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RECONSTRUCTING PAST TEMPERATURES FROM NATURAL
PROXIES AND ESTIMATED CLIMATE FORCINGS USING
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We produce new reconstructions of Northern Hemisphere annually aver-
aged temperature anomalies back to 1000 AD, and explore the effects of in-
cluding external climate forcings within the reconstruction and of accounting
for short-memory and long-memory features. Our reconstructions are based
on two linear models, with the first linking the latent temperature series to
three main external forcings (solar irradiance, greenhouse gas concentration
and volcanism), and the second linking the observed temperature proxy data
(tree rings, sediment record, ice cores, etc.) to the unobserved temperature
series. Uncertainty is captured with additive noise, and a rigorous statisti-
cal investigation of the correlation structure in the regression errors is con-
ducted through systematic comparisons between reconstructions that assume
no memory, short-memory autoregressive models, and long-memory frac-
tional Gaussian noise models.

We use Bayesian estimation to fit the model parameters and to perform
separate reconstructions of land-only and combined land-and-marine tem-
perature anomalies. For model formulations that include forcings, both ex-
ploratory and Bayesian data analysis provide evidence against models with
no memory. Model assessments indicate that models with no memory un-
derestimate uncertainty. However, no single line of evidence is sufficient to
favor short-memory models over long-memory ones, or to favor the oppo-
site choice. When forcings are not included, the long-memory models appear
to be necessary. While including external climate forcings substantially im-
proves the reconstruction, accurate reconstructions that exclude these forc-
ings are vital for testing the fidelity of climate models used for future projec-
tions.

Finally, we use posterior samples of model parameters to arrive at an
estimate of the transient climate response to greenhouse gas forcings of 2.5◦C
(95% credible interval of [2.16, 2.92]◦C), which is on the high end of, but
consistent with, the expert-assessment-based uncertainties given in the recent
Fifth Assessment Report of the IPCC.
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1. Introduction. An understanding of recently observed and projected future
climate changes [Stocker et al. (2013)] within the context of the natural variabil-
ity and dynamics of the climate system requires accurate and precise reconstruc-
tions of past climate. As spatially wide-spread instrumental temperature obser-
vations extend back to only about 1850, it is necessary to turn to the noisy and
sparsely distributed paleoclimate record to characterize natural climate variability
on longer time scales. In addition, reconstructions of past climate allow for im-
portant out-of-sample assessments of the Atmosphere–Ocean General Circulation
Models (GCM) that are used to project future climate under various emissions
scenarios [Flato et al. (2013), Masson-Delmotte et al. (2013)]. While there is now
a rich tradition of inferring past climate from natural proxies, such as tree rings,
corals, ice cores, lake floor sediment cores and measurement on speleothems [for
recent reviews, see NRC (2006); Jones et al. (2009), Tingley et al. (2012)], many
scientific and statistical challenges remain.

1.1. Paleoclimatology context. Reconstructions of past surface temperatures
from networks of multiple proxy types are prevalent in the climate science litera-
ture of the last 15 years—notable examples include Overpeck et al. (1997), Mann,
Bradley and Hughes (1998, 1999), Luterbacher et al. (2004), Moberg et al. (2005),
Juckes et al. (2006), Mann et al. (2008a, 2009), Kaufman et al. (2009), Tingley and
Huybers (2013) and PAGES 2k Consortium (2013). While these studies have sub-
stantially increased our understanding of past climate, limitations remain in terms
of the statistical treatment and uncertainty quantification. As described in Tingley
et al. (2012), the most commonly used approaches to paleoclimate reconstruc-
tion are all variants of multiple linear regression [see, e.g., Table 1 of Christiansen,
Schmith and Thejll (2009)], regularized in some fashion to account for the “p > n”
problem in the estimation procedure. Examples of particularly popular estimation
approaches include regularized variants of the Expectation–Maximization algo-
rithm [Dempster, Laird and Rubin (1977), Mann et al. (2007, 2005), Rutherford
et al. (2003, 2005), Schneider (2001), Steig et al. (2009), Zhang, Mann and
Cook (2004)] and principal component regression [Cook, Briffa and Jones (1994),
Luterbacher et al. (2004), Mann, Bradley and Hughes (1998), Wahl and Smer-
don (2012)], which is sometimes combined with canonical correlation analysis
[Smerdon et al. (2010)]. A common shortcoming of these studies lies in the lim-
ited propagation of parameter uncertainty through the model, including uncertainty
in the estimation of regularization parameters; for further discussion see Schneider
(2001), Smerdon et al. (2010) and the supplement to Wahl and Smerdon (2012).

Recently, hierarchical modeling and Bayesian inference techniques have been
proposed and employed to reconstruct past climate from proxies [Haslett et al.
(2006), Li, Nychka and Ammann (2010), Tingley and Huybers (2010a, 2010b,
2013), Werner, Luterbacher and Smerdon (2013)]. Hierarchical modeling is a nat-
ural framework for including the available scientific understanding of both the
target climate process (e.g., annual surface temperature anomalies) and how the
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various natural proxies are causally affected by variations in the climate system.
Bayesian inference, in turn, provides a cohesive framework for propagating uncer-
tainty, while the posterior draws of the target climate quantity are a more statis-
tically precise and scientifically useful result than a point estimate and associated
uncertainty interval [Tingley et al. (2012)].

In this paper, we reconstruct Northern Hemisphere (NH) temperature anomalies
over the past millennium using a hierarchical Bayesian model that describes tem-
perature as linearly dependent on three important climate forcings: green house gas
concentrations, volcanic aerosol concentrations and variations in solar irradiance.
The proxies, in turn, are modeled as linear in the latent temperature process. Mo-
tivated by existing evidence of long-range correlation in temperature series [e.g.,
Benth and Šaltytė-Benth (2005), Brody, Syroka and Zervos (2002), Huybers and
Curry (2006), Imbers et al. (2014)], we explore the effects of specifying white
noise (no memory), autoregressive (short memory) and long-memory correlation
structures for the two error processes. To our knowledge, this is the first ensemble-
based paleoclimate reconstruction that includes the effects of climate forcings, and
the first systematic investigation of error structure in the temperature reconstruc-
tion. As our method involves first reducing the proxy data set to a single time
series, and then inferring hemispheric average temperature anomalies, rather than
the spatial pattern, our analysis is a form of composite-plus-scaling [Tingley et al.
(2012)].

The external forcings used in the analysis are closely related to global tem-
perature evolution. The Intergovernmental Panel on Climate Change (IPCC) has
steadily increased its certainty level on stating the causal relationship between in-
creasing atmospheric concentrations of anthropogenic greenhouse gases and in-
creasing average global temperatures, reaching the “extremely likely” level of 95%
confidence in 2013 [Bindoff et al. (2013)]. The relationship between solar irradi-
ance and surface temperatures is studied in Crowley and Kim (1996), Lean, Beer
and Bradley (1995), while Briffa et al. (1998), Crowley and Kim (1993), Crowley,
Criste and Smith (1993) and Landrum et al. (2013) analyzed the effect of volcanic
activity on global temperatures.

The conceptual study of Li, Nychka and Ammann (2010) demonstrated that
temperature reconstructions are improved when information about the climate
forcing is included in the reconstruction. We therefore explore the effects of in-
cluding these three major external forcings in our reconstructions, reporting results
for both cases. While the forcings are expected to improve the reconstructions, we
note that reconstructions that exclude the forcings are necessary for the evalua-
tions of GCMs [Flato et al. (2013), Masson-Delmotte et al. (2013)] to avoid the
circularity of using the same forcings in the simulation of past climate and the
reconstruction used to assess the simulation.

1.2. Long-memory modeling and estimation challenges. To our knowledge,
the error terms in all previous models for multi-proxy climate reconstructions
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are assumed to be white or autoregressive [AR; see, e.g., Tingley et al. (2012)].
For instance, Li, Nychka and Ammann (2010), Tingley and Huybers (2010a)
and McShane and Wyner (2011) use AR(1) or AR(2) errors, while reconstruc-
tions based on the Expectation–Maximization algorithm or principal component
regression have generally not explicitly modeled temporal autocorrelation [see
Section 8.7.4 of Tingley et al. (2012)].

The assessment of long-memory behavior in hierarchical models is complicated
by the fact that graphs of the autocorrelation and partial autocorrelation functions
(a.c.f. and p.a.c.f.) are generally not adequate diagnostic tools. In addition, the
short data streams we are faced with disallow reliance on known asymptotic prop-
erties, while lack of self-similarity means that inference on one range of frequen-
cies cannot apply to another. These issues are well known for widely used long-
memory time series models, such as fractional autoregressive integrated moving
average (FARIMA) models [Beran (1994)]. Misspecification of a long-memory
process with a short-memory model can lead to erroneously attributing long-
memory effects to deterministic trends or external forcings, and thus will affect un-
certainty quantification. Specifically, since long-memory models can exhibit larger
asymptotic variances than their relatively short-memory model analogues [see
Chronopoulou, Viens and Tudor (2009) and references therein], reported uncer-
tainty levels under memory misspecification can be lower than the nominal values.

