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Abstract. We study the perturbation of the two-dimensional stochastic Navier-Stokes equation by a

Hilbert-space-valued fractional Brownian noise. Each Hilbert component is a scalar fractional Brow-

nian noise in time, with a common Hurst parameter H and a speci�c intensity. Because the noise is
additive, simple Wiener-type integrals are su�cient for properly de�ning the problem. It is resolved by

separating it into a deterministic nonlinear PDE, and a linear stochastic PDE. Existence and unique-

ness of mild solutions are established under suitable conditions on the noise intensities when the Hurst
parameter H is in (1=8; 1), with di�erent proof techniques depending on whether or not H > 1=4.
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1. Introduction

The stochastic Navier-Stokes system has been an important and active area of research, and has received
considerable attention in recent years. The introduction of randomness in the Navier-Stokes equations
arises from a need to understand (i) the velocity uctuations observed in wind tunnels under identical
experimental conditions, and (ii) the onset of turbulence. Random body forces also arise as control
terms, or from random disturbances such as structural vibrations that act on the uid. It was originally
the idea of Kolmogorov (see Vishik and Fursikov [15]) to introduce white noise in the Navier-Stokes
system in order to obtain an invariant measure for the system.

Of late, stochasticians have embraced this white-noise forcing for the 2-D Navier-Stokes system (see [3]
and references therein), and in certain inertial scales, this is justi�able: in [5], Kuppiainen has shown
that it is reasonable to model the uncertainty in velocity pro�les by white noise. The independence of
increments inherent in white noise is key to all these studies: this has been con�rmed by the discovery
and analysis of the solution's Markov semigroup (again see references listed in [3]). The only published
article we have found in which there is a deviation from white noise for stochastic Navier-Stokes equa-
tions is [16]: a Levy process is used, but this is still con�ned to the realm of processes with independent
increments.

In this paper, we study a case where the time-scaling in the random forces is not related to the state-
space scaling, so that white noise is not appropriate. We consider the stochastic Navier-Stokes equation
(NSE) on a bounded open domain G in R2, with a in�nite-dimensional fractional Brownian noiseWH .
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Writing it in the abstract evolution setup, this is:

@u

@t
+ �Au+B(u) = �

dWH(t)

dt
(1.1)

with u(t; x) = 0 for all x 2 @G; with u(0; x) = u0(x) for all x 2 G, with A being the negative Laplace
operator, and B (u) = (u � r)u. In the next section we will de�ne suitable Hilbert spaces in which
to �nd mild-sense (evolution) solutions of this equation; we will consider incompressible ows with
no-slip condition at the boundary. The processWH is a space-time fractional Brownian motion (fBm)
in a suitable Hilbert space, implying that for �xed space parameter x, it is a scalar fBm with Hurst
parameter H 2 (0; 1); see Tindel, Tudor and Viens [14].

Fractional Brownian motion is not a semimartingale, nor a Markov process, and its increments have
medium- or long-range dependence. Therefore, the usual methods of solvability of stochastic Navier-
Stokes equations such as energy equality, local monotonicity, Markov semigroups, and martingale prob-
lems, do not apply to the present system. In addition to noise memory length, fBm is self-similar with
parameter H; when combining this with possible scaling in the space parameter, in�nite-dimensional
noises with speci�c multiscale properties can be achieved.

The theory of stochastic integration with respect to fBm is in sharp contrast to the Itô theory of
integrals; it has been developed by several authors (see Nualart [11, Chapter 5] and the references
therein). However, in�nite-dimensional equations with additive noise, such as the one we consider here,
can typically be expressed in a mild sense, making the required integration theory rather elementary,
as we will see in Section 3. In particular, we certainly bypass the need for the noise term to be a
semimartingale.

Stochastic partial di�erential equations of parabolic type perturbed by an fBm noise have been studied
in recent years by several authors (see Tindel, Tudor and Viens [14], Maslowski and Schmalfuss [7],
Nualart [9], [10], and the references therein). A major question solved in these works is to identify
sharp su�cient conditions on the noise coe�cient � that guarantee the existence and uniqueness of
solutions.

The Navier-Stokes system is quite distinct from all these works since it is a nonlinear system with an
unbounded, non-Lipschitz term B. Because of this, calculations in L2 (
), which are typical of the
above works (see [14]), are insu�cient in our case. As we will see, another major quantitative di�erence
between heat equations and our system is its linear second-order operator A, which, because it is
restricted to a divergence-free domain, has unbounded eigenfunctions.

In this article, we take advantage of the fact that the noise term in (1.1) is additive; using a �xed point
argument, the existence and uniqueness of a mild solution is established by combining a solution of the
non-linear equation with no noise, and a solution of the stochastic equation without the non-linearity
using properties of the semigroup of the so-called Stokes operator. The question of �nding conditions
on � guaranteeing existence and uniqueness is dealt with in the linear stochastic portion of the analysis.
These conditions are fully explicit, insofar as they depend in an elementary way on the eigenstructure
of the Stokes operator. Our main result (Theorem 6.1 on page 14) states that under these conditions
(which are di�erent depending on whether H 2 (1=8; 1=4) or H 2 [1=4; 1) ), almost-surely w.r.t. the
randomness ofWH , there is a unique solution in L4 ([0; T ]�G) to the stochastic Navier-Stokes system.

Our method leaves the question of existence of a solution open when H � 1=8. Neither are we able to
estimate any moment of the solution w.r.t. WH 's randomness. Regarding the �rst question, we suspect
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that there is no solution when H < 1=8, because the tools we use to solve the linear equation are sharp;
this could presumably be proved for some speci�c cases of domains G where the eigenstructure of the
Stokes operator is well-understood. For the section question, we conjecture that the solution is square-
integrable w.r.tWH , but no more (see for instance the results in the white-noise case [8]). This issue
appears to be non-trivial, and is beyond the scope of this concise article; we will investigate it, and its
connections to path regularity of the solution, in a separate paper.

The organization of the paper is as follows. In Section 2, the evolution equation setup of the Navier-
Stokes equations is presented. The development of integration with respect to fractional Brownian
motion is briey explained in Section 3. The L4 (
)-integrability of a convolution Wiener integral is
proved in Section 4 under suitable conditions on the noise coe�cient; here two separate calculations
must be performed, depending on whether H > 1=4 or H � 1=4. The solvability of the stochastic
Navier-Stokes system is proved in the �nal Section 5.

