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Abstract

It is commonly accepted that certain financial data exhibit long-range dependence. We

consider a continuous time stochastic volatility model in which the stock price is Geometric

Brownian Motion with volatility described by a fractional Ornstein-Uhlenbeck process.

We also study two discrete time models: a discretization of the continuous model via an

Euler scheme and a discrete model in which the returns are a zero mean iid sequence

where the volatility is a fractional ARIMA process. We implement a particle filtering

algorithm to estimate the empirical distribution of the unobserved volatility, which we

then use in the construction of a multinomial recombining tree for option pricing. We also

discuss appropriate parameter estimation techniques for each model. For the long-memory

parameter we compute an implied value by calibrating the model with real data. We

compare the performance of the three models using simulated data and we price options

on the S&P 500 index.

1 Introduction

This article studies an integrated technique for option pricing, long-memory calibration, and

parameter estimation, in stock and option markets with high frequency and long-range-dependent
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stochastic volatility. Before introducing some of the details of our study, we begin with a brief

literature overview of stochastic volatility models and associated long-memory questions.

1.1 Stochastic volatility models

Stochastic volatility models were first introduced by Taylor [40, 41] and Hull and White [33]

in order to account for inconsistencies in implied volatility values. More specifically, let us

first imagine that a specific stock or index price {St} truly follows the celebrated Black-Scholes

model ([5], [37]), i.e. its stochastic dynamics are given by

dSt = µStdt+ σStdWt

where {Wt} is a Wiener process (Brownian motion), and the volatility σ is a constant; Then

the graph the volatilities which are responsible for the various call option prices observed on

the option market as a function of the various strike prices, also known as the Black-Scholes

“implied volatilities”, would have to be a horizontal line at the level σ. However, it is well-

known that such implied volatility graphs are hardly ever flat; it is much more common for

them to look like a smile, or a smirk, meaning that certain far-from-the-money options have

significantly higher implied volatilities than at- or near-the-money options. Some markets

exhibit lower implied volatilities away from the money than near the money, in which one

talks about an implied volatility frown.

In an effort to explain this phenomenon via mathematical modeling, both in discrete

and continuous time, many authors have proposed that the volatility of the asset or index

{St} should be modeled as a random process itself. In other words, the observed process {St}
should follow the dynamics

dSt = µStdt+ σ(Yt)StdWt, (1)

where {Yt} is the unobserved volatility process. Among the most popular continuous models

are the Ornstein-Uhlenbeck mean-reverting process by Taylor [41] and Hull and White [33],

and the CIR model introduced by Cox et al. [16]; widely used discrete-time models include the

ARCH and GARCH time series models by Bollerslev [6], Bollerslev et al. [7] and Duan [21].

All these models have in common that they contain more sources of randomness than

assets/indexes. Even in the case of single-asset models, the introduction of one extra source of

randomness in the volatility makes the market incomplete, i.e. it is not necessarily possible to

replicate any option within the market itself. In mathematical terms, this typically translates

as the existence of more than one equivalent martingale measure for option pricing, and cor-

respondingly more than one set of arbitrage-free prices for options. This problem is typically
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dealt with by referring to highly liquid options in order to help replicate other options. In

principle, this requires being able to trade in the liquid option at high frequency. While this

is an important practical problem, we do not deal with it in the present article: it turns out

that our option prices are highly insensitive to the choice of a martingale measure; we refer to

Chronopoulou and Viens [13] and Florescu and Viens [23] for a description of this phenomenon

with the type of multinomial option pricing we use herein.

Another practical problem is that the asset’s volatility process is never observed directly.

This creates difficulties when it comes to parameter estimation. However, option pricing and

statistical inference under stochastic volatility models have been extensively studied since their

introduction. One can find an overview for option pricing techniques as well as parameter

estimation procedures in the book by Fouque et al. [24] as well as a comparative review of

various models in Taylor [42]. Again, high-frequency data is an important requirement for

these procedures.

1.2 Long memory and stochastic volatility

As specialists in stochastic finance were coming to terms with the fact that stochastic volatility

models may be required for sound modeling in many markets, a further modeling difficulty

arose. Empirical studies were showing that some financial data exhibit long-range dependence

as opposed to intermediate or short-range dependence. For general time series, long-range

dependence, also called long memory, means that observations far apart in time are strongly

correlated, as evidenced for instance by a very slowly decaying autocorrelation function. This

is a slightly subtle phenomenon in financial data, since stock and index returns themselves are

typically uncorrelated, while non-linear functions of the returns are correlated. Ding et al. [20]

were among the first to observe that there is substantial correlation between absolute returns

of the daily S&P 500 index prices. Evidence of long-range dependence came from the fact that

fractional power transformations of the absolute returns exhibit high autocorrelations for high

lags ([17], [19], [20]). Long term correlation was found using squared returns on various US

indexes, in studies by de Lima and Crato [17], Lobato and Savin [36], and Breidt et al. [9].

Bollerslev and Mikkelsen [8] showed that the fractionally differenced absolute returns of the

S&P 500 exhibit long-range dependence. Moreover, a slowly decaying autocorrelation function

has also been observed in foreign exchange rates by Andersen and Bollerslev [2], and Henry

and Payne [32].

Some of the first attempts to explain these slowly decaying autocorrelations were via

long memory stochastic volatility modeling, and there now exists a wide variety of models for
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this purpose both in discrete and continuous time.

The first long memory stochastic volatility model was simultaneously introduced by

Harvey [31] and Breidt et al. [9]. They suggested a discrete-time model in which the returns

of the stock {Xt} are described by

Xt = σ(Yt)ǫt,

where {ǫt} are iid shocks with zero mean and the logarithm of the volatility process {Yt} is

described by a finite parameter Fractional ARIMA(p, d, q) model, that is

φ(B)(1−B)dYt = θ(B)et, (2)

where {et} is a zero-mean serially uncorrelated process independent of {ǫt}, φ(·) and θ(·) are
polynomials in the lag operator B of orders p and q respectively and d ∈ (−1/2, 1/2). This

extension of the classical ARIMA(p, d, q) model for stochastic volatility, where d is no longer

an integer, described the long-range behavior of the log-squared returns of market indexes

successfully. Baillie et al. [3] worked in the same spirit, suggesting analogously to the fractional

ARIMA(p, d, q) process of the mean, the Fractionally Integrated GARCH(p, d, q) process for

{et}:
α(B)(1−B)de2t = µ+ (1− β(B))vt, 0 < d < 1,

where {vt} are the innovations of the conditional variance and the polynomials α(B) and

(1− β(B)) of orders p and q respectively, have all their roots lying outside the unit circle.