Motivated by the limitations of the data, and our goal of using a robust model,
we focus on a simple long-memory model: linear regression with fractional Gaus-
sian noise (fGn) errors. The theoretical question of estimating memory length for
nonself-similar models, such as our hierarchical linear model, is notoriously dif-
ficult. Asymptotic theory is still under development, and current work on high-
frequency or increasing-horizon versions of our model cannot yet be considered
definitive. Online Supplement A.1 in Barboza et al. (2014) provides brief back-
ground information on long-memory estimation, while further details can be found
in references therein; see, in particular, Gneiting and Schlather (2004).

In the context of annual paleoclimate observations, time intervals cannot be
assumed small, and the calibration period is short. On account of the long time
intervals, we cannot use the local path behavior of the data (e.g., Hölder conti-
nuity) as a proxy for long memory—an approach that is possible for fGn-driven
models where high frequency data exists. Such models are asymptotically Hölder-
continuous in the limit of ultra-high frequency, with a single parameter that also
governs long memory. On account of the short calibration period, methodologi-
cally sound results from low frequency increasing-horizon asymptotics [see Tudor
and Viens (2007)] cannot be used to measure long-range dependence in our case,
as there is simply not enough data. Instead we resort to a fully Bayesian frame-
work to estimate all parameters, including those responsible for memory length,
with the added benefit of a complete evaluation and propagation of uncertainty.

This article is structured as follows. Section 2 describes the data sets used in the
reconstruction, and Section 3 gives the details of the hierarchical Bayesian models.
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Section 4 presents the results of our Bayesian reconstructions, including parame-
ter posterior distributions and model validation metrics; it compares models with
different error structures and which include or exclude the climate forcings. We
also compare our results with previous reconstructions and discuss the estimation
of transient climate response in Section 5 before summarizing our quantitative
conclusions and discussing remaining challenges in Section 6. Two online supple-
ments provide further details on the modeling framework and additional quantita-
tive results [see Barboza et al. (2014)].

2. Data sets. The analysis makes use of three distinct data sources: instrumen-
tally observed temperature anomalies (in ◦Celsius) over the period 1900–1998;
a suite of temperature-sensitive proxies over the period 1000–1998 taken from the
database originally described in Mann et al. (2008a) and used additionally in Mann
et al. (2009); and estimates of external climate forcings from 1000–1998 AD.

We make use of two different instrumental estimates of NH temperature anoma-
lies, both developed by the Climate Research Unit of the University of East An-
glia [Brohan et al. (2006)]. The CRUTEM3v data set (abbreviated hereafter as
CRU) is an estimate of air surface temperature anomalies over land, while Had-
CRUT3v (hereafter abbreviated as HAD) is an estimate of combined land air-
and marine sea-surface temperatures. These data sets are widely used for the
calibration of proxy-based climate reconstructions [e.g., Kaufman et al. (2009),
Luterbacher et al. (2004), Mann et al. (2008a), McShane and Wyner (2011),
Rutherford et al. (2005), Tingley and Huybers (2013)]. We make use of the
variance-adjusted version of each data set to facilitate comparisons with results
from Mann et al. (2008a). While both instrumental data sets extend back to 1850,
we choose 1900–1998 as our calibration period, as the sparsity of instrumental
observations results in less trustworthy hemispheric estimates prior to about 1900
[Smith (2010)].

The proxies used in our analysis are selected from the 1209 climate-sensitive
proxies originally compiled in Mann et al. (2008a).4 This compilation brings to-
gether a wide array of proxy types, including tree ring widths and densities, marine
sediment cores, speleothems (cave deposits), lacustrine sediment cores, ice cores,
coral records and historical documentary information [see NRC (2006) and Jones
et al. (2009) for further descriptions of each of these data types]. The proxy data are
not raw observations, but are rather processed to remove nonclimatic variability,
such as age effects associated with tree ring data. This type of processing results
in a data product which may be more directly interpreted as “climate sensitive,”
according to the paleoclimatology community. While it is common to base climate
reconstructions on the post-processed data, as is done here, we acknowledge that

4For more details on the data set, see the NOAA-Paleoclimatology/World Data Center at http://
www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html.

http://www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html
http://www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html
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doing so does neglect the uncertainty inherent in the processing steps. We set aside
for future research the challenge of including the processing of raw climate proxy
observations into climate-sensitive series within the hierarchical framework devel-
oped here. For further details concerning the processing of raw proxy observations,
see, for example, Jones et al. (2009), NRC (2006).

Estimates of the external climate forcings—atmospheric greenhouse gas con-
centrations (C), solar irradiance (S) and volcanism (V)—are described and plotted
in Li, Nychka and Ammann (2010) and described more fully in Ammann et al.
(2007). The original greenhouse gas concentration time series is in units of CO2
equivalent in parts per million; the solar irradiance series is in Watt/m2 and the
volcanic series is an estimate of the climate forcing, in W/m2, derived sulphate
measurements on ice cores [see Ammann et al. (2007) for further details].

3. Model specification. Hierarchical Bayesian models typically consist of
three levels. The data level describes the likelihood of the observations condi-
tional on a latent stochastic process. In our context, the latent process is the time
series of NH mean temperature anomalies, and the observations are the proxies.
The process level describes the parametric structure of the latent process—often
with recourse to prior scientific information, such as knowledge of the underly-
ing physical dynamics [e.g., Berliner, Wikle and Cressie (2000)]. Finally, the prior
level provides closure and allows for Bayesian inference by providing prior distri-
butions for all unknown parameters in the data- and process-levels. For a general
description of hierarchical modeling and Bayesian inference in the paleoclimate
context, see Tingley et al. (2012). Following Li, Nychka and Ammann (2010), the
data-level models the proxies as a normal distribution with mean equal to a linear
function of the latent, unobserved true temperatures, while the process-level mod-
els the latent temperature process as normal with mean given by a linear function
of the external forcings [Li, Nychka and Ammann (2010)]. We add to previous
work by applying the model to actual proxy data, as opposed to using pseudo
proxy experiments derived from climate model output [Li, Nychka and Ammann
(2010)], as well as identifying appropriate memory lengths in the error structures
of the residuals at both levels.

The Bayesian modeling framework is closely related to stochastic filtering
methods. An interesting application of classical Kalman filtering [see Kalman and
Bucy (1961)] to climatic reconstruction is in Lee, Zwiers and Tsao (2008), where
the authors use forcings and a smaller proxy data set to reconstruct temperatures on
a decadal basis. However, there are, to our knowledge, no practical tools for filter-
ing with fGn errors and, in addition, stochastic filters, which are adapted to tracking
moving signals dynamically in time, are notoriously poor at estimating fixed pa-
rameters; see Yang et al. (2008) and Chronopoulou and Viens (2012). Thus, they
are not an optimal choice for our exploration of short- versus long-memory models
in paleoclimate reconstructions. In contrast, the Bayesian approach adopted here
allows for all parameters to be estimated simultaneously while avoiding the known
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estimation difficulties inherent to filtering. Moreover, since the proxy observations
are not being updated over time, the sequential updating property of filtering is not
advantageous.

3.1. Proxy data reduction. It is desirable for several reasons to reduce the di-
mensionality of the proxy data set, which consists of 1209 time series. First, as
there are only a limited number of years in the calibration interval, dimension re-
duction can lead to a more parsimonious model, avoid overfitting, and lead to more
robust temperature reconstructions. Second, our interest in inferring global mean
temperatures rather than spatial fields motivates a reduction, prior to fitting a hier-
archical model, to a single time series that reflects the shared variability between
the proxies that is likely attributable to a common, climatic origin. Third, the proxy
reduction is important in limiting the computational burden of estimating parame-
ters describing long memory; for a comparison between computational and asymp-
totic efficiency for various long-memory parameter estimators, see Chronopoulou
and Viens (2010). We therefore apply a sequence of steps to reduce the number
of proxies while attempting to retain as much climatically useful information as
possible.

