 Assume that F is a continuous function such that

|F (w)− F (w)| ≤ V (|w|, |w|)(|w − w|),

where V (|w|, |w|) is a polynomial function. Then the value function J(t, w)
defined in (19) is the unique viscosity solution in the space

S :=

{
ψ(t, w) is continuous on [0, T ]×R; ∃A > 0,

lim
w2→∞

ψ(t, w) exp(−A(logw)2) = 0,∀t ∈ [0, T ]

}
to the HJB equation (20) with boundary condition J(T,w) = F (w).

To establish Lemma 1 one only needs to follow the method in the proof
of Theorem 3.4 in Talay & Zheng (2002). The only difference between our
problem and the problem in Talay & Zheng is that in our case the value

function defined in (19) has an extra term
∫ T

t
J
β

(
θ21 + θ22

)
ds. Notice that,

thanks to Theorem 1, J is a deterministic quadratic function of w, and θ is
bounded. Consequently our extra term does not create any difficulties when
applying the proof method of Talay & Zheng (2002). One easily verifies that
F (w) = (w − B)2 satisfies the condition in Lemma 1 and that the viscosity
solution J given in Theorem 1 belongs to the space S. Further details of how
to establish Lemma 1 are omitted. Lemma 1 now implies that J in Theorem
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1 is the unique viscosity solution to (20) with boundary condition J(T,w) =
(w − B)2, which implies that it is the value function we defined by (19). We
thus arrive at the following theorem.

Theorem 2 Problem (RBM) with preference parameter ϕ(t, w) = β
J(t,w) ,

where J(t, w) is shown in Theorem 1, for the case ubρ − ησ ≥ 0, has an
optimal strategy given by

π∗(t, w) =


(

(ubρ−ησ)
b2σρ2

0(1+β)

(
w − g(t)e−r(T−t)

)
, (σρη−bu)
bσ2ρ2

0(1+β)

(
w − g(t)e−r(T−t)

))
if (t, w) ∈ A1,(

0,− u
σ2(1+β)

(
w − g(t)e−r(T−t)

))
, if (t, w) ∈ A2.

For the case ubρ− ησ < 0, an optimal strategy is given by

π∗(t, w) =


(

(ubρ−ησ)
b2σρ2

0(1+β)

(
w − g(t)e−r(T−t)

)
, (σρη−bu)
bσ2ρ2

0(1+β)

(
w − g(t)e−r(T−t)

))
,

if (t, w) ∈ A2,(
0,− u

σ2(1+β)

(
w − g(t)e−r(T−t)

))
, if (t, w) ∈ A1,

where g(t) is given by (34).

Remark 3 We define a stopping time τ = inf
{
s ≥ 0 :W ∗(s)− g(s)er(s−T ) = 0

}
with W ∗(t) := Wπ∗

(t) for simplicity. If τ ≤ T , the optimal strategy for the
AAI at time τ is (0, 0). If T ≥ t > τ , according to the dynamic wealth process
(6), W ∗(t) would vary along the trajectory W ∗(t)− g(t)er(t−T ) = 0. This cir-
cumstance would imply that the insurer may keep reserving all the money in
the risk-free asset and spread all insurance risks to the reinsurer over [τ, T ].
At time T , she will obtain a deterministic terminal wealth B.

Said differently, the AAI will change her optimal strategy to (0, 0) if the
pair (t,W ∗(t)) hits region A0. For example, if ubρ− ησ ≥ 0 and (0, w0) ∈ A1,
the AAI will maintain the optimal strategy (29) until (t,W ∗(t)) hits A0. The
optimal strategy in this situation can be rewritten as follow

π∗(t) =


(

(ubρ−ησ)
b2σρ2

0(1+β)

(
W ∗(t)− g(t)e−r(T−t)

)
, (σρη−bu)
bσ2ρ2

0(1+β)

(
W ∗(t)− g(t)e−r(T−t)

))
,

0 ≤ t < τ ∧ T ,
(0, 0), τ ∧ T ≤ t ≤ T .