2. Navier-Stokes Equations

In this section, we express the NSE using appropriate function spaces. Let G be a bounded open
domain in R2 with a smooth boundary @G. For t 2 [0; T ], consider the stochastic NSE for a viscous
incompressible ow with no-slip condition at the boundary:

@u

@t
+ (u � r)u� ��u+rp = � dWH(t)

dt
(2.1)

and

r � u = 0 (2.2)

with initial and boundary data

u(t; x) = 0 8x 2 @G;8t � 0
u(0; x) = u0(x) 8 x 2 G:

In the above, p denotes the pressure �eld and is a scalar-valued function. The noise coe�cient � is
assumed to be deterministic and independent of t. This modeling assumption ensures that the driving
noise has the memory length and self-similarity properties of fBm, in the parameter t.

To study the stochastic Navier-Stokes system (2.1), (2.2), we �rst write these stochastic partial dif-
ferential equation in the abstract (variational, or evolution) form on suitable function spaces. For the
functional analytic set up and the mathematical details, one can consult Ladyzhenskaya [6] and Temam
[13]. Let V be the space of 2-dimensional vector functions u on G which are in�nitely di�erentiable with
compact support strictly contained in G, satisfying r � u = 0. For any �xed � 2 R, we can de�ne the
restriction of the standard Sobolev space W�;2 to those divergence-free 2-vectors by letting V� denote
the closure of V in W�;2.

We will use the shorthand notation H := V0 and V := V1. The notation L
2(G); W 1;2

0 (G), etc. denotes

2-vector functions on G with each coordinate in the scalar versions of L2(G),W 1;2
0 (G), etc. For instance,

we simply have

W 1;2
0 (G) = fu 2 L2(G;R2) : ru 2 L2(G;M2 (R)); uj@G = 0g:
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Denoting by n the outward normal on @G, the following characterizations of the spaces H and V are
well-known, and will be convenient:

H = fu 2 L2(G);r � u = 0; u � nj@G = 0g;
V = fu 2W 1;2

0 (G) : r � u = 0g:

Let V 0 be the dual of V . We will denote the norm in H by j � j, and the inner product in H by (�; �).
We have the dense, continuous and compact embedding (see [13]):

V �! H = H
0
�! V

0
:

Let D(A) = W 2;2(G) \ V . De�ne the linear operator A : D(A) ! H by Au = ��u. Since V =
D(A1=2), we can endow V with the norm kuk =

��A1=2u
��. The V -norm is equivalent to the W 1;2-norm

by the Poincar�e inequality. From now on, k�k will denote the V -norm. The pairing between V and
its dual V 0 is denoted by h�; �i. The operator A is known as the Stokes operator and is positive, self-
adjoint with compact resolvent. The eigenvalues of A will be denoted by 0 < �1 < �2 � � � � , and the
corresponding eigenfunctions by e1; e2; � � � . The eigenfunctions form a complete orthonormal system
for H. It is known (see [6]) that there are value c; c0 > 0 such that

lim
j!1

j=�j = c > 0 and kejkL4(G) � c�
1=4
j for all j:

De�ne b(�; �; �) : V � V � V 7! R by

b(u;v;w) =
2X

i;j=1

Z
G

ui (x)
@vj
@xi

(x)wj (x) dx:

This allows us to de�ne B : V � V 7! V 0 as the continuous bilinear operator such that

hB(u;v);wi = b(u;v;w) for all u;v;w 2 V:
Note that b(u;v;w) = �b(u;w;v). We will denote B(u;u) by B(u). This B(u) satis�es the following
estimate:

kB(u)kV 0 � 2 juj jjujj (2.3)

We assume that u0 is H-valued. Let � denote the Leray projection of L
2(G) into H. By applying this

projection to each term of the Navier-Stokes system, and invoking the Leray decomposition of L2(G)
into divergence free and irrotational components, we can write the system (2.1) and (2.2) as

du (t) + [�Au (t) +B(u (t))] dt = � dWH(t): (2.4)

This is to be understood in the integral form u (t) = u (0)��
R t
0
Au (s) ds�

R t
0
B(u (s))ds+

R t
0
�dWH(s).

To write this in its evolution form, we will need S (t) the semigroup generated by A. Assuming for
simplicity that � = 1, the stochastic NSE in H then writes as

u (t) = S (t)u (0)�
Z t

0

S (t� s)B(u (s))ds+
Z t

0

[S (t� s) �] dWH(s): (2.5)

This means we only need to explain how to de�ne integrals of the form
R t
0
� (s) dWH(s), where � is a

suitable non-random integrand. While the strategy to construct this type of integral is well-known, we
detail in the next section for completeness, along with some general information about fBm.
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3. Fractional Brownian Motion

Unfortunately, the letter H, used previously for Hilbert spaces, is also used for the so-called Hurst or
self-similarity parameter for fBm, which is a number in (0; 1). The context dictates when one or the
other is being used.

De�nition 3.1. A centered Gaussian process f�Ht g is called a fractional Brownian motion with Hurst
parameter H 2 (0; 1) if its covariance function is given by

E
��
�Ht �

H
s

��
= RH(t; s) :=

1

2

�
s2H + t2H � jt� sj2H

�
: (3.1)

It is well-known that f�Ht g is not a semimartingale. Indeed, for p > 0, consider the random variable
Yn;p =

1
n

Pn
j=1 j�j � �j�1jp: By self-similarity, this has the same distribution as npH�1

P
j�j=n �

�(j�1)=njp. The stationary sequence f�j � �j�1g is mixing, and hence ergodic. Thus, limn!1 Yn;p =

E(j�1jp) a.s. and in L1. Therefore, as n ! 1, the approximate pth variation Vn;p :=
Pn

j=1 j�j=n �
�(j�1)=njp converges to 0 if pH > 1 and 1 if pH < 1. In particular for p = 2, the quadratic variation,
which by de�nition is limn!1 Vn;2, is either null when H > 1=2 or in�nite when H < 1=2. This
non-semimartingale situation is closely related to the fact fBm is almost-surely H�older-continuous with
exponent � for any � < H but not for � = H, a fact which holds typically for semimartingales with
� = 1=2.

The fractional Brownian motion also exhibits medium or long range memory as described below. Let
H 6= 1=2. Let s; n > 0. Then, using the covariance formula (3.1), as n ! 1, the correlation between
two increments at a distance n is

�H(n) := E
��
�Hs+n+1 � �Hs+n

� �
�Hs+1 � �Hs

��
= H(2H � 1)n2H�2 (1 + o (1)) :

� If H > 1=2, then �H(n) > 0, and
P

n �H(n) = +1. This is known as aggregation behavior, or
the long memory property.

� If H < 1=2, then �H(n) < 0 and
P
j�H(n)j < 1. This behavior is sometimes known as

antipersistence. The fact that the correlations decay to 0 slower than quadratically with n, but
are still summable, can be described as a medium memory property.