Following Mann et al. (2008a), we first select only those proxies that are
recorded at least as far back as 1000 AD and, in addition, have a significant correla-
tion with their closest instrumental time series (marine or land) over their period of
mutual overlap. We use local temperature information in the screening procedure,
as any proxy that might correlate to hemispheric temperature with some degree of
accuracy should relate to its local temperature with higher precision [Mann et al.
(2008a)]. Such a criterion does not take into account the possibility of exploiting
physical teleconnections that exist in the actual climate system [Mann, Bradley and
Hughes (1998), Tingley et al. (2012), Werner, Luterbacher and Smerdon (2013)].
This screening procedure yields 38 proxies whose distribution by type and loca-
tion is given in Table 1. Tree rings represent the majority of proxies that pass the
screening criteria, consistent with the ubiquitous use of tree ring information in

TABLE 1
Geographical distribution of the 38 proxies by type

Type # Locations

Tree ring 16 USA, Argentina, Norway, New Zealand, Poland, Sweden
Lacustrine 7 Mexico, Ecuador, Finland
Speleothem 6 China, Scotland, Yemen, Costa Rica, South Africa
Ice cores 4 Peru, Greenland, Canada
Other∗ 5 China, Mongolia, Tasmania, New Zealand

∗The category named “Other” contains data from composite temperature reconstructions and histor-
ical documentary series.
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FIG. 1. Geographical distribution of the 25 proxy series.

annual resolution temperature reconstructions [Jones et al. (2009), NRC (2006),
PAGES 2k Consortium (2013) and references therein].

A number of the 38 proxy series in Table 1 show undesirable properties given
our assumption of a stationary relationship between the proxies and temperatures.
In particular, several of the lacustrine and speleothem records feature much greater
variability in the early portion of the time interval than in the calibration period.
On such bases, we exclude 13 proxies, leaving a total of 25; see Figure B.1 and Ta-
ble B.1 in the Online Supplement B for details [see Barboza et al. (2014)]. The sin-
gle lacustrine proxy included in the reconstructions is the tiljander_2003_darksum
series from Finland [Tiljander et al. (2003)]. We apply a log-transformation on
this series in order to dampen the few years that feature very thick varves [Loso
(2009)], and to produce a series that is in-line with the assumption of normal errors
in our statistical models. Figure 1 shows the spatial locations of the 25 proxies.

To increase computational tractability, and to ensure that the heterogenous spa-
tial distribution of the proxies does not bias estimates of the spatial average, we
further reduce the 25 proxies into a single series, termed the “reduced proxy,” via
a weighted averaging procedure. Intuitively, we seek a reduced proxy series that
captures the common signal of globally averaged climate reflected in the shared
variability between the proxies. We estimate the averaging weights used to form
the reduced proxy using least squares regression, first centering and scaling each
of the 25 proxy series over the period 1000–1998. Denoting these scaled proxies as
Pi,t , i = 1, . . . ,25 and t = 1000, . . . ,1998 and the HAD or CRU series as Tt (mean
temperature anomalies), we estimate the weights via an ordinary least squares fit
to Tt = a0 + ∑25

i=1 aiPi,t + εt , where εt is white noise. Since most of the prox-
ies end after 1982, here we fit the model using only the data from 1900 to 1982.
The least squares parameter estimates â0, . . . , â25 provide a weighted average of
proxies that maximizes the explained variance. Denote the reduced proxy as RPt ,
then

RPt = â0 +
25∑
i=1

âiPi,t .(3.1)
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The percentage of variation in temperatures that can be explained by the re-
duced proxy is R2 = 77.48% for the HAD data set and R2 = 58.25% for the CRU
data set; note that the R2 is higher for the HAD data set despite all proxies be-
ing terrestrial. The proxies are selected on the basis of local correlations, and the
higher percentage of explained variation with the HAD data set is indicative of the
fact that temperature observations at the locations of the proxies (many of which
are coastal) are better at predicting global land and sea temperatures than global
land-only temperatures. Note that colinearity is not an issue, as the Pi,t do not fea-
ture strong correlations with one another, and, in addition, our interest lies in the
linear combination of Pi,t rather than the coefficients âi .

The geophysical distribution of the weights (in percentage of absolute value) is
displayed in Tables B.3 and B.4 in Online Supplement B of Barboza et al. (2014).
For both HAD and CRU data sets, proxies in the United States are most heavily
weighted, followed by the Mongolian composite. The remaining countries have a
fairly uniform distribution, with no single country exceeding the 8% level (HAD)
or 7% level (CRU). Our selected proxies therefore have broad spatial coverage,
inasmuch as possible with the available data. The weights heavily concentrate
on the “Tree rings” and “Other” categories, consistent once more with the preva-
lence of tree ring series in climate reconstructions [e.g., Luterbacher et al. (2004),
Mann, Bradley and Hughes (1998), Moberg et al. (2005), Overpeck et al. (1997),
PAGES 2k Consortium (2013), Tingley and Huybers (2013)]. The weight for the
single lacustine series, from Tiljander et al. (2003), is less than 8% for both HAD
and CRU data sets, indicating that it exerts a limited control on the overall recon-
structions. The limited influence of this lacustrine series is of particular importance
given the known difficulties in calibrating it, due to the potential of anthropogenic
impact on the lake catchment [Mann et al. (2008b), Tiljander et al. (2003)]; we
return to this point in Section 4.3.

The modeling approach taken here, based on a weighted average of proxies that
pass a local screening condition, does not explicitly consider long-range spatial de-
pendencies, or teleconnections, within the climate system. Another option would
be to set the reduced proxy to the leading principal component of the 25 proxies
that pass the screening test. Such an approach would extract the dominant common
signal shared by the proxies, whereas for the purposes of this analysis we are more
interested in retaining the common temperature signal they share. While methods
based on principal component or canonical correlation analysis are prevalent in
paleoclimatology, both for the reconstruction of spatial patterns and (as here) spa-
tial averages, there is ongoing debate as to the merits of such methods; see Cook,
Briffa and Jones (1994), NRC (2006), PAGES 2k Consortium (2013), Tingley et al.
(2012), Wahl and Smerdon (2012), Werner, Luterbacher and Smerdon (2013) for
discussion.

3.2. Examination of long-memory correlation in the proxy data. While the
temperature–proxy relationship is almost universally assumed to be linear [e.g.,
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Luterbacher et al. (2004), Rutherford et al. (2005), Li, Nychka and Ammann
(2010), Tingley and Huybers (2010b), Kaufman et al. (2009), McShane and Wyner
(2011), Christiansen (2011), Smerdon et al. (2010), and each of the methods in Ta-
ble 1 of Christiansen, Schmith and Thejll (2009) and discussed in Section 8 of
Tingley et al. (2012)], the correlation structure in the error term has not been thor-
oughly studied. The choice of model for the correlation structure is of particular
importance, as its adequacy directly affects the accuracy and precision of the uncer-
tainty quantification associated with the reconstruction. Here we consider models
of the form

RPt = α0 + α1Tt + σpηt ,(3.2)

where ηt is a zero-mean, unit-variance stationary stochastic process and σp a con-
stant variance parameter. We fit model (3.2) using least-squares over the 1900–
1982 interval, using either the HAD or CRU as Tt , and examine the correlation
structure of the resulting residuals.

We first explore the correlation structure of ηt using estimates of the spectral
density, f (λ), of the empirical residuals. If the residuals have long-memory be-
havior, then the logarithm of the spectrum will feature a negative slope with re-
spect to log-frequency. More specifically, a stationary stochastic process Xt is
generally said to have long memory when its autocovariance function γ (n) :=
cov(Xt+n,Xt) decays at the rate n2H−2 for large time lag n, where 0.5 < H < 1
is the long-memory parameter. This behavior is essentially equivalent to requir-
ing that f (λ) have a singular behavior λ1−2H for small frequencies λ [see Beran
(1994)]. Since 1 − 2H < 0 for long-memory models, the plot of logf (λ) against
logλ for a long-memory model will be approximately a straight line with negative
slope 1 − 2H . While spectral methods are not generally accepted as a formal way
to estimate H , save for very simple models, they do offer a useful diagnostic tool
to evaluate the long-memory structure in the data [see Beran (1994)].

Based on the regression residuals from equation (3.2), we compute two widely
used estimators of the spectral density: the periodogram and the adaptive mul-
titaper estimator [see Online Supplement A in Barboza et al. (2014) for a brief
description for each estimator]. Figure 2 shows both estimators on a log–log scale
for the HAD and CRU data sets, respectively. In both cases, the multitaper spectral
estimator features a clear negative slope on the log–log scale, indicating possi-
ble long-memory behaviors. Results for the periodogram are less striking than the
multitaper estimate, but still show a negative slope in log–log space.