5 Efficient strategy under mean-variance criterion

In this section, we investigate problem (RMV ) for the AAI based on the pre-
vious results. Putting (0, w0) into the value function J(t, w), a duality theorem
(see Bai & Zhang (2008)) connects problem (RMV ) to problem (RBM) via

JRMV (0, w0) = J(0, w0 : L∗) = max
L∈R

J(0, w0 : L), (40)
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where JRMV (t, w) is the corresponding value function for problem (RMV ).
We only analyze the case ubρ− ησ ≥ 0:

J(0, w0 : L) =


e−AT

[
erTw0 +

λ
r (e

rT − 1)−K + L
]2 − L2,

if L ≥ K − erTw0 − λ
r (e

rT − 1),

e−A1T
[
erTw0 +

λ
r (e

rT − 1)−K + L
]2 − L2,

if L < K − erTw0 − λ
r (e

rT − 1).

If (0, w0) ∈ A2, the first-order condition for L implies it attains the maximum
of J at

L∗ =

[
d− erTw0 − λ

r (e
rT − 1)

]
e−A1T

e−A1T − 1
. (41)

If (0, w0) ∈ A1, L attains the maximum at L∗ = K − erTw0 − λ
r (e

rT − 1)
resulting in an optimal strategy (0, 0), which fails to reach the given terminal
wealth expectation K. Therefore, in the case ubρ − ησ ≥ 0, L can not attain
a maximum if (0, w0) ∈ A1.

Denote the variance with penalty PVarQ for terminal wealth Wπ(T ) as

PVarQWπ(T ) = EQ

{
[Wπ(T )−K]2 −

∫ T

0

1

ϕ
D(P,Q)ds

}
.

Then we define the efficient strategy and the efficient frontier for problem
(RMV ) as follows.

Definition 3 An admissible strategy π∗ with EQ∗
[W ∗(T )] = K is called an

efficient strategy for problem (RMV ) if there exists no admissible strategy

π such that EQ∗
[Wπ(T )] = K and PVarQ

∗
Wπ(T ) < PVarQ

∗
W ∗(T ) under

chosen alternative model Q∗, where PVarQ
∗
W ∗(T ) corresponds to the efficient

variance with penalty. Moreover,
(
PVarQ

∗
W ∗(T ),K

)
is called an efficient

point and the set of all efficient points is called the efficient frontier.

Based on results of (RBM) and the duality theorem, the efficient strategy
and efficient frontier can be obtained as the following theorem.

Theorem 3 (1) In the case of ubρ − ησ ≥ 0 with (0, w0) ∈ A3, the efficient
frontier for problem (RMV ) satisfies

PVarQ
∗
W ∗(T ) =

(
EQ∗

[W ∗(T )]− erTw0 − λ
r (e

rT − 1)
)2

eA1T − 1
, (42)

where an efficient strategy for problem (RMV ) can be presented as

π∗(t) =

{(
0,− u

σ2(1+β)

(
W ∗(t)−G1(t)e

−r(T−t)
))
, 0 ≤ t ≤ τ1 ∧ T ,

(0, 0), τ1 ∧ T < t ≤ T ,
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and

A3 =
{
(t, w) ∈ [0, T ]×R, w −G1(t)e

−r(T−t) ≤ 0
}
,

A4 =
{
(t, w) ∈ [0, T ]×R, w −G1(t)e

−r(T−t) > 0
}
,

with G1(t) = K − [K−erTw0−λ
r (erT−1)]e−A1T

e−A1T−1
+ λ

r

[
1− er(T−t)

]
. In addition, A1

is given by (37) and τ1 is given by

τ1 = inf
{
s ≥ 0 :W ∗(s)−G1(s)e

−r(T−s)
}
= 0.

(2) In the case of ubρ − ησ < 0 with (0, w0) ∈ A5, the efficient frontier
satisfies

PVarQ
∗
W ∗(T ) =

(
EQ∗

[W ∗(T )]− erTw0 − λ
r (e

rT − 1)
)2

eAT − 1
, (43)

and an efficient strategy can be presented as

π∗(t, w) =


(

(ubρ−ησ)
b2σρ2

0(1+β)

(
w −G2(t)e

−r(T−t)
)
, (σρη−bu)
bσ2ρ2

0(1+β)

(
w −G2(t)e

−r(T−t)
))
,

0 ≤ t ≤ τ2 ∧ T ,
(0, 0), τ2 ∧ T < t ≤ T .

where

A5 =
{
(t, w) ∈ [0, T ]×R, w −G2(t)e

−r(T−t) ≤ 0
}
,

A6 =
{
(t, w) ∈ [0, T ]×R, w −G2(t)e

−r(T−t) > 0
}
,

with G2(t) = K − [K−erTw0−λ
r (erT−1)]e−AT

e−AT−1
+ λ

r

[
1− er(T−t)

]
. In addition, A

is given by (31) and τ2 is given by

τ2 = inf
{
s ≥ 0 :W ∗(s)−G2(s)e

−r(T−s)
}
= 0.