In continuous time, Comte and Renault [14] modeled the price process, {St} as in (1) in

which the dynamics of the volatility are described by a fractional Ornstein-Uhlenbeck process

as follows

dYt = α(m− Yt)dt+ βdBH
t ,

where BH
t is a fractional Brownian motion (fBm) with long-memory parameter H ∈ (1/2, 1];

fBm is the most basic continuous-time long memory process. Recently Comte et al. [15]

extended the Heston option pricing model to a continuous time stochastic volatility model

in which the volatility process is described by a square root long-memory process. In this

way, they managed to describe volatilities with high persistence in the long run, without

overincreasing the short run persistence. In contrast to the fractional Ornstein-Uhlenbeck

model, the square-root one does not allow the volatility to attain negative values.

1.3 Pricing and statistical inference

Stochastic volatility models with long-memory either in discrete or continuous time are de-

signed to describe important long-memory features of certain financial time series, which are
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not covered by standard stochastic volatility models. Their drawbacks include new difficulties

in option pricing as well as in statistical inference. In this article we argue that these two issues

are linked, and that in order to provide adequate solutions to these problems, it is essential

to take advantage of all available information by using high-frequency data in an optimal way.

We begin by summarizing some techniques recently developed in the literature, which we will

use as tools and/or benchmarks.

Whether the underlying model is in discrete or continuous time, and indeed whether

one believes that the underlying phenomena are discrete or continuous, one must still face the

fact stock and index price processes are only observed in discrete time, and that volatility itself

is never directly observed. The statistical inference problem of estimating volatility under these

conditions is thus crucial from a financial modeling point of view, and is a stimulating question

from the statistical standpoint. High-frequency quotes are then synonymous with high-quality

information.

The key parameter to estimate turns out to be the long-memory parameter, also known

as the Hurst parameter in honor of the hydrologist who first used fBm in scientific modeling,

[35]. Comte and Renault, [14], suggested that one should begin by discretizing the model in

order to obtain an approximate solution, and then use the log-periodogram regression approach

to estimate the long-memory parameter. This regression technique was initially proposed by

Geweke and Porter-Hudak, [28], known as the GPH estimator. A semiparametric modification

of the GPH estimator was devised by Deo and Hurvich, [19], in the context of long-memory

stochastic volatility models. In addition, Gao et al. [26, 27] proposed a methodology for

estimating all parameters simultaneously for a discretized model. Casas and Gao, [10], studied

the behavior of the (modified) GPH estimator for discretized fractional stochastic volatility

models with an application in US financial indexes. More recently, Chronopoulou and Viens

[13] showed how to compute an implied valued of the long-memory parameter H by calibrating

to realized option prices (true prices observed on the option market).

Compared to the statistical inference literature, the problem of option pricing under

long memory models has not been studied to the same extent. In continuous time, Comte

and Renault, [14], adapted some of the most popular theories of bond pricing to long memory

processes, under certain assumptions. Moreover, Chronopoulou and Viens, [13], proposed a

multinomial recombining tree algorithm in which the volatility is sampled from its empirical

distribution, which is estimated using a particle filtering algorithm. In discrete time, there are

approaches by Bollerslev and Mikkelsen [8], Engle and Mustafa [22] and others mainly based

on a time-varying conditional variance which is used either in the Black-Scholes context or
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in a simulation-based option pricing scheme (for instance the one by Amin [1]). The lack of

interest in the option pricing question is inconsistent with the efforts devoted to understanding

long memory in financial time series; it motivates us to pursue this research direction, and the

closely related question of parameter estimation.

1.4 Outline of our results

In this article we consider three different long-memory stochastic volatility models. We begin

with the one proposed by Comte and Renault, [14], in which the volatility is modeled by

the continuous-time fractional Ornstein-Uhlenbeck process. We use the same option pricing

and implied-H techniques developed in Chronopoulou and Viens [13]. More specifically, the

algorithm of the methodology is summarized as follows:

1. For each value of H starting from 0.5 up to 0.95 we:

(a) estimate the parameters of the model based on historical data,

(b) run the particle filtering algorithm to compute the empirical distribution of the

unobserved volatility,

(c) use the multinomial recombining tree algorithm to compute the corresponding op-

tion prices for the specific value of H.

2. For each H, we compute the mean square error (MSE) of the calculated option price for

specific strike prices from the center of the bid-ask spread. The bid or the ask price can

also be used depending on whether we are interested in buying or selling an option.

3. The calibrated or implied value of H is the one that corresponds to the smaller MSE.

In addition, we propose an improved calibration procedure that takes into account the

liquidity of the options, that is when we compute the MSE we use weighted option prices, in

which the weights are proportional to the volume of the traded options.

Beyond option pricing, we wish to understand the effect of high-frequency data on

the value of the implied H as well as on the other parameters of the model. Therefore, we

compare high-frequency and non-high-frequency implied values of H for pricing options, with

the interesting find that the empirical distribution of the volatility, and as a result the implied

value of H, are not very sensitive to the data frequency. However, we obtain much more

accurate estimates for the remaining parameters of the model with high-frequency data and

as a result more accurate option prices.
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In addition, it is natural to assume, and immediate to observe, that high-frequency is

needed to track volatility properly. Although the volatility distribution is rather insensitive

to the data frequency, unusual movements in the volatility (e.g during market shocks and

announcement of economic indicators) can only be captured and tracked properly using high

frequency data. Indeed, while tracking volatility in low frequency, pricing an option just after a

large stock movement can result in a noticeable pricing error, since at that time the stochastic

volatility filter is likely to be off the mark. It is not a surprise that H is largely the same

regardless of the data frequency, since H measures volatility correlations over long lags, and

may not be closely related to the rapidity of movements of the stock itself. The story would be

different for a geometric fractional Brownian model (GfBm), since there the stock’s movement

amplitudes are more directly linked to H since (modulo the drift) the log returns are H-self-

similar; but most researchers agree that, due to the presence of arbitrage and correlation of

returns, GfBm is not appropriate for stock modeling.