To examine more formally the long memory behavior of the residuals, we em-
ploy the test developed by Robinson (1995) (Section 3.4 presents results of al-
ternative tests). To introduce the idea of this method briefly, consider a station-
ary process Xt with spectral density f (λ). The f (λ) may satisfy the power law
f (λ) ∼ Gλ1−2H as λ → 0 for a positive value G and some H ∈ (0,1). The so-
called Hurst parameter H measures the length of the correlation as illustrated
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(a) HAD data set (b) CRU data set

FIG. 2. Spectral estimates on a log–log scale, with frequency units of cycles per year. The regres-
sion line is computed by regressing the log of multitaper estimator onto the log-frequencies.

by the negative slope of the spectrum in Figure 2. Typical examples that follow
this power law include FARIMA and fGn. This fGn is the discrete-time station-
ary Gaussian process that is the first-order difference process of the so-called
fractional Brownian motion (fBm) process evaluated at integer times. The spec-
trum of the distributional derivative of the fBm process is proportional to λ1−2H .
The spectrum of fGn has the same behavior asymptotically for small λ. Histor-
ically, the parameter H first made its appearance when fBm was introduced by
Kolmogoroff (1940); the name Hurst arose after Mandelbrot proposed that fBm
might be a good model to explain the power behavior of a statistic introduced by
the hydrologist H. E. Hurst to study yearly levels of the Nile river; see Mandelbrot
(1965), Mandelbrot and Van Ness (1968) and the account in Taqqu (2013). More
information on fGn can be found in Online Supplement A in Barboza et al. (2014).
The FARIMA model depends on a parameter usually denoted by d = H −1/2 and
features a spectral density with the same low-frequency and long-memory asymp-
totics as fGn.

The null hypothesis for the Robinson (1995) test is H = 0.5 (no memory), while
the alternative hypothesis is H > 0.5 (long-memory). The test is based on the
asymptotic normality of the semiparametric Gaussian estimate of H . Other tests
for the memory length are reviewed in Murphy and Izzeldin (2009), who recom-
mend Robinson’s test due to its power properties and its good performance for
relatively small samples when combined with bootstrap resampling.

We perform Robinson’s test on the regression residuals in (3.2), resulting in
p-values of 0.0258 for HAD and 0.0002 for CRU. Both data sets therefore show
strong evidence, according to Robinson’s test, in favor of rejecting the null hypoth-
esis of H = 0.5. Note that, the test, while consistent with long memory, does not
provide evidence in favor of long-memory correlations over shorter nonzero ones;
in the model-comparison exercises below (Section 4.2), we also consider models
which contain short memory, AR(1) errors.
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3.3. Examination of long-memory behavior in the temperature anomalies. In
the specification of the process level of the hierarchical model, we follow Li, Ny-
chka and Ammann (2010) and model the latent temperature as linear in the external
forcings. We apply the following transformations to the forcings, where S, V and
C are, respectively, the time series of solar irradiance, volcanism and greenhouse
gases:

• Ṽt = log (−Vt + 1). Exploratory data analysis indicated that this transformation
increases the explanatory power of volcanism. From a physical standpoint, it
dampens the effects of very large events, and thus provides a form of regular-
ization given the larger uncertainties associated with the larger V values [Li,
Nychka and Ammann (2010)].

• C̃t = log(Ct ). Following Hegerl et al. (2007), we use a log-transformation to
approximate the radiative forcing due to changes in the equivalent CO2 concen-
tration.

The resulting process-level model is

Tt = β0 + β1St + β2Ṽt + β3C̃t + σT εt ,(3.3)

where εt denotes a stationary stochastic process with zero mean and unit variance,
and σT is a constant variance parameter. Li, Nychka and Ammann (2010) employ
an AR(2) for the error term, based on an examination of auto- and partial auto-
correlation functions. However, in a similar situation, Beran (1994) shows that the
residuals are appropriately modeled as FARIMA (0, d = 0.4, 0), with Hurst param-
eter H = d + 0.5 = 0.9. Benth and Šaltytė-Benth (2005) and Brody, Syroka and
Zervos (2002) also provide examples of estimation of long-memory parameters
over regression residuals on temperature series for specific locations in Norway
and England, respectively, while Huybers and Curry (2006) provides statistical ev-
idence of a power-law behavior in the spectrum of surface temperatures. Finally,
Imbers et al. (2014) use a long-memory fractional-differencing process that is very
similar to fGn in terms of its asymptotic long-memory behavior, in order to test the
presence of an anthropogenic impact on present-day temperatures.

We repeat the same diagnostic procedure and hypothesis testing as in Sec-
tion 3.2 to assess the long memory behavior of εt . We first fit model (3.3) using
the ordinary least-squares criterion, and find R2 values of 73% for HAD and 66%
for CRU, indicating the strong explanatory power of the forcings. Figure 3 plots
spectral density estimates in log–log space, for both HAD and CRU, and shows
that HAD, but not CRU, exhibits a negative slope. The p-value associated with
Robinson’s test is 8.39 × 10−7 for HAD and 0.058 for CRU, indicating strong
evidence against no memory for the HAD data set, but not for the CRU data set.

As there is value in reconstructions that exclude the forcings (e.g., for the pur-
pose of General Circulation Model assessment), we also consider a reduced form
of the process-level model that exclude the forcings, and models climate variabil-
ity as a purely stochastic process. Applying Robinson’s test to the CRU and HAD
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(a) HAD data set (b) CRU data set

FIG. 3. Spectral estimates in log–log scale. The regression line is computed by regressing the log-
arithm of multitaper estimator on log-frequencies. The frequency units are cycle/year.

data sets results in p-values of 2.12 × 10−10 for both cases, where we can note
that the amount of evidence against no memory increases when we exclude the
forcings.

3.4. Other tests. We briefly discuss results for several alternatives to Robin-
son’s test. Beran’s test [see Beran (1992)] evaluates the goodness of fit of a par-
ticular stochastic process model (e.g., fGn) to a realization of a time series. Let
Xt be a stationary Gaussian process with spectral density f (λ), whose realization
one observes. When testing for fGn, for instance, if f (λ,H) is the spectral density
of an fGn process with Hurst parameter H , then the null hypothesis for Beran’s
test is H0 :f (λ) = f (λ,H) and the alternative is Ha :f (λ) �= f (λ,H). Both the
Robinson and Beran tests base their test statistics on the Whittle estimator of H ,
which enjoys the desirable property of insensitivity to certain changes of scale [see
Online Supplement A in Barboza et al. (2014) for additional technical details].

We performed Beran’s test on six data sets: the four residuals from the HAD and
CRU data sets, for both the proxy [equation (3.2)] and instrumental [equation (3.3)]
equations, and the two HAD and CRU temperature data series themselves with no
forcings. To test the presence of memory, we use three distinct memory structures:
fractional Gaussian noise, AR(1) and AR(2). The null hypothesis in each test is
that the data comes from a spectral density equal to that of the given memory
structure. Thus, a nonrejection of the null is not inconsistent with the tested mem-
ory structure. For our eighteen Beran’s tests, the corresponding p-values are shown
in Table 2. The results indicate that Beran’s test cannot reject the null in any of the
eighteen cases; this is consistent with the presence of memory, but the tests do not
point to a preferred memory structure.

Finally, we apply the test proposed by Davies and Harte (1987); see Sec-
tion A.1.2 for technical details. The fGn is used as the underlying parametric model
for this test, and the null and alternative hypotheses are identical to Robinson’s test:
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TABLE 2
Results of Beran’s test applied to the residuals from the HAD and CRU data sets, for both the proxy
[equation (3.2)] and instrumental [equation (3.3)] equations, with or without forcings, under three

null hypotheses

Model fGn AR(1) AR(2)

HAD-proxy 0.77 0.40 0.76
CRU-proxy 0.91 0.72 0.92
HAD-temp. 0.56 0.58 0.59
CRU-temp. 0.73 0.33 0.40
HAD-temp. (no forcings) 0.61 0.63 0.67
CRU-temp. (no forcings) 0.46 0.19 0.47

H = 0.5 (no memory) versus H > 0.5 (long-memory). Thus, in contrast with Be-
ran’s test, rejection of the null is evidence against no memory. As in Beran’s test,
we use the four residuals from the HAD and CRU data sets, for both the proxy
[equation (3.2)] and instrumental [equation (3.3)] equations, and the two HAD
and CRU series with no forcings. P -values in Table 3 show that the null can be
rejected in three out of four cases when we include forcings within the models,
and in the two cases without forcings. In fact, the evidence against no memory
increases when we exclude forcings.

No single method employed here is a perfect indicator for the presence or ab-
sence of memory in our error processes. Taken together, however, the spectral
density estimates and applications of the tests of Robinson (1995), Beran (1992)
and Davies and Harte (1987) indicate to us that the possibility of memory, long or
short, cannot be ignored in developing models for the residuals or for the HAD and
CRU series themselves. In Section 4, we further investigate the memory proper-
ties of the residual processes, via Bayesian parameter estimates and reconstruction
validation measures.