(3) In the case of ubρ−ησ ≥ 0 with (0, w0) ∈ A4 and the case of ubρ−ησ <
0 with (0, w0) ∈ A6, there exists no efficient strategy for problem (RMV ).

6 Robustness for model uncertainty

This section is devoted to investigating the impact of model-uncertainty ro-
bustness on the AAI’s decision. In the numerical illustrations, we set the basic
markets parameters given by Table 1 unless otherwise stated. These param-
eters result in the case ubρ − ησ = −0.1996 < 0, which implies the efficient
strategy involves both reinsurance market and financial market at the begin-
ning. We omit the economic analysis for the case ubρ − ησ ≥ 0, since it does
not associate with any reinsurance over the investment-insurance horizon, and
the conclusions are similar with the investment part in the case ubρ− ησ < 0.
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Table 1 Values of parameters

µ0 η b r u σ ρ K w0 T (years)

0.7 0.8 1 0.05 0.02 0.25 0.02 2 1 5

6.1 Detection-error probabilities

We aim to find the quantitative effect of model uncertainty via numerical
examples. Anderson et al. (2003) argued that β should be chosen in such a way
that the worst-case scenario with β is difficult to distinguish from the reference
model for the AAI. Specifically, as suggested by Anderson et al. (2003), we
use a detection-error probability to verify that for a chosen ambiguity-aversion
level β, it is reasonable to operate under a worst-case scenario. The heuristic
is as follows. A parameter β with high detection-error probability indicates
that the AAI is likely to select an incorrect model, when faced with the choice
between using the worst-case-scenario model and using the reference model.
In such a situation, it is safer to acknowledge one’s ambiguity aversion, and go
with the worsk-case scenario. Therefore, to justify using our model robustness
framework, our detection-error probability should preferably be high. We now
compute this probability.

According to Anderson et al. (2003) and Maenhout (2006), we can calculate
the detection-error probability for our parameter setup as follows. Denote ξ1,t
the log of Radon-Nikodym derivative dQ∗

dP as

ξ1,t = log

[
dQ∗

dP

]
=

∫ t

0

θ∗1dZ1(s) + θ∗2dZ2(s)−
1

2

∫ t

0

(θ∗1
2 + θ∗2

2)ds;

the detection-error probability of incorrectly selecting P over Q∗, or vice-versa,
assuming a uniform prior selection of P or Q∗, is defined as

ξT (β) =
1

2
Prob(ξ1,T > 0|P,F0) +

1

2
Prob(ξ1,T < 0|Q∗,F0). (44)

This formula stems from the fact that since dQ∗

dP is a martingale with expec-
tation 1 under P , when it is larger than 1, this indicates that Q∗ is more
likely than P , given that P was selected; a similar argument holds when Q∗

is selected. A calculation yields θ∗1 and θ∗2 under Q∗ as

θ∗1 =
β

1 + β
· u
σ
, θ∗2 =

β

1 + β
· ubρ− ησ

bσρ0
. (45)

Here we only consider (0, w0) in the region A5 since region A6 leads to zero-
drifts, which does not enter into the consideration of model uncertainty. The
constants θ∗1 and θ∗2 lead to an explicit expression for ξT (β) as

ξT (β) = 2Φ

(
−1

2
· β

1 + β
·

√
T · (bu− ησρ)2 + η2σ2ρ20

b2σ2ρ20

)
, (46)
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where Φ(·) is the cumulative distribution function of the standard normal
distribution. Table 2 displays the detection-error probabilities for all the pa-
rameters we apply in Section 6.

Table 2 Detection-error probabilities

β
T

2 5 10 20

0.3 0.926 0.883 0.836 0.769
0.6 0.880 0.812 0.736 0.634
1 0.841 0.751 0.653 0.526

In line with intuition, the detection-error probability decreases w.r.t the
horizon and the ambiguity-aversion level. Anderson et al. (2003) conservatively
advocated to use a worst-case scenario for robustness purposes only with a
value of β such that ξT (β) is no less than 10%. As we can see from Table 2, for
instance with T = 5, our setup leads to a situation where using our worst-case
robustness is desirable, since ξ5(β) exceeds 75% for all β no greater than 1.