The main disadvantage of the continuous time model is that the construction of the

particle filter for the estimation of the empirical volatility distribution is computationally

expensive. Therefore, we also study two discrete-time models. The first is the discretized

version of the fractional OU model, using an Euler scheme, and the other is the fractional

ARIMA model (2) proposed by Harvey [31] and Breidt et al. [9]. Using simulated data, we

show that the required computational time to construct the volatility particle filter, compared

to the continuous-time model, is significantly reduced in both discrete cases. We also find that

our option-pricing methodology, adapted to both discrete models, works quite satisfactorily

under simulated conditions. On the other hand, when using both discrete models to price

options written on the S&P 500 index, we observe that the continuous-time model performs

visibly better that the other two in this real-data situation; our criterion for performance is the

ability to explain observed prices on the option market. This means that there is a non-trivial

trade-off to be managed between computational expense and precision.

Furthermore, in order to compare the two discrete-time models, we study a model

mis-specification problem. Assuming that the true model is the continuous time one, we nu-

merically compare the performance of the two discrete-time models under our option pricing

methodology. One would expect the discretized OU model to perform better than the Frac-

tional ARIMA model, since the latter is not a discretization of the OU model, but one may

wonder whether the option pricing problem is insensitive with respect to the type of discrete-

time model one chooses. It turns out not to be: we show that the choice of discrete model

makes a difference; the option prices computed using the discretized fractional OU model are

a better match to those computed using the original continuous-time model. This observation
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is significant in practice, since we also determined that in the absence of computational con-

straints, option pricing under the continuous-time model is a better match to observed prices

on the option market, and therefore discrete-time pricing models should seek to emulate it.

The better performance of the discrete OU model is confirmed under our criterion of proximity

to market prices.

The structure of this article is as follows. In Section 2, we study the continuous-

time long memory stochastic volatility model and we discuss option pricing and parameter

estimation techniques. We compare two different estimators for the parameter H and we

investigate the effect of high-frequency data on the value of implied H, and on other parameter

estimators. In Section 3, we introduce the discretized Ornstein-Uhlenbeck model and the

discrete-time fractional ARIMA model; we adapt option pricing and estimation techniques and

we compare the results for pricing options with these two models. In Section 4, we compare

all three models by looking into their computational efficiency, model mis-specification issues,

and their option-pricing performance with real S&P 500 index and option data. In the final

section, we conclude our article with a summary and some recommendations.

2 Long memory stochastic volatility model in continuous time

2.1 The model; definitions.

The continuous time long memory stochastic volatility model (LMSV) we consider was initially

introduced by Comte and Renault [14] and revisited by Chronopoulou and Viens [13]. If {Xt}
is the logarithm of the price process (dXt is an infinitesimal log-return) and {Yt} the volatility

process, then
{

dXt =
(

µ− σ2(Yt)
2

)

dt+ σ(Yt) dWt,

dYt = α (m− Yt) dt+ β dBH
t ,

(3)

where µ is the mean rate of return, α is the rate of mean reversion, m is the log-run mean

of the volatility, β is the volatility of the volatility, σ is a chosen deterministic function, and

{BH
t } is a fractional Brownian motion with Hurst index H ∈ (0, 1].

Definition 1 The fractional Brownian motion (fBm), {BH
t }, with Hurst parameter H ∈ (0, 1]

is a centered Gaussian process whose paths are continuous with probability 1 and whose distri-

bution is defined by its covariance structure:

Cov(BH
t , BH

s ) =
1

2
(|t|2H + |s|2H − |t− s|2H).
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Equivalently, the distribution is characterized by BH
0 = 0 and V ar

[

BH
t −BH

s

]

= |t− s|2H .

The parameter H characterizes both pathwise as well as distributional properties of the

process and provides us with a classification according to its value: for H < 1/2 the process has

rough paths and its increments exhibit medium-range dependence, while forH > 1/2 the paths,

while still of infinite variation, are smoother, and its increments have long-range dependence.

When H = 1/2, the process is the well-known standard Brownian motion (Wiener process),

which has independent increments. The fBm is also H-selfsimilar and δ-Hölder continuous for

any δ < H. More details on fBm can be found in Nualart [39].

The main reason we choose to work with this process is its long-memory/ long-range

dependence property, which we define as follows:

Definition 2 A process {Xm,m ∈ N} is said to have long-range dependence (or long mem-

ory) if
∑∞

n=1 ρ(n) = +∞, where ρ(n) is the autocorrelation function defined by ρ(n) =

Cov(Xm, Xm+n)/V ar(Xm).

While the autocorrelation function ρ may depend on m, it does not when X is sta-

tionary, which is the case for the increments of fBm. Many non-stationary processes have

auto-correlation functions whose dependence on m is weak enough that it does not effect the

notion of memory length. We will not delve into these technicalities.

When
∑∞

n=1 ρ(n) < +∞, one often speaks of short-range dependence, although there

are many scales of dependence within this class. Time series such as GARCH have expo-

nentially decaying auto-correlation, which is truly short range, while the autocorrelation of

fBm’s increments with H < 1/2 decays like the power n2H−2, which is much longer range than

exponential decay, but still falls in the category of summable autocorrelation.

The volatility process {Yt} is the fractional analogue of an Ornstein-Uhlenbeck process.

Thus, it is the unique process that satisfies the linear stochastic integral equation: Yt =
∫ t
0 α(m−Ys)ds+βBH

t , where α and β are drift and deviation parameters. The autocorrelation

function of the increments of {Yt} inherits the long-range dependence property by fBm, when

H ∈ (1/2, 1), and is ergodic. The properties of this process have been extensively studied by

Cheridito et al. [11].