TABLE 3
Results of Davies and Harte’s test applied to the residuals from the

HAD and CRU data sets, for both the proxy [equation (3.2)] and
instrumental [equation (3.3)] equations, with or without forcings,

under the null hypothesis of no memory

Model Davies & Harte

HAD-proxy 0.046
CRU-proxy 0.000
HAD-temp. 0.010
CRU-temp. 0.436
HAD-temp. (no forcings) 0.000
CRU-temp. (no forcings) 0.000
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3.5. Hierarchical Bayesian model with long- or short-memory errors. Given
the statistical evidence for long- or short-memory correlation in the empirical
residuals from equations (3.2) and (3.3), and the implication for fGn or AR model
by Beran’s test, we explore the results of modeling the errors using either fGn or
AR processes. As the strategy for fitting the hierarchical Bayesian reconstruction is
similar in each case, we present details for the more computationally involved fGn
error assumption. Comparisons between various modeling choices (long memory
vs. short memory vs. no memory; with or without forcings) are given in Sec-
tion 4.3. A summary of the data and process levels of the hierarchical model is
as follows:

RPt = α0 + α1Tt + σP ηt ,
(3.4)

Tt = β0 + β1St + β2Ṽt + β3C̃t + σT εt ,

where ηt and εt are independent fGn processes with respective parameters H ∈
(0,1) and K ∈ (0,1) which control the long-memory behavior. We assume these
models hold throughout the entire prediction period (1000–1899) and calibration
period (1900–1998). Independence between εt and ηt is a reasonable assumption,
as ηt represents the stochastic aspect of the proxies that is not explained by the
climate, while εt is the long-memory aspect of the climate not attributable to the
forcings.

The modeling framework [equation (3.4)] is based on the assumption that the
relationship between the proxies and temperatures is invariant through time. While
stationarity may be an idealized assumption, we note that our data selection pro-
cedure ensures that stationarity is at the very least not an unreasonable assump-
tion, while the short calibration period precludes a more in-depth study of possible
nonstationarity in the temperature–proxy relationship. Moreover, we note that the
modeling framework could be made more realistic by specifying a (possibly inde-
pendent) error structure for each individual proxy series. We do not pursue these
specifics here, but rather focus on exploring the effects of long memory and forc-
ings on the reconstruction.

Following Li, Nychka and Ammann (2010), we define the following prior dis-
tributions for the parameters α := (α0, α1)

T, β := (β0, β1, β2, β3)
T, σ 2

1 , σ 2
2 , H

and K :

• α ∼ N((0,1)T, I2); β ∼ N((0,1,1,1)T, I4);
• σ 2

T ∼ IG(2;0.1), σ 2
P ∼ IG(2;0.1);

• H ∼ Unif(0,1); K ∼ Unif(0,1);

where In is the identity matrix of dimension n.
Let Tu = (T1000, . . . , T1899) denote the vector of unknown temperatures and

T0 = (T1900, . . . , T1998) the vector of instrumental temperatures. Our goal is to
infer Tu based on T0, RP, S, Ṽ and C̃. The full conditional posterior distribu-
tions of Tu and all unknown parameters save H and K can be derived explic-
itly, thus allowing for standard Gibbs sampling in the Markov chain Monte Carlo
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(MCMC) method. We resort to Metropolis–Hasting steps to sample H and K . The
derivation of full conditional distributions can be found in Online Supplement A in
Barboza et al. (2014). We implement the MCMC using a number of R packages:
MCMCpack [Martin, Quinn and Park (2011)], mvtnorm [Genz and Bretz (2009)],
ltsa [McLeod, Yu and Krougly (2007)] and msm [Jackson (2011)].

4. Numerical results. The diagnostic tests in Section 3, while providing no
conclusive evidence for the presence of long or short memory, indicate the possi-
bility of certain correlations. In order to further investigate appropriate models for
error structures and to assess the benefit of incorporating external forcings in the
reconstruction, we compare eight model variants on the basis of their parameter
estimates and reconstruction validation metrics:

A: Possible long memory (H and K not fixed), with external forcings.
B: Possible long-memory error in (3.2) and AR(1) error in (3.3), with external

forcings.
C: AR(1) error in (3.2) and possible long-memory error in (3.3), with external

forcings.
D: AR(1) errors in (3.4), with external forcings.
E: No memory (H = K = 1

2 ), with external forcings.
F: Possible long memory (H and K not fixed), no external forcings (βi = 0, i =

1,2,3).
G: AR(1) errors in (3.4), no external forcings (βi = 0, i = 1,2,3).
H: No memory (H = K = 1

2 ), no external forcings (βi = 0, i = 1,2,3).

The AR(1) model is included, as it features short memory—an intermediate model
between assuming fGn and assuming uncorrelated white noise. We refer to Sce-
narios E and H as having no memory, as they are based on Gaussian white noise
errors that are independent and thus have no memory. Scenario B allows for a long-
memory model for the proxies while assuming short memory in the temperature
residuals, while Scenario C reverses the assumptions of Scenario B.

For reconstructions using both the HAD and CRU instrumental records, we
sample 5000 times from the posterior distribution and discard the first 1000 repli-
cates to account for the burn-in period. The details of posterior samples are shown
in Online Supplement B [see Barboza et al. (2014)]. Here we summarize the results
and show a selection of representative plots and focus on reconstructions using the
HAD data set.

4.1. Bayesian parameter estimates. We first examine parameter estimates us-
ing the HAD data set and including the forcings. Figure 4 shows trace plots and
histograms of the H and K parameters that are responsible for long memory in
Scenario A. Visually, the posterior draws quickly stabilize; see Section 4.3 for a
formal assessment of convergence for these and other parameters. The histograms
of H and K for the HAD reconstruction clearly indicate that both parameters are
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(a) Traceplots (b) Histograms

FIG. 4. Bayesian estimation of H and K based on HAD data set, Scenario A.

significantly greater than 0.5, suggesting that the data are consistent with a long-
range correlation model. Figure 5 shows the posterior distribution of H and K

for the CRU reconstruction. The distribution of H (memory structure of the proxy
residuals) is similar to that arising from the HAD analysis, whereas the poste-
rior distribution of K for the CRU analysis is centered on smaller values than for
HAD, but still remains significantly greater than 0.5. The larger value of K for the
HAD data set, which includes the oceans, is in line with intuition, on account of
the larger heat capacity of the oceans resulting in a longer timescale response to
changes in the forcings.

For Scenarios B, C and D, both HAD and CRU show that all AR(1) parameter
estimates are significantly greater than zero, and all long-memory parameter esti-
mates are significantly greater than 0.5 [see Figures B.2, B.3 and B.4 in the Online
Supplement B of Barboza et al. (2014)]. For Scenarios F and G, which exclude
the forcings, and have, respectively, long and short memory, Bayesian posteriors

(a) Traceplots (b) Histograms

FIG. 5. Bayesian estimation of H and K based on CRU data set, Scenario A.
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for the memory parameters provide evidence against models with no memory at
higher levels of certainty than for models that include forcings, especially in the
CRU case; see Figure B.5 in Online Supplement B [see Barboza et al. (2014)].
These results indicate that while there is a certain amount of memory in the error
structures, there is insufficient evidence to select between short- or long-memory
assumptions. In the subsequent section, we resort to reconstruction validation met-
rics to compare different models.

Posterior samples for the process-level regression coefficients (the βi ) for Sce-
nario A show that the transformed volcanic and greenhouse gas forcing series are
meaningful predictors of the temperature evolution for both HAD and CRU, while
solar irradiance is less influential (Figures B.8 and B.12). While the forcings are
useful predictors of past temperatures, we stress that the reconstructions that ex-
clude the forcings are also of scientific interest. Such reconstructions may not pro-
vide the most accurate estimates of past climate fluctuations, but provide necessary
test beds for assessing the GCMs used to project future climate, since comparisons
between forcings-based reconstructions and GCM simulations, which are based on
the same forcings, would pose circularity issues.

4.2. Validation measures. We provide quantitative assessments of the eight
reconstructions using a number of statistical measures: squared bias (squared sam-
ple mean of differences between the posterior mean and the observed anomalies);
variance (sample variance of the differences used in bias calculation); root mean
squared error (RMSE); empirical coverage probabilities (ECP) of the credible in-
tervals at the 95% and 80% levels; Interval Scores (IS) at the 95% and 80% levels;
and, since we obtain MCMC samples from the predictive distribution, the Con-
tinuous Ranked Probability Score (CRPS). The ECP measures the accuracy of
the uncertainty quantification and values closer to nominal level are more desir-
able, while the IS and CRPS provide more nuanced assessments of the posterior
predictive distributions, rewarding both calibration and sharpness simultaneously;
details of these scoring rules are available in Gneiting, Balabdaoui and Raftery
(2007), Gneiting and Raftery (2007), Gschlößl and Czado (2007) and Online Sup-
plement A.3 in Barboza et al. (2014). For convenience, we report the negative IS
and CRPS so that smaller values indicate higher quality predictions.