Stochastic integration with respect to fBm is not straightforward as illustrated by the following example:

Example 3.1. If one tries to approximate
R 1
0
�Hs d�

H
s by the Itô-type Riemann sum

Pn
j=1 �

H
tj�1(�

H
tj �

�tj�1); using the covariance formula (3.1), it is straightforward to check that, for instance with tj = j=n,

the sum's expected value equals (1=2)(1 � n1�2H). This tends to �1 if H < 1=2 and to a non-zero
value of H > 1=2, unlike the Itô integral for standard BM, which has zero expectation. However, the
expected symmetric Riemann sums converges to 1=2 for fBm.

Gaussian integral with respect to fBm

Fortunately for our purposes, the distinctions between these various integrals will not be relevant,
because, as seen in (2.5), we only need to explain how to integrate deterministic functions w.r.t. an
fBm �H (albeit perhaps an infnite-dimensional one).
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Let S be the set of all step functions on [0; T ]. For a step function � =
Pn�1

0 aj1(tj ;tj+1] we poseR T
0
�(s)d�Hs :=

Pn�1
j=0 aj(�

H
tj+1��

H
tj ). LetH be the closure of S w.r.t. the inner product



1[0;t]; 1[0;s]

�
H :=

RH(t; s). Then 1[0;t] ! �Ht extends to an isometry between H and the L2(
)-closure of the linear span

of f�Ht : t 2 [0; T ]g. This extension is called the Wiener integral w.r.t. �, and can be denoted by

H� 7!
R T
0
� (s) d�H (s) 2 L2 (
). Note that the Wiener integral of any function � 2 H w.r.t. �H is

a centered Gaussian random variable, and that for �;  2 H we have that
R T
0
�d�H and

R T
0
 d�H are

jointly Gaussian with covariance equal to h�;  iH, thereby extending the Wiener integral for standard
Brownian motion.

There is a connection between the standard Wiener process and fractional Brownian motions. One
begins by noting that RH is, by de�nition, a non-negative de�nite kernel, which means that there exists

a kernel function KH such that RH(t; s) =
R t^s
0

KH(t; u)KH(s; u)du: In fact, its expression is explicit:

KH(t; s) = cH

�
t

s

�
(t� s)H�1=2 + s1=2�HF

�
t

s

�
where F (z) = cH(1=2�H)

R z�1
0

rH�3=2
�
1� (1 + r)H�1=2

�
dr: Using these facts, one proves that there

exists a standard Brownian motion W such that

�Ht =

Z t

0

KH(t; s)dWs:

For s < T , if we de�ne the adjoint operator K� on a possible subset of L2([0; T ]) by

(K�
T�)(s) = K(T; s)�(s) +

Z T

s

(�(r)� �(s))@K
@r
(r; s)dr;

a result of Alos, Mazet, Nualart [1] then guarantees that K�
T is an isometry between H and L2[0; T ],

and that the Wiener integral w.r.t �H can be represented in the following convenient way: for all � 2 H,
K�
T� 2 L2[0; T ] and Z T

0

�(s)d�H(s) =

Z T

0

(K�
T�)(s)dWs

where the last integral is a Wiener integral w.r.t. standard Brownian motion. It is easy to check that
K�
T [� 1[0;t]] = K�

t [�]1[0;t]. Therefore,Z t

0

�(s)d�H(s) =

Z t

0

(K�
t �)(s)dWs: (3.2)

Cylindrical fBm

As announced at the end of the Introduction, we now only need to de�ne integrals of the formR t
0
�(s)dWH(s) where WH is a cylindrical H-valued fBm. This WH is an in�nite-dimensional sto-

chastic process with a fBm behavior in time, taking values in the Hilbert space H, with equal weights
on all directions of H. Speci�cally let feng be the complete orthonormal basis in H, formed by the
eigenfunctions of the Stokes operator A on G. De�ne

WH(t) =
1X
j=1

en �
H
n (t);
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where
�
�Hn
	
n
is a family of IID scalar fBm's. Strictly speaking,WH (t) is not a member of L2 (
;H),

since its norm is in�nite, but it will be easy to guarantee that an integral w.r.t. WH will be.

Indeed, let f� (s) : s 2 [0; T ]g be a deterministic measurable function such that for every s, � (s) 2 H.
So we can write � (s) en =

P
m (� (s) en; em) em, and this is a deterministic measurable function on

[0; T ]. We may now de�neZ t

0

� (s) dWH(s) :=
1X
n=1

Z t

0

� (s) en d�
H
n (s)

=
1X
n=1

Z t

0

(K�(� (�) en)) (s) dWn(s)

=

1X
n=1

1X
j=1

ej

Z t

0

(K� ((� (�) en; ej))) (s) dWn(s)

where the second line follows from the convenient representation (3.2), in which Wn is the standard
Brownian motion used to represent �Hn .

Since all the terms in the last expression above are independent centered Gaussian r.v.'s, we can
immediately give a necessary and su�cient condition for the above integral to exist: it is a Gaussian
random variable in L2 (
) if and only if

E

"Z t

0

� (s) dWH(s)

2
#
= E

24 1X
j=1

�����
1X
n=1

Z t

0

(K� ((� (�) en; ej))) (s) dWn(s)

�����
2
35

=
1X
j=1

1X
n=1

E

"����Z t

0

(K� ((� (�) en; ej))) (s) dWn(s)

����2
#

=
1X
j=1

1X
n=1

Z t

0

j(K� ((� (�) en; ej))) (s) j2 ds <1: (3.3)

4. Integrability of the convolution integral when H > 1=4

In equation (2.5), we announced that we only need to be able to de�ne the convolution integral z (t) =R t
0
[S (t� s) �] dWH(s) where S (t) is the semigroup of the Stokes operator A, and � is a linear function

from H to H. In other words, we apply the result of the end of the previous section with the function
� (s) = S(t� s)�. Using the eigenstructure of A we thus have

z(t) :=

Z t

0

S(t� s)�dWH
s =

1X
n=1

Z t

0

S(t� s)�end�Hn (s)

=

Z t

0

1X
n=1

1X
j=1

(S(t� s)�en; ej)d�Hn (s) � ej

=

Z t

0

1X
n=1

1X
j=1

e�(t�s)�j (�en; ej)d�
H
n (s) � ej (4.1)



8 L. FANG, P. SUNDAR, AND F. VIENS

It is elementary to check that if Az is de�ned as an H-valued function on [0; T ], then z is the solution
of

u (t)� u (0)�
Z t

0

Au (s) ds = �WH (t) (4.2)

with z(0) = 0. This justi�es our claim that z in (4.1) is the mild- (evolution-) sense solution to the
stochastic evolution equation (4.2), modulo �niteness of the expression in (3.3), even ifAz is not de�ned.