The Ornstein-Uhlenbeck process is a popular model for standard stochastic volatility

for many reasons, including the fact that it is mean-reverting. The same property holds true

for the fractional Ornstein-Uhlenbeck process; the rate of mean reversion is α. An illustration

of this fact is shown in Figure 1.
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Figure 1: Fractional OU process with Hurst index 0.6 and mean reversion parameter α = 2.

2.2 Option pricing

In this article, we choose to implement the option pricing scheme suggested by Chronopoulou

and Viens [13]. We begin by describing the basic idea, referring to that article and references

therein for the technical details, including an exhaustive description of the algorithm.

As mentioned in the introduction, our premise is that, although the basic LMSV model

is in continuous time, we only have access to discrete time observations, namely the historical

stock prices; the volatility process itself is not directly observed, even in discrete time. Our

estimation and option-pricing methodology consists of two steps.

Step 1: Estimation of the empirical distribution of the unobserved volatility. This is handled

by adjusting a genetic-type particle filtering algorithm by Del Moral et al., [18], and Flo-

rescu and Viens, [23]. This algorithm, using historical stock price observations, generates

simulated pairs of stock and volatility values (the particles) one time-step into the future,

and adjusts the probability weights of the particles based on their empirical likelihood

when the next stock observation comes in. This can be considered as a non-parametric

Bayesian approach, and is sometimes labeled as a sequential Monte-Carlo algorithm for

computing the conditional distribution of the volatility given all past observations. The

output is an empirical distribution for the unobserved volatility, the empirical measure
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of the weighted volatility particles. We call this the (stochastic) volatility particle filter.

Step 2 Risk-neutral option pricing on a multinomial recombining tree, constructed based on

the full empirical volatility distribution produced by the previous step. This original

technique was proposed by Florescu and Viens [23]; in each step of the tree, the value

of the volatility is sampled from the volatility particle filter. The branches of the tree

recombine unevenly in each step depending on the sampled value of the volatility, but

the level of recombination is very high, typically close to binomial recombination. The

tree construction is particularly faithful to the market’s current volatility structure when

used in high frequency. It also has the advantage of being computationally efficient, and

closer in spirit to the way market makers compute option prices as a group, by focusing

on current volatility beliefs based on past experience, rather than trying to incorporate

theoretical volatility forecasts. The forecasting methodology is not uncommon in the

SV option pricing literature (see Fouque et al. [24], e.g.), but does not produce more

accurate prices (see Florescu and Viens [23]), and its implementation is typically much

less efficient.

Since we work under a stochastic volatility model, it is important to determine the

probability measure that we use for option pricing. Following the discussions in [13] and [23]

for the quadrinomial (recombining) option pricing tree, if p is the probability of the upper (or

lower branch), then the probabilities that correspond to the remaining branches are functions

of p. However, it can be shown that p is restricted to the interval [ 112 ,
1
6 ]. If we plot the

computed prices for values of p varying from 1
12 to 1

6 , we observe that the option price is quite

insensitive to the choice of p; this is also illustrated in Figure 2.

Remark 1 The methodology we propose for option pricing can also be used when the volatility

process is described by a fractional square-root process as in [15] (or any other mean reverting

long memory process). The same holds for the implied H procedure. However, the parameter

estimation technique as described in the following section is restricted only to the fractional

OU model, since it is based on its specific characteristics and properties.

2.3 Long memory calibration; S&P 500 data.

When the underlying model is the continuous-time LMSV model we have to estimate the

following parameters: the drift µ, the rate of mean reversion α, the long-run mean m, the

volatility of the volatility β, and the long-memory parameter H. As mentioned by the authors

in [13], proper estimation the long-memory parameter H is of the utmost importance, since
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Figure 2: Option prices for different choices of the free probability p ∈ ( 1
12 ,
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6) and comparison

with the corresponding prices computed based on a constant volatility Black-scholes model.

it significantly affects the estimated empirical volatility distribution as well as the remaining

parameters of the fractional diffusion, and thus weighs heavily on computed option prices.

We propose to determine H by calibrating the model using realized option prices. We

therefore obtain an implied value for H. The calibration method is simple, and presents itself

naturally in our option-pricing context. The main idea is to repeat the following procedure for

values of H varying from 0.5 to 0.95 with a rather fine step (e.g. 0.01):

Integrated estimation, pricing, and calibration procedure

• For each fixed value of H, we start by estimating the parameters of the model based

on historical data. We can do so by modifying standard techniques based on the

variogram, as described in the book by Fouque et al. (Chapters 3,4, [24]). In this

step, as discussed in detail in the following section, it is crucial to use high-frequency

data; in this way, the produced estimates will be consistent.

• Once we obtain the estimates for all the parameters of the model, we construct the

volatility particle filter, which is the first step of the pricing algorithm.

• Then, we move to the second step of the pricing algorithm and we price options for

different strike prices, K, for a certain maturity, T .

• The last step consists of computing the mean-square error (MSE) of the computed

option prices with the center of the bid-ask spread for the corresponding options

from the market.
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Criterion Implied Ĥ

Bid 0.55

Ask 0.52

Center = (Bid+Ask)/2 0.53

Table 1: Choice of Implied H when we calibrate the model with the bid, the ask or the center

of the bid-ask spread. (The results are based options written on the S&P 500 index on March

30th 2009 with maturity T = 35 days).

• The implied value of H is the one that corresponds to the smaller MSE.

In order to empirically test the stability of our “estimator” for H, we repeat this

procedure 1000 times for the same data and then we average all the implied values of H. This

implied H is the value of the Hurst parameter that we are going to work with in the future for

option pricing. Moreover, this Monte-Carlo type estimate gives us an empirical variance for

the proposed estimator. Using this value of H as fixed, we can now compute the final estimates

for remaining parameters of the model. Since the use of high frequency data for their proper

estimation is crucial, we discuss the details of this procedure in the following section.

One question that arises from a practitioner’s point of view is why choose the center

of the bid-ask spread and not the bid or the ask price in our criterion for choosing H. The

center of the bid-ask spread has the advantage that we can price in a universal way a wider

range of options (e.g. for all strike prices). However, it is interesting to investigate the effect

on implied H if the comparison is done with respect to the bid or the ask price.