Table 4 summarizes the quantitative assessments of the reconstructions for both
the HAD and CRU data sets. The benefit of the external forcings are readily appar-
ent [cf. Li, Nychka and Ammann (2010)], as their inclusion substantially reduces
the squared bias, variance and, consequently, the RMSE, as well as the IS and
CRPS (compare Scenario A to F, Scenario D to G, and Scenario E to H). This
corroborates the fact that the posterior distributions of the coefficients for both the
volcanic and green house gas forcing series are significant. Moreover, the widths
of the 95% credible intervals are likewise narrower when the external forcings are
included (see Figure 8, below, and Figure B.16 in the Online Supplement).



1984 BARBOZA, LI, TINGLEY AND VIENS

TABLE 4
Validation measures for the eight reconstruction scenarios, using both HAD and CRU data sets.

Scenarios F, G and H, which include no forcings, are italicized in this table

Scenarios Sq. bias Variance RMSE ECP95 ECP80 I95 IS80 CRPS

HAD A 0.016 0.012 0.168 92.9 74.7 0.062 0.178 0.208
B 0.017 0.013 0.171 92.9 74.7 0.062 0.179 0.205
C 0.015 0.011 0.160 90.9 72.7 0.064 0.179 0.212
D 0.015 0.011 0.162 90.9 74.7 0.063 0.176 0.209
E 0.014 0.010 0.154 90.9 69.7 0.060 0.171 0.195
F 0.055 0.072 0.356 99.0 84.8 0.110 0.323 0.229
G 0.081 0.071 0.390 94.9 75.8 0.118 0.389 0.259
H 0.113 0.059 0.415 82.8 59.6 0.168 0.511 0.304

CRU A 0.032 0.025 0.238 91.9 73.7 0.084 0.251 0.245
B 0.031 0.025 0.235 91.9 75.8 0.081 0.245 0.237
C 0.033 0.024 0.238 91.9 71.7 0.090 0.258 0.252
D 0.032 0.023 0.234 90.9 70.7 0.087 0.255 0.245
E 0.031 0.024 0.235 91.9 73.7 0.085 0.250 0.242
F 0.089 0.097 0.432 97.0 78.8 0.131 0.416 0.274
G 0.120 0.095 0.464 90.9 75.8 0.150 0.482 0.303
H 0.148 0.080 0.477 84.8 62.6 0.206 0.570 0.335

RMSE: Root Mean Square Error; ECPβ : Empirical Coverage Probability at β% confidence level;
ISβ : Interval Score at β% confidence level; CPRS: Continuous Ranked Probability Score.
∗ HAD and CRU refer to the two instrumental data sets, with HAD including the oceans.

When external forcings are included in the reconstruction, the squared biases,
variances and RMSEs are generally similar across the different error models for
each of the two data sets. For the HAD data set, and among reconstructions that
include forcings, Scenarios A and B are optimal in terms of ECP; Scenario E in
terms of CRPS; and there are no appreciable differences in IS. Note that Scenario E
exhibits the worst ECP, indicating an underestimation of uncertainty compared to
Scenarios A and B. This is consistent with the rejection of no memory models in
our tests in Section 3. For the CRU data set, Scenario B is optimal in terms of ECP
and CRPS, and again there is no appreciable difference in terms of IS. Based on
these validation measures, while there continues to be support for memory mod-
els, there is no clear indication of a single, best model for the error structures
among the reconstructions that include forcings, with Scenarios A and B featur-
ing comparable performance metrics. Indeed, tests for selecting between long- and
short-memory models for climate time series are often inconclusive [e.g., Percival,
Overland and Mofjeld (2001)].

When forcings are not included, the greater variability of validation metrics
across the scenarios allows for more meaningful ranking of the error correlation
assumptions. For both data sets, Scenario F is optimal in terms of squared bias,
RMSE, IS and CRPS. For the HAD data set, Scenario G is optimal in terms of
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ECP at the 95% level but is equally distant from the nominal level as Scenario F at
the 80% level, while for the CRU data set, ECP favors Scenario F. In general, the
results indicate that when forcings are not included the long-memory models play
an important role in capturing the correlation structure in proxies and temperature
and should be employed in the hierarchical model. As discussed in Li, Nychka
and Ammann (2010), reconstructions are improved when information is included
at a broad range of frequency scales. In the absence of forcings, which feature
long-range correlations and low-frequency behavior, the inclusion of more highly
structured noise processes leads to marked improvements in the reconstructions.

4.3. Temperature reconstruction results. According to validation measures in
Table 4, the reconstruction scenarios that include forcings are similar to one an-
other. Here we focus on Scenario B due to slightly better validation measures for
both HAD and CRU data sets. Figure 6 shows the Scenario B temperature recon-
struction together with 95% point-wise credible intervals, using the HAD data set.
The reconstruction shows a slight downward trend during the period 1000–1899
[cf. Kaufman et al. (2009)], and no maxima in the posterior distributions exceed
the levels observed after approximately 1950. The reconstruction for the CRU data
set (see Figure B.14) is qualitatively similar, but features higher variance due to the
more variable CRU temperatures.

In order to evaluate our reconstruction, we use 1900–1998 as an in-sample val-
idation period. Due to the limited number of available observations and the neces-
sity of inferring the memory parameters, out-of-sample validation was not feasible.
Figure 7 shows the posterior mean and 95% point-wise credible intervals for pre-
dictions using the HAD data in Scenarios A, B, E, F and H, as well as the actual

FIG. 6. Temperature reconstruction (1000–1899) using the HAD data set, Scenario B.
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FIG. 7. Temperature reconstruction (1900–1998) using the HAD data set under Scenarios A, B,
E, F and H. Black: Observations; Dashed blue: 95% credible intervals MCMC; Solid blue: posterior
mean MCMC.
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HAD observations. The scenarios that include forcings (A, B, E) result in recon-
structions that are qualitatively similar to one another and feature good qualita-
tive agreement with the observations, with Scenario E exhibiting slightly narrower
credible intervals. Reconstructions resulting from scenarios that exclude the forc-
ings (F and H) feature greater divergence from the observations—particularly for
Scenario H, which models the error structure as white noise. Results are similar
for the CRU data set (see Figure B.15). Note that the reduced variability of the
posterior mean as compared with the observations is akin to the predictions from
a linear regression being less variable than the observations. A key advantage of a
Bayesian analysis, such as that used here, is that, provided the process-level model
assumptions are reasonable, the temporal variability of individual posterior draws
will be similar to that of the actual climate, even while variability of the mean
across them is attenuated [see Figure 2 of Tingley and Huybers (2010b) for fur-
ther discussion]. Repeating the reconstructions with the single lacustrine record
excluded from the reduced proxy leads to similar results; see Figure B.17.

4.4. MCMC diagnostics. To establish convergence of the MCMC samples, we
examine trace plots (Figures B.6–B.13) and calculate the potential scale reduction
factor [PSRF; Gelman and Rubin (1992)] and its multivariate version [Brooks and
Gelman (1998)]; see Brooks and Roberts (1997) and Cowles and Carlin (1996)
for further details. We present diagnostic results for Scenario A, as it represents
the most complex model for estimation. If the PSRF is close to unity for all pa-
rameters, then the Markov chain simulation is close to its stationary distribution,
while a large PSRF indicates that the chain has not converged [Gelman and Rubin
(1992)]. Brooks and Gelman (1998) provide a generalization that allows for the
computation of a single PSRF for all model parameters.

For both the HAD and CRU data sets, we run five MCMC simulations, each
of length 5000, and discard the first 1000 samples to allow the chain to burn in.
We compute PSRFs for the scalar parameters of the model (α0, α1, β0, β1, β2,
β3, σ 2

1 , σ 2
2 ,H,K) and the multivariate PSRF, along with their upper 95% con-

fidence bounds, using the coda R-package [Plummer et al. (2006)]. Results in
Table 5 show that all the individual PSRFs are relatively close to unity, indicating

TABLE 5
Individual and multivariate potential scale reduction factors (PSRF) with the 95% upper bounds

(UB) for individual PSRFs

α0 α1 β0 β1 β2 β3 σ 2
P σ 2

T H K Mul.

HAD PSRF 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.02
UB 1.02 1.04 1.01 1.03 1.02 1.00 1.02 1.01 1.01 1.03 –

CRU PSRF 1.00 1.01 1.03 1.04 1.01 1.01 1.00 1.01 1.00 1.00 1.05
UB 1.00 1.03 1.09 1.11 1.01 1.02 1.01 1.01 1.00 1.01 –
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their successful convergence to the stationary distribution. The multivariate PSRF
likewise indicates convergence.