6.2 Robustness on efficient strategy

If we assume that the AAI believes entirely in the reference model, the pref-
erence parameter should be set to ϕ = 0 which can be obtained by setting
β = 0. Therefore, we do not distinguish between an AAI with β = 0 and
an ANI who ignores the model uncertainty. For problem (RMV ), we set the
initial wealth at w0 = 1, then one checks that (0, w0) is in the region A5.
Denote events R1 = {ω|τ2(ω) ≤ T} and Rc

1 = {ω|τ2(ω) > T}; if R1 occurs, we
already commented that the AAI will suspend all her insurance service only
to maintain the deterministic common costs, such as salaries for employers,
office rental and extra costs at time τ1, transferring all insurance risk to the
reinsurer. Hereafter, we call this behavior quitting the risky market, i.e., she
will put all the surplus into the risk-free asset (l = 0) and all insurance risk
transferred to the reinsurer (q = 0).

To analyze the robustness of the effective strategy, we compute the sen-
sitivity of q w.r.t. the ambiguity-aversion (model-uncertainty risk-aversion)
parameter β: The derivative of q(t, β) w.r.t. β computes explicitly as

∂q(t, β)

∂β
=− ubρ− ησ

b2σρ20(1 + β)2

{
W −G2(t)e

−r(T−t)

+ [K − w0e
rT − λ

r
(erT − 1)]

ATe−AT

(e−AT − 1)2
e−r(T−t)

}
(47)

Rearrange it, we obtain that ∂q(t,β)
∂β ≥ 0 ifG2(t)e

−r(T−t) > W ≥ G2(t)e
−r(T−t)−

[K−W0e
rT − λ

r (e
rT −1)] ATe−AT

(e−AT−1)2
e−r(T−t), and ∂q(t,β)

∂β < 0 otherwise. In par-

ticular, the current wealth should be high enough. If the situation ∂q(t,β)
∂β ≥ 0
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Fig. 1 Model-uncertainty robustness on efficient strategy.

occurs, the insurer with higher ambiguity-aversion level β should keep a larger
risk exposure in the reinsurance market as well as in the financial market. In
our numerical simulation experiments, we fix the risky asset’s Sharpe ratio
(risk premium per unit volatility) as u

σ = 0.08, and perturb σ from 0.25 to

25. We found that ∂q(t,β)
∂β ≥ 0 occurs in all of the one thousand sample paths,

whether we are in a mature and stable market (lower u and lower σ), or a
market that provides possibilities of very high return in exchange for high risk
(very high u and high σ), as might be the case for certain markets in devel-
oping economies. Thus, we conclude that the AAI who chooses to accomplish
model-uncertainty robustness will increase her risk exposure due to an increase
in her preference about ambiguity aversion, when the current wealth is enough
high, and will decrease her risk exposure with lower current wealth. Therefore,
model-uncertainty robustness plays a remarkably different role compared with
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the results in the framework of concave utility functions (i.e., Maenhout (2006)
and Liu (2010)).

Fixing t = 2, Figure 1 illustrates the efficient strategy as a function of
the time horizon T − t. We set the horizon T to no more than 5 years. It
can be stated that both efficient reinsurance and investment decrease as the
horizon increases. Figure 1(a) and Figure 1(b) show the efficient mean-variance
strategy with W ∗(2) = 1.9, which could arguably be considered a very high
level of current wealth after two years of business. The AAI acquires more
insurance business, and holds more risky asset than the ANI. Figure 1(c) and
Figure 1(d) show the effective mean-variance strategy for W ∗(2) = 1.5, a high
wealth level after two years, but not high enough to imply a reversal of risk
behavior: The ANI acquires larger amounts of reinsurance business and risky
asset than AAI. Furthermore, in both cases, neither of the two insurers have
the opportunity to quit the risky markets up to t = 2.

This phase transition from Figure 1(a) to Figure 1(b) is paradoxical, it
does not occur in utility frameworks. We think that it is consistent with the
following psychology: For wealthy insurers, taking risk has been beneficial
in the (RMV ) problem. When they worry about model uncertainty, these
insurers may take an even more extreme risk positions based on their positive
past experience with high risk exposure. Consequently, how to judge a “good”
or “bad” past experience becomes an important question for insurers. In our
framework, it depends on the signal provided by the sign of the expression
in (48). Figure 1(e) shows the phase transition wealth WPT between the two

phases: ∂q(t,β)
∂β < 0 and ∂q(t,β)

∂β > 0. We provide the following theorem to judge
the attitude of AAI to risk exposure when facing model uncertainty.