In order to see under what conditions on � we may have

z 2 L4(
� [0; T ]�G);
we may attempt to use the results from [14] in which necessary and su�cient conditions for z(t; x) to
be in L2(
) for �xed t; x, are given. Since the space in which we seek to �nd z is smaller than the
space of pointwise existence used in [14], we cannot apply the results therein directly, but several of the
calculations used in the their proofs can still be used. In fact, we state the following.

Let H 2 (0; 1). Recall H the canonical Hilbert space of fBm �H , such that for any g; h 2 H,
E
��R1

0
h(s)d�H(s)

� �R1
0
g(s)d�H(s)

��
= hg; hiH.

Lemma 4.1. For any �; t � 0, there is a constant ct;H such that

E

"�Z t

0

e��(t�s)d�H(s)

�2#
= j1[0;t]e��(t��)j2H � ct;H�

�2H :

In fact, there exists a constant C(H) depending only on H such that ct;H is given as follows:�
ct;H � C(H) for all H > 1=2;
ct;H � C(H)(1 + t2H�1) for all H < 1=2:

:

Let us now calculate the norm of z in L4(
� [0; T ]�G). With the shorthand notation

pts(n; j) := 1[0;t](s)e
�(t�s)�j (�en; ej)ej ;

using standard Gaussian calculations, we get

E[z4(t; x)]

=
X
n

E

"�Z t

0

[
P

jp
t
s(n; j)(x)]d�

H
n (s)

�4#

+ 3
X
n 6=m

E

"�Z t

0

[
P

jp
t
s(n; j)(x)]d�

H
n (s)

�2�Z t

0

[
P

jp
t
s(m; j)(x)]d�

H
n (s)

�2#

= 3
X
n

 
E

"�Z t

0

[
P

jp
t
s(n; j)(x)]d�

H
n (s)

�2#!2

+ 3
X
n 6=m

E

"�Z t

0

[
P

jp
t
s(n; j)(x)]d�

H
n (s)

�2#
E

"�Z t

0

[
P

jp
t
s(m; j)(x)]d�

H
n (s)

�2#
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= 3
X
n=m

E

"�Z t

0

[
P

jp
t
s(n; j)(x)]d�

H
n (s)

�2#
E

"�Z t

0

[
P

jp
t
s(m; j)(x)]d�

H
n (s)

�2#
:

With the inner product notation in H, this now reads as

E[z4(t; x)] = 3
X
n;m

���Pjp
t
�(n; j)(x)

���2
H

���Pjp
t
�(m; j)(x)

���2
H
= 3

 X
n

���Pjp
t
�(n; j)(x)

���2
H

!2
:

Now let us reintroduce the terms in the notation pt�(n; j). As a shorthand, we will omit the factor 1[0;t]
in pt(n; j). We thus get

kzk4L4(
�[0;T ]�G) = 3
Z T

0

Z
G

dtdx

 X
n

P
j;khe

�(t��)�j ; e�(t��)�kiH(�en; ej)(�en; ek)ej(x)ek(x)
!2

:

At this point, one notes that to do this computation exactly, it would be necessary to evaluate an inner
product in H of two exponentials relative to two di�erent modes �j and �k. There is a wide class of
examples, that of noise spatial covariances which are co-diagonalizable with the Stokes operator, where
this is unnecessary, since the sum over j; k reduces to a single term where j = k = n. Therefore, there
is not much loss of power in invoking the Cauchy-Schwarz inequality to write:

kzk4L4(
�[0;T ]�G) � 3
Z T

0

Z
G

dtdx(
X
n

P
j;kje

�(t��)�j jHje�(t��)�k jH(�en; ej)(�en; ek)ej(x)ek(x))2:

Now, in order to reunite the space base functions ej etc... with their space integral, in principle it is
necessary to expand the above square, resulting in terms of the form

R
G
ei(x)ej(x)ek(x)e`(x)dx. Unfor-

tunately, nothing is known about the values of these integrals for the Stokes operator's eigenfunctions
ei. The best we can do is to say that this integral is bounded above by the product of keikL4(G) with
the other three. Then it is known that

kejkL4(G) � c�
1=4
j :

Together with Lemma 4.1, this yields

kzk4L4(
�[0;T ]�G)

� 3c4
Z T

0

(ct;H)
2dt
X
n;m

P
i;j;k;`(�i�j�k�`)

�H+1=4(�en; ej)(�en; ek)(�em; ei)(�en; e`)

= 3c4
Z T

0

(ct;H)
2dt(

X
n

(
P

j�
�H+1=4
j (�en; ej))

2)2

where the constant (ct;H)
2 is either bounded (H > 1=2) or is bounded away from t = 0 and behaves like

t4H�2 near t = 0. Since the time integral then converges for all H > 1=4, we have proved the following.

Theorem 4.2. Assume H > 1=4. The evolution solution z of the stochastic parabolic equation (4.2)
on [0; T ]�G with the Stokes operator A and driven by the additive noise �dWH , which is given by the
formula (4.1), satis�es kzkL4(
�[0;T ]�G) <1 as soon asX

n

(
P

j�
�H+1=4
j (�en; ej))

2 <1; (4.3)

where (�j ; ej)j are the eigen-elements of A.
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Remark 4.1. Since �j is asymptotically linear, Condition (4.3) is equivalent toX
n

(
P

jj
�H+1=4(�en; ej))

2 <1;

We state the following corollary, which is speci�c to the co-diagonalizable case.

Corollary 4.3. Under the assumptions of Theorem 4.2, if in addition � is co-diagonalizable with A in
the sense that (�en; ej) = 0 if j 6= n, then, denoting qn = (�en; en) the nth eigenvalue of �, Condition
(4.3) in Theorem 4.2 becomes X

n

��2H+1=2n (qn)
2 <1;

or equivalently X
n

n�2H+1=2(qn)
2 <1;

This corollary is to be compared to the necessary and su�cient condition for pointwise existence of a
solution to the stochastic heat equation driven by �dWH . We leave it to the reader to check that the
method of Section 3.1 in [14] can be used to prove that this solution exists if and only if

P
n n

�2Hqn <1.
One can check that this is a weaker condition than (4.3) when H > 1=4. This is accounted for by the
fact that the eigenfunctions of the Laplacian are bounded, unlike those of the Stokes operator A which
grow like the 4th root of the eigenvalues. However, we do not claim that our result for A is optimal;
indeed, this optimality will not be known until one discovers the asymptotic behavior of the inner
products of the eigenfunctions of A.