5. Comparison with other works.

5.1. Comparison with previous reconstructions. We compare our reconstruc-
tions to those reported in Mann et al. (2008a), as both use similar proxy and tem-
perature data sets. Mann et al. (2008a) assume no memory in the error processes,
do not include the external forcings, and present reconstructions, along with un-
certainty bands, based on two regression approaches: composite plus scale (CPS)
and errors in variables (EIV). The CPS approach computes a weighted average of
the proxy data, and then calibrates this weighted average by matching its mean and
variance to those of the instrumental temperature data during their overlap period.
The EIV regression approach allows for errors in both the dependent and indepen-
dent variables, and we refer to Mann et al. (2008a, 2008b) for details. The EIV
and CPS reconstructions, and their associated uncertainty estimates, are available
online5 as decadally smoothed time series, as Mann et al. (2008a) focuses on low-
frequency climate variability. In contrast, the reconstructions we present here are
available at annual temporal resolution, with no smoothing. In comparisons, we
show the posterior mean and uncertainty of our reconstructions at annual resolu-
tion, and additionally include the posterior mean that results from first smoothing
each posterior draw with a Butterworth filter6 with cutoff frequency equal to 0.1
cycles/year.

Figure 8 compares our reconstructions using the HAD data, and under Scenar-
ios A, B, E, F and H, to those from Mann et al. (2008a). In all cases, and especially
when including the forcings, our reconstructions are generally cooler than both the
EIV and CPS reconstructions from Mann et al. (2008a), particularly during the
1000–1400 interval, and feature a smaller amplitude of pre-instrumental tempera-
ture variability. We are not the first to report a lower variability than Mann et al.
(2008a)—for example, PAGES 2k Consortium (2013) report a change in 30 year
average temperatures between 1000 AD and the 1800s of about 0.3◦C, compared
with about 0.5◦C for Mann et al. (2008a); see Figure 4 of PAGES 2k Consortium
(2013).

The model settings of Mann et al. (2008a) are most similar to our Scenario H,
which includes neither the forcings nor the long-memory processes. Indeed, the
EIV predictions from Mann et al. (2008a) are visually most similar to smoothed
Scenario H results, and 88.4% of the EIV predictions from Mann et al. (2008a) fall
within the 95% point-wise credible intervals for the smoothed Scenario H results.
Results are similar when using the CRU data set (Figure B.16).

5http://www.ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html.
6Our calculations are based on the Matlab code associated with Mann et al. (2008a), posted

online at http://www.ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html. We smooth using the
filtfilt command in the R package “signal.”

http://www.ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html
http://www.ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html
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FIG. 8. Comparisons between Scenarios A, B, E, F, H and CPS and EIV reconstructions in Mann
et al. (2008a) using the HAD data set. Black: Observations; Purple: posterior mean reconstruction
with 95% credible intervals; Orange: EIV; Green: CPS; Dark Purple line: mean of smoothed poste-
riors.
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TABLE 6
Comparison between Scenarios H and CPS and EIV reconstructions in Mann et al. (2008a)∗

Scenarios Sq. bias Variance RMSE ECP95 ECP80 IS95 IS80

HAD H (smoothed) 0.100 0.012 0.335 41.4 33.3 0.46 0.71
CPS 0.009 0.024 0.183 100.0 96.9 0.06 0.16
EIV 0.003 0.022 0.157 99.0 99.0 0.06 0.23

CRU H (smoothed) 0.121 0.016 0.371 48.5 36.4 0.45 0.73
CPS 0.017 0.025 0.207 99.0 99.0 0.07 0.25
EIV 0.006 0.021 0.163 98.0 98.0 0.07 0.17

∗The statistics for EIV and CPS reconstructions are calculated using the estimated standard devi-
ations associated with Mann et al. (2008a). They are posted as “2-sigma uncertainties” (S), hence,
the formula for their 95% confidence bands is Mt ± 1.96

2 S, where Mt is their predicted temperature
mean.

To facilitate numerical comparisons with the Mann et al. (2008a) reconstruc-
tion, we recalculate validation metrics for Scenario H after first smoothing each
posterior draw; results are shown in Table 6 for the 20th century validation inter-
val. The main difference between our smoothed Scenario H results and the Mann
et al. (2008a) results is in terms of squared bias, with the Mann et al. (2008a)
reconstruction featuring biases that are about an order of magnitude smaller and
variances that are about 1.5–2 times larger. The net result is that the Mann et al.
(2008a) reconstructions feature smaller RMSE than our smoothed Scenario H, on
par with results from our annually resolved Scenarios A, B, C, D and E. As mea-
sured by the ECP, the uncertainties for the Mann et al. (2008a) reconstructions are
too wide, in the sense that the empirical coverage rate is greater than the nominal
rate. The uncertainties for our smoothed Scenario H are smaller than that in Mann
et al. (2008a), but due to the relatively large bias, the ECPs appear to be too low
compared to their nominal value. The Interval Scores for the smoothed Mann et al.
(2008a) reconstructions are much better than those for our smoothed Scenario H
and, like the RMSE, are similar to those for our annually resolved Scenarios A, B,
C, D and E which carry small squared bias by including the forcings (see Table 4).

We caution against drawing substantive conclusions from the comparison of the
validation and scoring metrics between the Mann et al. (2008a) results and the
smoothed Scenario H, as numerous lines of evidence indicate that Scenario H is
the least appropriate of the eight scenarios explored here: validation metrics and
scores (Table 4) are generally worst for Scenario H; the inclusion of the forcings
is motivated by the scientific understanding of their connection with temperatures;
and the inclusion of the long-memory processes in the absence of forcings is driven
by the structure of the data. Indeed, we view Scenario H as a misspecified model,
and the high squared bias and associated inadequacies of the ECPs are therefore to
be expected. Perhaps the most telling conclusion to be drawn from the numerical
comparisons is that our annually resolved Scenarios A, B, C and D, which include
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the forcings as well as short- and/or long-memory processes, are comparable in
terms of RMSE and Interval Scores to the decadally resolved Mann et al. (2008a)
results while featuring ECPs which are closer to their nominal values.

Finally, we note that the proxy selection and modeling treatments do differ be-
tween our Scenario H and the reconstructions in Mann et al. (2008a) so that the
comparison remains imperfect. In particular, we note that the Mann et al. (2008a)
reconstructions include proxies with decadal resolution, whereas here we focus on
proxies with annual resolution. Indeed, the CPS reconstruction is performed after
smoothing all proxies to a common decadal resolution, while the EIV reconstruc-
tion is based on a “hybrid” frequency approach that involves separate calibrations
to infer climate on interdecadal (periods longer than 20 years) and interannual
(periods shorter than 20 years) timescales [Mann et al. (2007, 2008b)]. Due to
the differing methods and the focus on lower frequency variability in Mann et al.
(2008a), the differing validation metrics between our smoothed Scenario H and
those for the Mann et al. (2008a) reconstructions are not surprising.

5.2. Transient climate response. The Fourth Assessment Report of the IPCC
[see page 723 in Hegerl et al. (2007)] refers to the “transient climate response”
(TCR) as the “global mean temperature change that is realized at the time of CO2
doubling . . . TCR is therefore indicative of the temperature trend associated with
external forcing, and can be constrained by an observable quantity, the observed
warming trend that is attributable to greenhouse gas (GHG) forcing.” In our model,
the transient response to a doubling of GHG is functionally related to the param-
eter β3, and the resulting estimates of TCR are based on the instrumental temper-
ature record since 1900 and proxy and forcing information over the past millen-
nium. We believe that our Bayesian approach to computing the transient response
to GHG forcing from both instrumental and proxy observations, without recourse
to global climate models, is new to the field.

Taking into account the transformations applied to the CO2 series, we define
TCR in terms of β3 as

TCR := β3log 2/σ(log C),

where σ(log C) is the standard deviation of the logarithm of the GHG series
C and is computed over the entire period 1000–1998. An important advantage
of Bayesian estimation is the possibility of obtaining a sample estimate of the
marginal posterior distribution of β3 given the data, from which we can compute a
nonparametric estimator of the probability density function for TCR that accounts
for the uncertainties in all other parameters in the model.

We present results of TCR estimates using the global land and marine HAD
data set, for the five scenarios that include the forcings: Scenarios A, B, C, D
and E (Figure 9). There is substantial variability between the TCR estimates from
the five scenarios. TCR estimates are the lowest and most sharply peaked for the
memory-free Scenario E, with a median around 2.39◦ and an approximate 95%
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FIG. 9. Estimates of probability density function for Transient Climate Response (TCR) in degree
Celsius for Scenarios A, B, C, D and E (HAD).

credible interval of [2.16,2.63]◦C. The TCR distributions become progressively
broader as more memory is included, in Scenarios D, then in B and C, and finally
in the fully long-memory Scenario A which features the broadest 95% credible in-
terval of [2.19,2.95]◦C. A quantitative explanation for this increasing uncertainty
behavior can be found by inspecting the formula for the covariance matrix 	β of
the posterior distribution of the vector β given T : from formula (A.4) in the On-
line Supplement A [see Barboza et al. (2014)], one sees that 	β is the inverse of a
matrix which is affine in 
−1

K , that is, affine in the inverse of the covariance matrix
for the noise model being used in each scenario. It is known [see, e.g., Palma and
Bondon (2003)7] that the magnitude (e.g., the operator norm) of 
K increases with
memory length; this and the formula for 	β can explain the increasing behavior
we observe in Figure 9.