Theorem 4 For all value of T − t, for every W ∗(T − t) < WPT (T − t), higher
“ambiguity-aversion level” β leads to less risky exposure at t. And for every
W ∗(T − t) > WPT (T − t), higher “ambiguity-aversion level” β leads to more
risky exposure at t. In addition, if W ∗(T − t) =WPT (T − t), the AAI is locally
neutral to the confidence on reference model as measured by β, and will adopt
a strategy like an ANI at t.

Maehout (2006) and Liu (2010) showed that the ambiguity-aversion level
β can be understood as an extra risk-aversion coefficient under certain u-
tility functions types (CRRA and recursive preference). They stated higher
ambiguity-aversion levels implies a decrease in the amount of risky assets in
financial markets. However, the conclusions they proposed are not effective
to explain model-uncertainty robustness on the efficient strategy under the
mean-variance criterion.

In addition to sensitivity on β, we examine sensitivity of the efficient strat-
egy for the insurer in some of the other parameters. We perturb the values
of parameters from 50% to 150% of their base values. Figure 2 indicates the
corresponding sensitivities. Figure 2(a) and Figure 2(b) show that the efficient
investment strategy is more robust to the insurance parameter λ (difference of
insurance-reinsurance premium rates) than the financial market risk-premium
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Fig. 2 Sensitivity of the efficient strategy for ANI and AAIs.

parameter u. Figure 2(c) and Figure 2(d) illustrate the efficient reinsurance
strategy’s strong robustness to the financial market parameter u. In all cases,
increasing ones ambiguity-aversion level decreases the sensitivity of efficient
strategy: This is consistent with the point of robustness decisions, which is to
achieve less sensitivity to model uncertainty the more one worries about model
accuracy.

6.3 Robustness on the value function

In this subsection, we aim to clarify the impact of model uncertainty on the
value function for problem (RMV ). The AAI is an insurer who minimize
the PVarW ∗(T ) in the worst-case scenario. For problem (RMV ), the AAI
faces a trade-off with the model uncertainty: She finds a strategy to minimum
PVarQ

∗
W (T ) under the worst-case scenario Q∗ while the wealth processW ∗(t)

guarantees EQ∗
[W ∗(T )] = K. Hence, PVarQ

∗
W ∗(T ) for AAI may deviate

from the traditional VarW ∗(T ) for ANI, and be affected by the ambiguity
level. To measure the increased spread due to aversion to model uncertainty,
compared to the case of model certainty, we define a “discrepancy” function
for the standard deviations as follows.
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Definition 4 The “discrepancy” function for the AAI, comparing with the
ANI, is defined as

U := 1−

(
J0
RMV (0, w0)

Jβ
RMV (0, w0)

) 1
2

, (48)

where Jβ
RMV (t, w) is the value function of problem (RMV ) for the AAI with

ambiguity level β.
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Fig. 3 Model-uncertainty robustness on wealth process and value function.

We also set the initial wealth w0 = 1 and the time horizon T = 5, thus,
(0, w0) is in the region A5. In this case, the drifts under Q∗ are given by (46).
Thus D(P,Q∗) is given by

D(P,Q∗) =
1

2
(θ∗1

2 + θ∗2
2) =

β2

(1 + β)2
· (bu− ησρ)2 + η2σ2ρ20

b2σ2ρ20
. (49)

Figure 3(a) presents one sample path of the surplus processes for both the
ANI and the AAI. The surplus processes converge to K at maturity t = 5.
Figure 3(b) shows D(P,Q∗) as a function of ambiguity-aversion level β. With
higher β, the AAI loses more confidence in the reference model P , and seeks
more model-uncertainty robustness. Figure 3(c) presents the efficient frontier
for Problem (RMV ). An increase in PVarW ∗(T ) occurs when β increases un-
der fixed K, which implies that the AAI would be willing to accept higher
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variance for the robust optimal strategy when she has less information. Fig-
ure 3(d) displays more information about the variance with penalty, which is
presented as the discrepancy function from Definition 4, graphed against the
variable β. Figure 3(d) also illustrates another significant feature of our ro-
bustness model: The “discrepancy” for the AAI in long-horizon is quite large,
and alarmingly so for very long horizon: The AAI with T = 20 and β = 1 will
generate a discrepancy above 90% of the standard deviation compared to the
ANI with the same horizon, which is consistent with the following behavioral
interpretation: The very-long-horizon AAI accumulates much more lack of con-
fidence on the reference model than the short-horizon AAI. Consequently, the
horizon plays an important role in the behavior of the AAI.