We consider a real data example: we price a European call written on the S&P 500

index on March 30th, 2009, expiring in 35 business days. The interest rate during this period

is r = 0.21% and the index at the time of pricing is worth S0 = $787.53. As shown in Table

1 there are small differences in the choices of H. Therefore, depending on the type of options

that we are interested in pricing we can choose one criterion over another.

Similarly, we can concentrate on a specific range of options in computing the implied

value of H. More specifically, if we are interested in in-the-money call options we can repeat

the analysis only for strike prices below S0. For the same real-data example, as it is shown in

Table 2, the computed values of H are different, however they match the realized prices much

better and the improvement can be seen in Table 3.

Before comparing the implied H with another popular estimator of H in the literature,

we propose a modification of the calibration procedure, based on the volume of trades for each

strike price. In order to ensure that the estimate for H reflects the general consensus of the
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Range of Ks Implied Ĥ

$670 - $740 0.54

$750 - $800 0.53

$810 - $850 0.54

Table 2: Values of implied H for particular ranges of K. The stock price ‘today’ is S0=$787.53.

(The results are based options written on the S&P 500 index on March 30th 2009 with maturity

T = 35 days).

Strike Price Bid Ask Implied Ĥ = 0.53 Implied Ĥ = 0.53 or 0.54

670 126.9 130.3 123.96 127.92

680 118.5 121.9 115.81 119.65

690 110.4 113.8 107.93 111.22

700 102.6 105.9 100.32 104.35

710 94.6 98 92.00 92.68

720 87.1 90.5 85.97 89.66

730 79.8 83.2 79.26 80.02

740 73 76.2 72.86 74.50

750 66 69.5 66.80 66.80

760 59.7 63 61.07 61.07

770 53.5 57 55.66 55.66

780 47.8 51.3 50.59 50.59

790 42.6 45.7 45.85 45.85

800 37.4 40.8 41.43 41.43

810 32.8 36.2 37.33 36.05

820 28.3 31 33.54 29.35

830 24.6 27.9 30.04 26.33

840 20.8 24.3 26.83 21.05

850 18.9 20.8 23.90 19.66

Table 3: Computed European call option prices on the S&P 500 using a universal value of

implied H or the local values of implied H as shown in Table 2
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Strike Price Bid Ask Weighted Implied Ĥ = 0.534

670 126.9 130.3 125.23

680 118.5 121.9 118.0

690 110.4 113.8 110.33

700 102.6 105.9 103.25

710 94.6 98 94.75

720 87.1 90.5 87.04

730 79.8 83.2 78.32

740 73 76.2 74.21

750 66 69.5 66.54

760 59.7 63 61.25

770 53.5 57 54.36

780 47.8 51.3 49.96

790 42.6 45.7 45.24

800 37.4 40.8 40.32

810 32.8 36.2 35.23

820 28.3 31 31.45

830 24.6 27.9 28.45

840 20.8 24.3 25.33

850 18.9 20.8 21.65

Table 4: Computed European call option prices on the S&P 500 using a weighted implied H.

market we compute the MSE by using weighted option prices with weights that are proportional

to the volume of the trades. More specifically, we take the weight that corresponds to the ith

strike price to be

wi =
# of trades at strike Ki

Total # of trades
.

The weighted option prices for the previous example are summarized in Table 4 and a com-

parison with the un-weighted prices is illustrated in Figure 3. The weighted option prices stay

truer to the bid-ask spread, even with far-from-the-money calls.

Remark 2 One issue that arises here is the time during which the value of H is considered

to be constant. Empirical evidence shows that we are not able to consider H to be constant

for a period of 2 or 3 years or more. H seems to be constant for a period of less than a year,

depending on the stability of the market.
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Figure 3: Comparison of computed option prices based on the weighted and the un-weighted

calibration procedure.
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When major market shocks occur, such as the financial “meltdown” of October 2008,

H is no different than many other economic and financial indicators, in the sense that it is

expected to change abruptly. H would typically increase in the weeks after such an event, as

the memory of the crash remains strong in the market makers’ actions: see Chronopoulou and

Viens [13].

The rationale behind the calibrating of H to the option market is that among all financial

professionals, none think harder and more frequently about short and medium term volatility

forecasting (days to months) than the market makers in liquid option markets. Our implied H

method allows us to distill the long memory parameter out of these market makers’ activity.

Long-memory parameter estimation is notoriously treacherous with financial data. One

reason is because many popular methods use self-similarity estimators, even though the con-

nection to long memory, which is well-known for models such as fBm, is not appropriate for

LMSV because the volatility is not directly observed, and the OU process is not self-similar,

strictly speaking. Another reason may be that long memory discrete time series are often

difficult to fit to financial data ([12]). Among the most popular Hurst index estimators for

the LMSV models in the literature is the log-periodogram regression estimator, also known as

the GPH estimator, initially introduced by Geweke and Porter-Hudak [28]. This estimator is

mainly based on the discretization of the model and then on the application of a maximum

likelihood method on the spectral domain, by minimizing the Whittle contrast function (an

approximation of the log-likelihood function). More details regarding the GPH estimator can

be found in Casas and Gao [10] and Geweke and Porter-Hudak [28]; a discussion regarding

this estimator and the implied H can be found in our article [13].

To illustrate this discussion, we numerically compare the GPH estimator and our pro-

posed method of finding an implied value of H by calibrating it to option prices. We use S&P

500 data during three different periods: April 2008, May 2008 and March 2009. In all cases

we consider two months of historical data in order to estimate H. To compute the implied H

we generate filters of n = 1000 particles, using M = 10000 Euler steps for the simulation of

the model, and N = 100 tree-steps in the multinomial tree algorithm. Using the generated

volatility particle filters, we price call options which we compare with the center of the corre-

sponding bid-ask spread for market prices. The GPH estimator is computed using the same

historical data. The results we obtain are summarized in Table 5.

From Table 5, we observe that the two methods produce significantly different values

of H. In the case of May 2008, the GPH estimator is far below 1/2; such a medium memory

situation could be an indication of anti-persistence, which can be interpreted as an extremely

high rate of mean reversion rather than of memory length. We are not aware of any works
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“Today” Implied Ĥ Empirical Std. Dev. GPH Ĥ Empirical Std. Dev.