On the other hand, the progression of posterior medians for the TCRs is not
monotone. Scenario D [AR(1) errors] features the largest median TCR value:
2.66◦C, followed by Scenario C with short memory in the proxy model: 2.62◦C.
The two scenarios with long memory in the proxy model, A and B, have lower
median TCR values, respectively, 2.56◦C and 2.47◦C, with Scenario E (no mem-
ory) having the lowest median of 2.39◦C, as reported above. The formula for the

7In this paper, the authors provide the estimate λn,n � n2H−1 for the top eigenvalue of the co-
variance matrix of a vector of n contiguous terms of a stationary sequence whose covariance matrix
ρ satisfies ρ(n) ∼ cn2H−2, which is the case for our fGn sequence. Thus, indeed, λn,n is roughly
increasing in H for all H ∈ (0.5,1). Palma and Bondon (2003) state this result in the case of the
ARFIMA process, in Example 2 on pages 99–100, but an inspection of their proof shows that the
result holds for all ρ satisfying the above asymptotics.
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posterior distribution of the vector β given T is again helpful: the posterior mean is
the product of the increasing 	β , as discussed above, and of a matrix �β which is
affine in 
−1

K , thus with presumably decreasing magnitude with respect to memory
length; the competition between these two effects could induce nonmonotonicity
with respect to memory length.

To arrive at a best estimate of TCR, we mix with equal weights the posterior
estimates from Scenarios A and B, yielding a median TCR of about 2.5◦C with
a combined 95% credible interval of about [2.16,2.92]◦C. Scenarios A and B
feature superior validation metrics as compared with Scenarios C and D, while
Scenario E presumably under-reports TCR uncertainty because it is based on a
model that lacks memory. We therefore focus on TCR estimates derived from an
equally weighted mixture of estimates from Scenarios A and B. It is not possible
to select between these two scenarios using model diagnostics and, as both include
memory, our estimates are conservative with respect to uncertainty.

It is instructive to compare our five TCR distributions reported here with the
consensus (expert assessment) recently released in the IPCC’s Fifth Assessment
Report [Bindoff et al. (2013), Collins et al. (2013)], where TRC is reported as
“likely” within the interval [1,2.5]◦C and “extremely unlikely” to exceed 3.0◦C.
Using the IPCC’s definitions/guidance on uncertainty language, these expert as-
sessments can be interpreted as meaning that the probability of the estimated TCR
from one of our scenarios falling within the [1,2.5]◦C interval should exceed 0.66,
while the probability that the estimated TCR exceeds 3.0◦C should not exceed
0.05. For all scenarios reported in Figure 9, the posterior probability that the TCR
exceeds 3.0◦C is in all cases lower than 0.05. This exceedance probability is es-
sentially zero for Scenario E, which features the narrowest TCR distribution: Sce-
nario E presumably underestimates uncertainty by using no memory for modeling
errors. As for falling in the interval [1,2.5]◦C with probability around 0.66, Sce-
nario E does satisfy this condition; Scenario B nearly does; for Scenario A the
probability is closer to 0.5; but Scenarios C and D, with their significantly higher
median values, fail the condition by some margin. Our best estimate, derived from
mixing Scenarios A and B, meets the TCR upper bound condition: the probability
that it exceeds 3.0◦C is about 0.011. It falls slightly short of meeting the confi-
dence interval condition: the probability that it falls within the interval [1,2.5]◦C
is about 0.47.

All of our reported TCRs are on the high side compared to the latest IPCC
consensus, and as compared with several specific recent studies which have arrived
at TCR estimates by combining information from models and the instrumental
temperature record. Gillett et al. (2012) produce a TCR estimate of 1.3–1.8◦C
using the global HAD data set and a single global climate model, but note that
this TCR estimate may be unrealistically narrow as it results from a single climate
model. A more recent study [Gillett et al. (2013)] that combines information from
an ensemble of models and the instrumental record results in a wider range of TCR
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estimates, 0.9–2.3◦C, featuring greater overlap with our results. Otto et al. (2013)
use global, decadal averages of the HAD data set over the 1970–2009 to arrive at
a data-based TCR estimate in the range of 0.7–2.5◦C, but caution against strong
conclusions based on a such a short time interval. A particularly high estimate of
TCR, of at least 2.5–3.6◦C, is reported by Tung, Zhou and Camp (2008), based on
an analysis of the 11-year solar cycle.

Hence, both the specific model-data fusion studies discussed in the previous
paragraph and in Bindoff et al. (2013), as well as the synthesis provided by the
IPCC Fifth Assessment Report, generally feature broader uncertainties and are
peaked at lower values as compared to our posterior estimates of TCR. Indeed,
only one of the estimated TCR distributions shown in Figure 10.20 of Bindoff
et al. (2013) is peaked at a value greater than 2◦C, while the high estimate of
Tung, Zhou and Camp (2008) is explained as resulting from solar forcing having
a different mechanistic effect on climate [Bindoff et al. (2013)]. Interestingly, the
single plotted TCR distribution peaked at greater than 2◦C is that of Harris et al.
(2013), which estimates TCR using a Bayesian approach that combine information
from GCMs and recently observed temperature changes. A possible cause for the
narrower uncertainties and higher TCR values estimated here is the more exten-
sive use of data, in terms of both variety (instrumental temperatures, proxies, and
estimates of CO2, volcanic and solar forcings) and duration (observations over the
last millennium).

6. Conclusions and discussion. We use a comprehensive multiproxy data set
to produce new reconstructions of NH temperature anomaly time series back to
1000 AD and systematically evaluate the effects of including or excluding ex-
ternal drivers of climate variability, and of assuming the error processes feature
long, short or no memory, by considering eight modeling scenarios. Hierarchi-
cal Bayesian models are used throughout as they provide a natural framework for
integrating the different information sources—proxy and instrumental tempera-
tures observations, and time series of solar, greenhouse gas and volcanic forcings.
Bayesian inference additionally permits for estimation of all unknown quantities,
including past temperatures, and facilitates uncertainty propagation.

While the possibility of long memory was suggested by exploratory data anal-
ysis, and the significance of long-memory parameters verified by Bayesian esti-
mation, model diagnostics indicated that short- and long-memory models yield
comparable results provided the climate forcings are incorporated into the recon-
structions. The inclusion of the external forcings is motivated from physical prin-
ciples and the conclusions of Li, Nychka and Ammann (2010), and additionally
allows for estimation of the transient climate response. While our TCR estimates
are near the upper bound of the expert-derived “extremely likely” interval pro-
vided in the IPCC Fifth Assessment Report [Bindoff et al. (2013)], they do not
violate this uncertainty consensus, and we note that our estimate is based on both
the instrumental and paleoclimate records, and does not rely on GCMs.
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If the forcings are excluded from the reconstruction, as is necessary for recon-
structions to be suitable for GCM assessment exercises, the long-memory pro-
cesses substantially improve the quality of the reconstructions. The scenario with
neither forcings nor memory is similar to the benchmark reconstruction of Mann
et al. (2008a), though we note that there remain differences in both method and
data usage. Our reconstructions generally indicate cooler temperatures than those
of Mann et al. (2008a), particularly before the year 1400.

The basic framework presented in this paper can be extended in several direc-
tions, and we anticipate that doing so will produce further insights into the climate
of the late Holocene. An obvious extension is to incorporate a spatial element, by
combining the model used here with the space–time model in Tingley and Huy-
bers (2010a). Doing so would require generalizing the reduced-proxy framework
and instead specifying a separate long-memory error model for each proxy time
series, or perhaps a common model for each proxy type [cf. Tingley and Huybers
(2010a)]. Such an implementation would pose technical challenges, as the estima-
tion of the long-memory parameters is the most numerically demanding compo-
nent of the analysis. Prior scientific understanding of the mechanisms by which
the proxies record variations in the climate may be helpful in selecting appropri-
ate temporal correlation models for the residuals, and can potentially be used to
simplify calculations. Such a computationally demanding generalization may be a
more scientifically defensible use of the proxies and may allow for further insights
into the proxy–climate relationship.
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SUPPLEMENTARY MATERIAL

Supplement to: “Reconstructing past temperatures from natural proxies
and estimated climate forcings using short- and long-memory models” (DOI:
10.1214/14-AOAS785SUPP; .pdf). We provide a background on long-memory
models, the multitaper estimator and scoring rules together with some calcula-
tions of our model’s posterior distributions. Finally, we include additional plots
and tables.
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