5. Integrability when 1=8 < H � 1=4

We consider the integrability of the convolution integral z in the case H 2 ( 18 ;
1
4 ). We �rst recall the

following basic inequality.

Minkowski's Inequality for Integrals: Let (X;M; �) and (Y;N ; �) be �-�nite measure spaces,
and let f be anM
N -measurable function on X � Y . If f � 0 and 1 � p <1, then�Z �Z

f(x; y)d�(y)

�p
d�(x)

�1=p
�
Z �Z

f(x; y)pd�(x)

�1=p
d�(y):

We may now state and prove our existence theorem via the following calculatory lemma, proved in the
Appendix.

Lemma 5.1. For 0 < H < 1
2 ,
R t
0
e�2x

�R x
0
yH�

3
2 (ey � 1)dy

�2
dx is bounded for all t � 0.

Theorem 5.2. Let z be de�ned in (4.1). Assume H 2 (1=8; 1=4]. The evolution solution z, given by
(4.1), of the stochastic parabolic equation (4.2), satis�es kzkL4(
�[0;T ]�G) <1 as soon as

X
n

 X
i

j(�en; ei)j�1=4i

!2
<1:
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Proof.

Step 0: setup.

E

Z T

0

Z
G

z4(t; x)dxdt =E

Z T

0

Z
G

�Z t

0

e�(t�s)A�dWH(s)

�4
dxdt

=E

Z T

0

Z
G

 X
n

Z t

0

e�(t�s)A�end�
H
n (s)

!4
dxdt

=E

Z T

0

Z
G

 X
n

Z t

0

ats(n) + b
t
s(n)dWn(s)

!4
dxdt;

where
ats(n) = K(t; s)e�(t�s)A�en

and

bts(n) =

Z t

s

(e�(t�r)A � e�(t�s)A)�en
@K(r; s)

@r
dr:

Then, standard properties of Gaussian r.v.'s imply

E

Z T

0

Z
G

z4(t; x)dxdt

=E

Z T

0

Z
G

"X
n

�Z t

0

ats(n)dWn(s)

�4
+
X
n

�Z t

0

bts(n)dWn(s)

�4

+3
X
n 6=m

�Z t

0

ats(n)dWn(s)

�2�Z t

0

bts(m)dWm(s)

�235 dxdt
=:G1 +G2 +G3: (5.1)

Step 1: the term G1.

The �rst term G1 of (5.1) is

G1 =

Z T

0

Z
G

X
n

E(

Z t

0

K(t; s)e�(t�s)A�endWn(s))
4dxdt

=

Z T

0

Z
G

X
n

3

 
E

"�Z t

0

K(t; s)e�(t�s)A�endWn(s)

�2#!2
dxdt:

Since K(t; s) � c(H)(t� s)H� 1
2 sH�

1
2 (given in Decreusefond and Ustunel [4]), we get

E

"�Z t

0

K(t; s)e�(t�s)A�endWn(s)

�2#

�
Z t

0

0@X
j

(�en; ej)ej(x)(t� s)H�1=2sH�1=2e�(t�s)�j
1A2

ds
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�
Z t

0

X
i;j

j(�en; ei)j : j(�en; ej)j : jei(x)j : jej(x)j (t� s)2H�1s2H�1e�(t�s)(�i+�j)ds

�
X
i;j

j(�en; ei)j : j(�en; ej)j : jei(x)j : jej(x)j �
�Z t

0

(t� s)2H�1s2H�1e�2(t�s)�ids
�1=2

�
�Z t

0

(t� s)2H�1s2H�1e�2(t�s)�jds
�1=2

:

We calculate the last integrals above, via the next lemma, with proof in the Appendix.

Lemma 5.3.
R t
0
(t� s)2H�1s2H�1e�2(t�s)�jds � 2�4H

H (1 + e��jt)t4H�1:

Let C be a generic constant which may depend on H and change from line to line. By the above
calculation and lemma,

E

"�Z t

0

K(t; s)e�(t�s)A�endWn(s)

�2#
�C

X
i;j

j(�en; ei)jj(�en; ej)jjei(x)jjej(x)jt4H�1:

Therefore,

G1 �C
Z T

0

Z
G

X
n

0@X
i;j

j(�en; ei)jj(�en; ej)jjei(x)jjej(x)jt4H�1
1A2

dxdt

�C
Z
G

X
n

0@X
i;j

j(�en; ei)jj(�en; ej)jjei(x)jjej(x)j

1A2

T 8H�1

8H � 1dx

=C
X
n

X
i1;i2;j1;j2

�����
2Y

k=1

(�en; eik)

����� j(�en; ejk)jjeik(x)jjejk(x)jdx
�C

X
n

 X
i

j(�en; ei)j�1=4i

!4
<1

by the assumption on �. So G1 is �nite under the Theorem's assumptions, and in fact the assumptions
are stronger than is needed here. However, the full strength of the assumption will be needed to control
G2.

Step 2: the term G2.

Let

bts(n; j) :=

Z t

s

(e�(t�r)�j � e�(t�s)�j )(�en; ej)ej
@K(r; s)

@r
dr;
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then the second term is

G2 =3

Z T

0

Z
G

X
n

0B@E
264
0@X

j

Z t

0

bts(n; j)dWn(s)

1A2
375
1CA
2

dxdt

=3

Z T

0

Z
G

X
n

I2dxdt

where I := E

��P
j

R t
0
bts(n; j)dWn(s)

�2�
. Since j@K(r;s)@r j � C(H)(r � s)H�

3
2 (again see [4]), we get

that

I =E
X
i;j

Z t

0

bts(n; i)b
t
s(n; j)ds

�C
X
i;j

Z t

0

�Z t

s

(e�(t�r1)�i � e�(t�s)�i)j(�en; ei)jjei(x)j(r � s)H�
3
2 dr1

�
Z t

s

(e�(t�r2)�j � e�(t�s)�j )j(�en; ej)jjej(x)j(r � s)H�
3
2 dr2

�
ds

=C
X
i;j

j(�en; ei)jjei(x)jj(�en; ej)jjej(x)j
Z t

0

ds

Z t

s

dr1

Z t

s

dr2(r1 � s)H�3=2(r2 � s)H�3=2

� (e�(t�r1)�i � e�(t�s)�i)(e�(t�r2)�j � e�(t�s)�j )
Using the change of variables u = t� s; v1 = t� r1; v2 = t� r2, the above expression becomes:

C
X
i;j

j(�en; ei)jjei(x)jj(�en; ej)jjej(x)j
Z t

0

du

Z u

0

dv1

Z u

0

dv2(u� v1)H�3=2(u� v2)H�3=2

� (e�v1�i � e�u�i)(e�v2�j � e�u�j )

=C
X
i;j

j(�en; ei)jjei(x)jj(�en; ej)jjej(x)j
Z t

0

du (

Z u

0

(u� v1)H�3=2(e�v1�i � e�u�i)dv1)

� (
Z u

0

(u� v2)H�3=2(e�v2�j � e�u�j )dv2) (5.2)

Setting r = u� v1, we can writeZ u

0

(u� v1)H�3=2(e�v1�i � e�u�i)dv1 = e��i u
Z u

0

rH�3=2(e�ir � 1)dr:

Using this twice, we get that the expression on the right side of (5.2) is equal to

C
X
i;j

j(�en; ei)jjei(x)jj(�en; ej)jjej(x)j
Z t

0

e�(�i+�j)u

� (
Z u

0

r
H�3=2
1 (e�ir1 � 1)dr1)(

Z u

0

r
H�3=2
2 (e�jr2 � 1)dr2)du

�KH

X
i;j

j(�en; ei)jjei(x)jj(�en; ej)jjej(x)j��Hi ��Hj
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where we have used Lemma 2 in Tindel, Tudor and Viens [14].

Thus the square of the expression in (5.2) can be bounded above by

K2
H

X
i1;i2;j1;j2

2Y
k=1

j(�en; eik)jjeik(x)jj(�en; ejk)jjejk(x)j��Hik ��Hjk :

Therefore,

G2 = 3

Z T

0

Z
G

X
n

I2dxdt � 3
X
n

 X
i

j(�en; ei)j�1=4�Hi

!4
which is �nite by the hypothesis on �.

Step 3: the term G3.

Finally, the third term G3 in (5.1) is

G3 =3E

Z T

0

Z
G

X
m;n;m 6=n

�Z t

0

ats(n)dWn(s)

�2�Z t

0

bts(m)dWm(s)

�2
dxdt

�C(H)
Z
T

Z
G

X
m;n

E

"�Z t

0

ats(n)dWn(s)

�2#
�E
"�Z t

0

bts(m)dWm(s)

�2#
dxdt

The basic inequality 2ab � a2 + b2 means this is �nite by the calculations in the previous two steps,
concluding the proof of the theorem. �

6. Existence and uniqueness of solutions

The existence and uniqueness of mild solutions to Navier-Stokes evolution systems have been studied by
a number of authors (cf. Da Prato and Zabczyk [2], Sohr [12], Temam [13]). The method of solvability
in the stochastic case, consists in breaking up the system (2.5) into a linear stochastic system and a
nonlinear partial di�erential equation. Since our system is perturbed by an additive fractional noise
term, this approach works in a straightforward way. The theorem below is this article's main result. Its
proof is given in full detail, and divided into several steps, for the reader's convenience. Note that this
theorem falls short of proving that the solution exists in L4 ([0; T ]�G� 
), showing only that almost
surely, it belongs to the space L4 ([0; T ]�G). We will investigate the stronger, former statement in a
separate publication, conjecturing here that the solution is only square-integrable with respect to 
.

Theorem 6.1. Let fen : n 2 Ng be an orthonormal basis in the Hilbert space H of eigenfunctions of
the Stokes operator A. Under the following two conditions, there exists a unique mild solution of the
stochastic Navier-Stokes system, i.e. P-almost surely, there is a unique solution in L4 ([0; T ]�G) to
equation (2.5) driven by the in�nite-dimensional fractional Brownian noise �WH :

1. H > 1=4, and
P

n

�P
j j

1=4�H j(�en; ej)j
�2
<1, or

2. 1=8 < H � 1=4, and
P

n

�P
j j

1=4 j(�en; ej)j
�2
<1.
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Proof. Step 1. Consider the system

du+ [�Au+B(u)] dt = �dWH
t ;

as in (2.1). In order to �nd the solution u, we will use the previous theorems, which tell us how to �nd
the unique evolution (mild) solution z(t) of

dz (t) +Azdt = �dWH
t ;

with z(0) = 0. If u existed, say in a strong sense, we would denote v := u� z, and notice that
@v

@t
=
@u

@t
� @z

@t

= (�Au�B(u) + �dW
H

dt
)� (�Az+�dW

H

dt
)

= �A(u� z)�B(u) = �Av �B(v + z)

Therefore, with z given, solving for u in (2.5) would be equivalent to solving for v in

@v

@t
+Av +B(v + z) = 0 (6.1)

with initial data v(0) = u0 2 H.

More precisely, Theorems 4.2 and 5.2 guarantee the existence (and uniqueness) in L4(
� [0; T ]�G) of
z as a mild solution of (4.2) given by formula (4.1); therefore the evolution equation (2.5) has a unique
solution mild in that same space (starting from u0) if the evolution (mild) version of equation (6.1)
admits a solution in L4(
� [0; T ]�G) as well. This evolution solution v, when it exists in that space,
satis�es

v(t) = S(t)u0 �
Z t

0

S(t� s)B(v(s) + z(s))ds (6.2)

where S(t) = e�tA is the semigroup generated by the operator A. Let us introduce notation meant to
signify that equation (6.2) is a �xed point problem:

� (w) := S(t)u0 �
Z t

0

S(t� s)B(w(s) + z(s))ds:

Studying the properties of this operator � is the main subject of this proof.

Step 2 : Let w 2 L4([0; T ] � G) \ V . We will show that B(w + z) 2 L2(0; T ;V 0). Indeed, for any
� 2 L2(0; T ;V ), and suppressing time in the argument of functions, and denoting w + z as y,

jhB(y); �ij = jb(y; �; y)j

=

�����
2X
i=1

Z
G

yi
d�j
dxi

yjdx

�����
� jyjL4(G)jr�jL2(G)jyjL4(G): (6.3)

By the Poincar�e inequality which applies by the boundedness of the domain G and the zero boundary
condition, we get the equivalence of jr�jL2(G) and k�kV . Hence,Z T

0

jhB(y); �ij2ds �
Z T

0

jyj2L4(G)jr�jL2(G)ds: (6.4)
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By the Schwarz inequality, the assertion of this step is obtained.

Step 3 : We show here that �(w) 2 L1(0; T ;H) \ L2(0; T ;V ) =: Y , and in fact,
jj�(w)jjY � jjB(w + z)jjL2(0;T ;V 0):

Indeed, by the Sobolev embedding theorem H1=2 = W 1=2;2(G) ,! L4(G), there is a non-random
constant C depending only on the bounded domain G such that kukL4(G) � CkukW 1=2;2(G). Using this

in (6.3),

jhB(y); �ij � Cjyj2
W

1
2
;2
k�kV

CjyjH kykV k�kV
by the interpolation theorem. Thus kB(y)kV 0 � CjyjH kykV .