April 4th 2008 0.51 0.0035 0.66 0.022

May 2nd 2008 0.50 0.0011 0.23 0.045

March 30th 2009 0.53 0.0201 0.67 0.0098

Table 5: Comparison of the estimated long-memory parameters using the implied H technique

and the Geweke and Porter-Hudak method.

in which either this or the memory length interpretations are believed to be accurate in the

case of liquid and efficient option markets such as the one we study here. For the same month

of May, our implied H method gives an H equal to 1/2, meaning that there is no noticeable

memory, while there was some memory detected a month prior, in April. This is consistent

with the remarks made in Chronopoulou and Viens [13] regarding the effect on the markets of

the March 2008 collapse of Bear Stearns, the smallest of the “big five” Wall Street independent

investment banks.

To further investigate and compare the two estimators, we feed both values of H into

our option pricing algorithm for a European call written on the S&P 500 on March 30th, 2009,

expiring in 35 business days. The interest rate during this period is r = 0.21% and the stock

at the time of pricing is worth S0 = $787.53. We compare our option prices with the bid-ask

spread on the option market on that day for strike prices varying from K = $670 to K = $850.

These results are summarized in Table 6. Because of the nature of our implied method, the

option prices computed using the implied H would have to be at least as close to the prices

realized on the option market, as those computed with the GPH estimator. In Table 6 we can

see the detail of how much closer option prices computed with an implied H are to the market

call prices, than those computed with the GPH estimator. The difference is quite significant

near the money and out of the money, while neither estimators perform well for in-the-money

call options, with the GHP estimator actually doing a bit better than the implied H one.

Recalibrating H for the in-the-money range alone, as described previously, would address this

deficiency; such a procedure is not available for the GHP estimator, since it is not based on

option prices.

2.4 Statistical inference and high-frequency S&P 500 data

So far, we have only discussed and analyzed methods for estimating the long-memory param-

eter. However, the model contains several other parameters that also need to be estimated as

accurately as possible.
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Strike Price Bid Ask Implied Ĥ = 0.53 GPH Ĥ = 0.67

670 126.9 130.3 123.96 128.54

680 118.5 121.9 115.819 120.82

690 110.4 113.8 107.935 113.89

700 102.6 105.9 100.324 106.90

710 94.6 98 92.9996 99.93

720 87.1 90.5 85.9752 92.99

730 79.8 83.2 79.2616 86.02

740 73 76.2 72.8693 79.054

750 66 69.5 66.805 72.614

760 59.7 63 61.0704 67.95

770 53.5 57 55.6668 63.324

780 47.8 51.3 50.5955 58.602

790 42.6 45.7 45.8526 53.961

800 37.4 40.8 41.4336 49.295

810 32.8 36.2 37.3349 44.660

820 28.3 31 33.5426 40.023

830 24.6 27.9 30.0468 35.478

840 20.8 24.3 26.8366 33.070

850 18.9 20.8 23.9021 30.581

Table 6: Computed European call option prices on the S&P 500 using the algorithm described

in Section 2.1, using two different values of H; the Implied and the GPH.
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For each fixed value of H, we can estimate the other parameters by following standard

approaches. More specifically, we consider a variogram analysis in order to obtain estimates for

the rate of mean reversion α and for the volatility of the volatility β. More details regarding

this approach can be found in the book and a related article by Fouque et al. [24, 25]. Here, we

briefly discuss the modifications of this procedure in the case of a fractional Ornstein-Uhlenbeck

process.

Assume that we have access to high-frequency observations (at least once every 5

minutes, say). Let Xn denote the nth five-minute average of the price at time tn = n∆t, where

∆t = 5. Then consider the fluctuation of the data

Dn =
2(Xn −Xn−1)√
∆t(Xn +Xn−1)

,

or in other words the observed realization of the asset price return. Model Dn as Dn = σ(Yn)ǫn,

where ǫn is a sequence of iid zero-mean, variance-one, random variables, with ǫn independent of

Yn, and let Ln be its logarithm, Ln = log |Dn|. The ǫn’s are also chosen so that E(log |ǫn|) = 0.

This model is consistent with the volatility part of our LMSV semimartingale model (3), with

σ a predetermined non-random function. The drift part of our LMSV will be negligible in the

variogram’s high-frequency asymptotics, just as the drift part of a semimartingale does not

appear in its quadratic variation expression. Therefore, the model for Dn is consistent with

our LMSV model, as long as ∆t is small enough, i.e. as long as the frequency is high enough.

To be specific, the variogram of Ln is defined as

V N
j =

1

N

N
∑

n=1

(Ln+j − Ln)
2,

where j is the lag and N the total number of points. Then, we have that

E(Ln+j − Ln)
2 = E(L2

n+j) +E(L2
n)− 2E(Ln+jLn)

We compute each term separately as follows:

E(L2
n) = E([log σ(Yn) + log |ǫn|]2)

= E(log σ(Yn)
2) +E(log |ǫn|2) + 2E(log σ(Yn) log |ǫn|)

= ν2σ,H + c2,

where c2 = E(log |ǫn|2) and E(log σ(Yn) log |ǫn|) = 0, and asymptotically for small ∆t,

ν2σ,H := ν2σ,H (α, β) = H Γ(2H) β2 +H Γ(2H) β2α1−2H − β2

2
j2H + o(j2H).
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Moreover, we have

E(Ln Ln+j) = E(log σ(Yn) log σ(Yn+j)) = ν2σ,H e−α j ∆t

Therefore, we finally obtain

E(Ln+j − Ln)
2 ≈ 2c2 + 2ν2σ,H (α, β) (1− e−α j ∆t).

Thus, we can use standard regression to estimate the parameters of the following linear equation

V N
j = 2c2 + 2ν2σ,H (α, β) (1− e−α j ∆t), j ∈ N.

and consequently we can extract the desired estimates for α and β given that H is known.

In the case of the exponential fractional OU model, in which we take σ(x) = ex, we

can estimate the quantity s2 := E(D2
n) by the mean square of the fluctuations Dn. However,

it is known that s2 = e2m+ν2 , where we can take ν2 = β
2α .