6.4 Quitting probability for the insurer

Finally we turn to the analysis of the quitting probability for the insurer
under the mean-variance criterion. According to Theorem 3, the insurer quits
the risky market if the pair (t,W ∗(t)) reaches the boundary of A5 in the case
ubρ − ησ < 0. Using a simulation, we find that the quitting event R1 = {ω :
τ2(ω) ≤ T} only happens in some extremely favorable markets and model
uncertainty only impacts the quitting probability in these rare cases.

Table 3 Quitting probability

u
β

0 2 4 6 8

0.02 0 0 0 0 0
0.2 0 0 0 0 0
0.8 1 0 0 0 0
1.4 1 1 0 0 0
2 1 1 1 1 0.04

Table 3 shows the frequency of event R1 happening in a five-year period
with β ∈ [0, 8] and u ∈ [0.02, 2], with financial volatility fixed at σ = 0.25.
For “0” in the table, it means some numbers no bigger than 0.001. This ta-
ble illustrates that the quitting behavior only happens in a extremely high
risk-premium markets. In a normal market with u = 0.02, it barely happens
whatever the ambiguity-aversion level. In addition, the frequency of quitting
converges to zero as the ambiguity level increases. In market with u = 2, the
ANI has an extremely high quitting frequency, while the AAI with β = 8 has
almost no quitting chance even with this very high risk premium.

7 Conclusions

In this paper, we investigated a benchmark problem and a mean-variance prob-
lem for an ambiguity-averse insurer (AAI). The surplus process of the insurer is
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approximated by a diffusion model. The financial market is modeled by a clas-
sic Black-Scholes model. At the same time, the AAI lacks full confidence on the
pair of economic models. We formulated general robust problems for the insur-
er under mean-variance and benchmark criteria, and derived the benchmark
optimal strategy, the mean-variance efficient strategy and the corresponding
value functions based on the connection between the two criteria. Furthermore,
we analyzed the model-uncertainty robustness on the mean-variance efficien-
t strategy for the AAI, including the impact of model uncertainty on value
function and quitting probability.

The main findings are as follows. (i) A high ambiguity level does not always
decrease the risk exposure over the time horizon; it increases the risk exposure
if the current wealth is large enough. Therefore, model-uncertainty robust-
ness distinguishes itself from the utilities framework in its possible impacts
on the optimal strategy. We think our model provides some explanation of
the behavior by which, when facing the model uncertainty, an AAI’s attitude
to risk exposure switches in the presence of highly favorable past experience.
(ii) In normal markets, the behavior in which an insurer is able to quit risky
markets, does not occur for the AAI or ANI (ambiguity-neutral insurer). We
identify some theoretical markets (very high financial risk premium), where a
high ambiguity-aversion level reduces the probability of quitting for the AAI,
while an ANI would encounter quitting opportunities much more frequently.

Our mathematical analysis focuses on a dynamic mean-variance problem
for an AAI and we have emphasized the effect of model-uncertainty robustness
on the mean-variance efficient strategy and quitting probability. In order to
extend this study to more realistic risk models, one could attempt to abandon
the Black-Scholes model with constant volatility. By considering more flexi-
ble models such as jump-diffusion (JD) and stochastic volatility (SV) models,
more realistic financial risk situations could be achieved, but explicit expres-
sions for mean-variance efficient strategies for the AAI would be hard to derive
explicitly in JD and SV models. Numerical methods could be more useful to
analyze the model-uncertainty robustness under these models, to find out how
volatility risk and incomplete markets change decisions about model uncer-
tainty aversion. Since our entire framework is based on using the Girsanov
theorem, we would still only be able to provide robustness strategies for un-
certainty about drift parameters, but the presence of the so-called “vol-vol”
parameter in SV models for instance, has the effect of changing models from
log-normal to much heavier-tailed mixtures; this could result in a dampen-
ing of the phase transition effect we described by which ambiguity-aversion
behavior reverses when entering very favorable markets conditions.
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