Now de�ne h(t) = �
R t
0
S(t � s)B(y(s))ds, and y 2 L4([0; T ] � G). Then h(0) = 0, and by the energy

equality,

jh(t)j2L2 =� 2
Z t

0

jrhj2L2ds� 2
Z t

0

hB(y(s)); h(s)iV 0�V ds

�� 2
Z t

0

jhj2V ds+ 2
Z t

0

jB(y(s))jV 0 � jh(s)jV ds

�� 2
Z t

0

jhj2V ds+
Z t

0

jB(y(s))j2V 0ds+

Z t

0

jh(s)j2V ds:

So

jh (t) j2H +
Z t

0

jh(s)j2V ds �
Z t

0

jB(y)j2V 0ds;

and thus

sup
0�t�T

jh (t) j2H +
Z t

0

jh(s)j2V ds � 2
Z t

0

jB(y)j2V 0ds;

which is bounded. Therefore, h(t) 2 L1(0; T ;H) \ L2(0; T ;V ). Therefore, �(w) 2 L1(0; T ;H) \
L2(0; T ;V ).

Step 4 : Let L4 denote L4([0; T ]�G) = L4(0; T ;L4(G)). We now show that for any w1;w2 2 L4([0; T ]�
G) \ V , we have

j�(w1)� �(w2)jL4 � CC 0 jw1 �w2jL4 (jw1 + zjL4 + jw2 + zjL4):
Here C is the universal (G-dependent) constant from the Sobolev embedding theorem used in Step 3,
and C 0 is another constant which depends only on G.

For any u1; u2 2 L4, and � 2 V , we have
jhB(u1)�B(u2);  ij
= jb(u1;u1;  )� b(u2;u2;  )j
� jb(u1 � u2;u1;  )j+ jb(u2;u1 � u2;  )j
= jb(u1 � u2;  ;u1)j+ jb(u2;  ;u1 � u2)j
� ju1 � u2jL4 jr jH ju1jL4 + ju2jL4 jr jH ju1 � u2jL4
= ju1 � u2jL4 j jV (ju1jL4 + ju2jL4);



STOCHASTIC NAVIER-STOKES EQUATIONS WITH FBM NOISE 17

which implies, by Jensen's inequality for some C 0 depending only on G,

jB(u1)�B(u2)jL2(0;T ;V 0) � C 0ju1 � u2jL4(ju1jL4 + ju2jL4)
and thus

jB(�(w1) + z)�B(�(w2) + z)jL2(0;T ;V 0) � C 0j�(w1)� �(w2)jL4(j�(w1) + zjL4 + j�(w2) + zjL4):

If we let yj = �(wj) + z for j = 1; 2, then, using again the Sobolev embedding of L
4(G) in W 1=2;2;

jh(y1)� h(y2)jL4(G) � Cjh(y1)� h(y2)j
W

1
2
;2 � Cjh(y1)� h(y2)j

1
2

H � jh(y1)� h(y2)j
1
2

V

Note that h(y1)� h(y2) = �(w1)� �(w2) so that by the above estimate
j�(w1)� �(w2)jL4 = jh(y1)� h(y2)jL4

=(

Z T

0

jh(y1)� h(y2)j4L4dt)
1
4

�C(jh(y1)� h(y2)j2H �
Z T

0

jh(y1)� h(y2)j2V dt)
1
4

�C( sup
0�t�T

jh(y1)� h(y2)j2H �
Z T

0

jh(y1)� h(y2)j2V dt)
1
4

�C[(
Z T

0

jB(y1)�B(y2)j2V 0dt)2]
1
4

�CC 0jy1 � y2jL4(jy1jL4 + jy2jL4)
=CC 0jw1 �w2jL4(jw1 + zjL4 + jw2 + zjL4):

Step 5 :

The previous step proves that the operator

� :

�
L4 7! L4

w 7! � (w) := S(�)u0 �
R �
0
S(� � s)B(w(s) + z(s))ds

is well-de�ned as mapping L4 to itself. As mentioned in Step 1, from Theorems 4.2 and 5.2, z is in
L4(
 � [0; T ] � G), which implies that z 2 L4 almost surely. Fix any ! in this almost sure set. Note
that

� (0) = S(�)u0 �
Z �

0

S(� � s)B(z(s))ds

is then a �xed function on [0; T ]�G, and a member of L4. Let � = 1
4CC0 . Replacing T in the de�nition

of L4 by a smaller value, one can choose a time T1 > 0 small enough, which may depend on !, so that

j� (0) jL4 �
�

2
and jzjL4 �

�

4
:

De�ne L := fw 2 L4 : jw + zjL4 � �g. Then 0 2 L and � (0) 2 L. In fact we have j�(0)j � �
2 .

Therefore, denoting by �j the jth iteration of the map �, we get by the result of the previous step,

j�2(0)jL4 � j�(�(0))� �(0)jL4 +
�

2

� CC 0j�(0)jL4 (j�(0) + zjL4 + jzjL4) +
�

2
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� CC 0j�(0)jL4� +
�

2

� �

8
+
�

2
:

Thus j�2(0) + zj � �(1=2 + 1=4 + 1=8) which means �2(0) 2 L.

More generally we can prove by induction that j�n(0)j < 3
4� for all n � 1. Indeed, this is true for

n = 1; 2, and repeating the above calculation we get

j�n(0)jL4 �
���(�n�1(0))� �(0)��

L4
+ j�(0)jL4 � C

3

4
�(1 +

1

4
)� +

�

2

= C
3

4
�(1 +

1

4
)
1

4C
+
�

2
<
�

4
+
�

2
=
3

4
�:

This proves that j�n(0) + zj < � for all n � 1. Thus, f�n(0)g is a sequence that remains within the
closed set L. With our choice of �, � is a contraction in L: indeed, the result of Step 4 implies, for
points w1 and w2 restricted to L, that

j�(w1)� �(w2)jL4 � CC 0jw1 �w2jL4(jw1 + zjL4 + jw2 + zjL4)

� jw1 �w2jL4CC 0 � 2 � � =
1

2
jw1 �w2jL4 :

Thus f�n(0) : n � 1g converges to a function v 2 L, which is the unique �xed point of the map � in L;
this is the unique solution in L of equation (6.2) restricted to [0; T1], i.e. the unique evolution solution
in L of the stochastic Navier Stokes equation (2.1) on [0; T1].