In the literature when it comes to statistical inference for stochastic volatility models,

it is suggested, if not required, to use high frequency data, because by doing so we obtain

consistent estimators, and, as we explained above, we also simplify the estimation procedure

by decoupling drift and volatility parameters. Therefore, if the value of H is known, then the

procedure above dictates for us to use high-frequency data for the estimation of the remaining

parameters. However, there is nothing in our implied methodology for estimating H that says

it should also be done using high frequency data. What is the effect of high-frequency data on

the empirical distribution of the volatility (i.e. volatility particle filter)? And as a result, what

is the effect on our choice of implied H? It is a simple matter to investigate this question in

practice.

Using the March 2009 S&P 500 intraday (high-frequency) data for a period of one

month, we compute the implied value of H. The value we obtain is the same (i.e. H = 0.53)

as with the use of low frequency (daily) data. More generally, for the purpose of long-memory

calibration, our volatility filter performs well even when the data have lower frequencies. There-

fore, our recommendation is to use low frequency data for the particle filtering algorithm, but

high-frequency data for the statistical estimation of the remaining parameters of the model.

This greatly increases the efficiency of the filtering algorithm for the purpose of estimating H.

An explanation for the relative insensitivity of the implied estimation H to the data

frequency, lies in the fact that in the case of long memory, the auto-correlations decrease slowly,

and therefore an interpolation of their behavior using few data points yields essentially the same

amount of information as a method which tracks the volatility much more closely. While this

robustness property holds for calibrating H in the context of option pricing, those who wish
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to track volatility closely by using the particle filter (a task for which particle filtering, a.k.a.

sequential Monte-Carlo methods, was designed), will still need to use high-frequency data.

2.5 Computational difficulties with the continuous time LMSV model

To summarize, using the implied-H approach, we are able to overcome the obstacles of an

unobserved volatility process with long-memory and extract the appropriate value of H that

provides us option prices which are close market prices.

However, there is a hidden disadvantage in our approach: the computational time that

is needed to construct the volatility particle filters is high, even when using relatively low-

frequency data. We need to take into account that in order to better simulate the continuous-

time fractional diffusion, we need – on average – more than 500 Euler steps. As it turns

out, the smaller the value of H the more Euler steps we need. This is because the speed of

convergence of the Euler scheme is proportional to n−H ([38]). To make matters worse, it was

noted in Chronopoulou and Viens [13] that the higher the value of H, the more particles are

need in order to have a satisfying range of volatility values, i.e. to avoid filtering with too few

particles. This effect is presumably due to the fact that for high H, the volatility process is

too “sticky”, and does not explore a sufficiently large area of its state space in short periods

of time to rely on the same number of particles as in cases that are closer to no memory (H

closer to 1/2). As a result, by increasing both the numbers of Euler steps and of particles, we

also increase the computational time needed to generate the particle filter. All these problems

are compounded by our need to generate separate filters for a number of different values of H,

in order to implement the implied-H method.

3 Long-memory stochastic volatility models in discrete time

To overcome the computational disadvantage described in the last paragraph above, which

affects the continuous-time LMSV model in its use for computing the implied value of H, we

now turn to the discrete time world. The first model we propose is the discretized version of

the continuous-time model. The second one, while not linked to the LMSV model in a strong

statistical sense, is nonetheless a discrete time analogue of it, one which is commonly used by

financial econometricians, one in which the volatility is a fractional ARIMA process.
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3.1 Discrete time models

3.1.1 Discretized fractional OU model

The first discrete time model we consider is the discretized fractional Ornstein-Uhlenbeck

model. We use an Euler discretization scheme for both equations, thus we have
{

Xn = Xn−1 +
(

r − σ(Yn−1)2

2

)

δn + σ(Yn−1)
√
δnǫn

Yn = Yn−1 + α(m− Yn−1)δn + β(BH
n −BH

n−1),

where ǫn are zero-mean iid Gaussian random variables and BH is a fractional Brownian motion.

The discretized version of the fractional equation inherits the desired property of long-range

dependence from the increments BH
n −BH

n−1 of fBm, which are commonly known as fractional

Gaussian noise (as opposed to the ubiquitous Gaussian white noise). The rate of convergence

of the Euler scheme for the Geometric Brownian Motion (the process Xn) is of order n−1/2,

while the rate of convergence of the fractional stochastic differential equation (the process Yn)

is of order n−H . This implies that for smaller values of H, more observations are needed in

order to approach the continuous time model. More details regarding the discretization of the

fractional stochastic differential equation can be found in [38].

3.1.2 Fractional ARIMA model

The fractional ARIMA model was proposed by Harvey [31] and Breidt et al. [9] simultaneously,

and was among the first LMSV models introduced in the literature. These authors propose

describing the volatility by a fractional ARIMA(1, d, 1) process. More generally, the fractional

ARIMA(p, d, q) model for volatility is as follows.

Definition 3 Let φ(·) and θ(·) be polynomials of orders p and q respectively. Let Yn be a

stationary process such that

φ(B)(1−B)dYn = θ(B)en,

for some d ∈ (−1/2, 1/2) and a sequence (en)n of iid variables with mean 0 and variance 1.

Then, the process Yt is called a fractional ARIMA(p, d, q) process.

Definition 4 More specifically, to model financial volatility, with H = d+ 1/2, we may use a

fractional ARIMA(p, d, q) process Y as above, and define the returns of the stock or index as

Xn = σ (Yn/2) ǫn

where σ is a predetermined function, and (ǫn)n is another sequence of iid variables with mean

0 and variance 1.
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The Fractional ARIMA(p, d, q) model is an extension of the classical ARIMA(p, d, q)

model with integer d, first introduced by Granger and Joyeux [29].

The parameter d = H − 1/2 describes the memory of the underlying model. The

fractional ARIMA model is long-range dependent when d ∈ (0, 12). More details regarding

these models can be found in Beran [4].

Remark 3 The above defines the fractional ARIMA in the general case. Part of the problem

for such a model is the procedure in order to specify the parameters p and q. For this, we refer

to Hamilton [30] and to standard time series analysis techniques. In the sequel, we choose to

work with a Fractional ARIMA(1, d, 1) model: it was suggested to be the most appropriate for

modeling S&P 500 data by [3]. We also choose to use Gaussian error sequences (ǫn)n and

(en)n.