Step 6 :

If there existed another distinct solution ~v to equation (6.2) on [0; T1], it would have to not be in L.
Then by replacing T1 by a su�ciently smaller time T0 < T1, the other solution ~v can be made to be
in L also. Therefore, v and ~v coincide on [0; T0]. In other words, for almost every �xed !, we have
existence and uniqueness of the solution to equation (6.2) up to some time T0 which may depend on !.

Now considering v (T0) instead of u0 as a new initial condition of the evolution equation (6.2), one
can �nd T2 > T0 such that the time interval can be extended to [0; T2] on which the unique solution
exists. Continuing this way, suppose R is the maximum time up to which the unique solution exists,
and suppose R < T , then there exists R1 > R such that the unique solution exists on [0; R1]. Therefore,
R = T . Therefore, for almost every !, the unique solution exists on the entire time interval [0; T ], and
belongs to L4. �

7. Appendix

Proof of Lemma 4.1:

Case 1: H > 1=2. Using the notation in [14] (see equation (23) therein), we have for any � � 0,

A(�; t) := j1[0;t]e��(t��)j2H =
Z �t

0

v2H�2e�v[1� e�2(t��v)]dv

�
Z 1

0

v2H�2e�vdv =: C0(H):
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Case 2: H < 1=2. Using the notation in [14] (see the calculation immediately preceding equation (26)
therein), we have for all � � 0,

A(�; t) := j1[0;t]e��(t��)j2H � B1(�; t) +B2(�; t)

where

B1(�; t) := ��2Hc(H)

Z 2�t

0

e�vv2H�1(t� v=(2�))2H�1dv

with the well-known constant c(H) de�ned for instance in [4], Theorem 3.2, and

B2(�; t) := C(H)

Z t

0

e�2�s(

Z s

0

(e�r � 1)rH�3=2dr)2ds

where C(H) := c(H)(H � 1=2).

By a linear change of variables, and then using Lemma 2 in [14] with the constant KA de�ned therein,
we get

B2(�; t) = C(H)t2H
Z 1

0

e�2�ts(

Z s

0

(e�tr � 1)rH�3=2)

� C(H)KH�1=2 t
2H(�t)�2H

=: C2(H)�
�2H :

Now for the term B1, splitting the integral up at the midpoint �t, and changing the variable for the
second half of the interval, we can write,

B1(t; �) � c(H)��2H [(t=2)2H�1
Z 1

0

e�vv2H�1dv + (�t)2H�1
Z �t

0

e�(2�t�v)(v=(2�))2H�1dv]

� c(H)��2H(t=2)2H�1[

Z 1

0

e�vv2H�1dv + e��t(�t)2H=(2H)]:

The function x 7! e�xx2H attains its maximum value of e�2H(2H)2H on R+ at the point x = 2H.
Therefore we can write

B1(t; �) � ��2Hc(H)(t=2)2H�1d(H)

where d(H) :=
R1
0
e�vv2H�1dv + e�2H(2H)2H :

We now have for all �; t � 0, when H < 1=2, with c(H), d(H), and C2(H) de�ned above,

A(�; t) � ��2H(21�2Hc(H)d(H)t2H�1 + C2(H)):

Gathering our results, the lemma now follows, with C(H) = max(C0(H); 2
1�2Hc(H)d(H); C2(H)). �

Proof of Lemma 5.1.
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De�ne two measures on [0;1), d�(y) = yH�
3
2 (ey � 1)dy and d�(x) = e�2xdx, then both � and � are

�-�nite. To see this, it su�ces to show that for �xed n = 0; 1; 2; � � � , �([n; n+ 1)) and �([n; n+ 1)) are
�nite. Clearly, �([n; n+ 1)) <1. For �,

�([0; 1)) =

Z 1

0

yH�
3
2 (ey � 1)dy

= lim
�!0

Z 1

�

yH�
3
2 (ey � 1)dy

=
e� 1
H � 1

2

� lim
�!0

Z 1

�

yH�
1
2 ey

H � 1
2

dy by integration by parts

=
e� 1
H � 1

2

� 1

H � 1
2

(
e

H + 1
2

� lim
�!0

Z 1

�

yH+
1
2 ey

H + 1
2

dy)

= � e� 1
1
2 �H

+
e

( 12 �H)(
1
2 +H)

� 1
1
2 �H

lim
�!0

Z 1

�

yH+
1
2 ey

H + 1
2

dy)

� � e� 1
1
2 �H

+
e

( 12 �H)(
1
2 +H)

=
e

1
2 +H

+
1

1
2 �H

<1

For n � 1,

�([n; n+ 1)) =

Z n+1

n

yH�
3
2 (ey � 1)dy

�
Z n+1

n

nH�
3
2 (ey � 1)dy

= nH�
3
2 (en+1 � en � 1) <1

Therefore, by the Minkowski's inequality for integrals,

[

Z t

0

e�2x(

Z t

0

1(0;x)(y)y
H� 3

2 (ey � 1)dy)2dx] 12

�
Z t

0

[

Z t

0

1(0;x)(y)e
�2xdx]

�
Z t

0

e�yyH�
3
2 (ey � 1)dy <1

So the result is obtained. The bound is independent of t. �

Proof of Lemma 5.3.Z t

0

(t� s)2H�1s2H�1e�2(t�s)�jds

=

Z 0

2t�j

(
w

2�j
)2H�1(t� w

2�j
)2H�1e�w(� 1

2�j
)dw; with (t� s) = w

2�j

=(2�j)
�2H

Z 2t�j

0

e�ww2H�1(t� w

2�j
)2H�1dw
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=(2�j)
�2H(

Z �jt

0

+

Z 2�jt

�jt

)e�ww2H�1(t� w

2�j
)2H�1dw

�(2�j)�2H [(
t

2
)2H�1

Z �jt

0

e�ww2H�1dw + (�jt)
2H�1

Z 2�jt

�jt

e�w(t� w

2�j
)2H�1dw]; since2H � 1 < 0

�(2�j)�2H [(
t

2
)2H�1

Z �jt

0

w2H�1dw + (�jt)
2H�1

Z 0

t=2

e�2(t�s)�js2H�1(�2�j)ds]

=(2�j)
�2H [(

t

2
)2H�1 � (�jt)

2H

2H
+ (�jt)

2H�1(2�j)

Z t
2

0

e�2(t�s)�js2H�1ds]

�(2�j)�2H [(
t

2
)2H�1 � (�jt)

2H

2H
+ (�jt)

2H�1(2�j)(e
�t�j (

t
2 )
2H

2H
)]

=
2�4H

H
(1 + e��jt)t4H�1:

�
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