3.2 Option pricing

Let us now explain how to adjust the option pricing algorithm developed in [13] and expanded

in Section 2 herein, for the case of discrete time. The change of the underlying model affects

only the algorithm for the construction of the empirical distribution of the volatility process via

the particle filter. The construction of the tree, and the pricing algorithm, remain unchanged.

In the particle filtering algorithm, instead of simulating the continuous time model using an

Euler technique over one observation time step, we simply simulate the value of the discrete-

time model in a single go, over this time step. This significantly reduces the computational

time of the particle filtering algorithm. We formalize this simple modification.

Remark 4 Referring to Section 3.1 of [13], the following changes are sufficient. Steps (1),

(2) and (3) of the Mutation Step are replaced by the simulation of the pairs {Xj
ti
, Y j

ti
}j=1,...,n at

time ti from time ti−1, for i = 1, . . . ,K, using the definition of the discrete-time model. Here

n is the number of particles used in the algorithm and K is the number of (daily) observations

that we have available. Thus, to obtain each such pair at time ti, we no longer need M Euler

steps, but one single simulation.

We test the performance of our approach under both discrete time models using simu-

lated data: We simulated each model separately and we then compute call option prices for a

call option that expires in 35 days with parameters: S0 = $800 and r = 0.21%, and compare

our values to those using a binomial model fitted to the historical volatility σhist = 0.26 given

by both our discrete simulation. This comparison permits us to get an idea of how far are our

24



Strike Price Discretized Model fARIMA Model Binomial Model

670 131.07 131.14 131.04

680 121.53 121.29 121.48

690 112.13 112.04 112.05

700 103.30 102.56 102.79

710 93.314 93.904 93.847

720 86.764 84.931 85.177

730 77.662 76.975 76.791

740 69.330 69.125 68.756

750 61.941 61.473 61.261

760 55.941 54.274 54.146

770 47.709 49.014 47.399

780 43.209 40.453 41.396

790 35.582 34.892 35.799

800 30.823 30.992 30.582

810 25.078 26.857 26.159

820 21.661 23.124 22.087

830 18.379 17.212 18.437

840 13.280 14.644 15.419

850 12.948 13.562 12.664

Table 7: Call Option Prices for a simulated model using both discretized and fARIMA models

and comparison with the corresponding classical Binomial prices. The Call option that we

priced has the following parameters: S0 = $800, σhist = 0.26, r = 0.21% and T = 35 days.

(Note: both simulated models had σhist = 0.26.)
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Figure 4: Particle Filters.
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results are from a standard model. The results of the simulation experiment are summarized

in Table 7 and Figure 4.

From Figure 4 we can say that the particle filtering algorithm works satisfactorily when

the underlying model is a discretized fractional OU or a fractional ARIMA model. The option

prices we compute, summarized in Table 7, are reasonable in all cases.

3.3 Statistical inference

Depending on which discrete-time model we use, estimation procedures specific to each model

are used for all parameters, except H (or equivalently d), which is estimated using the same

implied-H approach in both cases.

For the discretized version of the fractional Ornstein-Uhlenbeck model, we propose

using the variogram approach described in Section 2.4.

For the fractional ARIMA model, we follow the standard parametric approach, as

described by Breidt et al. [9]. Therefore, we choose to work with the logarithms of the squared

returns, i.e. Zt = logX2
t , which have a signal-plus-noise representation as follows

Zt = µ+ Yt + ηt,

where µ = E[log ǫ2t ] and ηt = {log ǫ2t −E[log ǫ2t ]}. Traditional parameter estimation techniques

developed for other autoregressive stochastic volatility models fail in this case, because of the

long-memory property.

Breidt et al. [9] propose to estimate the parameters of the model from {Zt} using

the Whittle approximation to the likelihood function. Given the observations zt = logX2
t ,

for t = 1, . . . ,K, define the periodogram

Ij =
1

2πK

∣

∣

∣

∣

∣

K
∑

t=1

zt exp(−i ωj t)

∣

∣

∣

∣

∣

2

, j = 1, . . . ,K − 1

where ωj = 2πj/K are the Fourier frequencies. The Whittle approximation for the −2 log-

likelihood is

LW (θ) =

⌊(K−1)/2⌋
∑

j=1

[

log fZ,θ(ωj) +
Ij

fZ,θ(ωj)

]

where fZ,θ(ωj) is the spectral density for Z at frequency ωj under the parameter model θ.

The spectral density function is defined as the inverse Fourier transform of the autocovariance

function as follows

f(λ) :=
1

2π

∞
∑

h=−∞

e−iλhρ(h).
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The authors in [9] also established the consistency of the Whittle estimator.

4 Comparison between discrete and continuous time models

Continuous and discrete time models have fundamental differences. The use of one class of

models over the other can depend on the underlying phenomenon, but this determination

cannot be made clearly when the underlying physical phenomenon may be in continuous time,

while one only has access to discrete time observations, and these observations cannot be

obtained with arbitrarily high frequency. In this case, both types of models can be used, and

each one has its advantages and disadvantages.

Discrete time models are easier to handle and typically require less complicated tools

for statistical inference. However, they tend to be very sensitive to the frequency of the data.

The models that corresponds to tick or daily data are far from identical, and are also different

from the one that corresponds to weekly or monthly observations. Continuous time models do

not depend on the frequency of observations, but their parameter estimation is more involved;

in particular, when observations are in discrete time, either the model must be discretized, to

allow for discrete time techniques for parameter estimation, or one must derive continuous-time

estimators which one then must discretize in order to evaluate them.

In our study, the continuous time model has one additional disadvantage: it is compu-

tationally expensive when implemented with real data. However, that the underlying volatility

phenomena are in continuous time, constitutes a legitimate belief particularly in the martin-

gale modeling world of option pricing, so that the continuous-time model may be the most

appropriate one. In this section we provide empirical evidence that this is correct, by numer-

ically comparing the three models discussed in the previous sections and using our S&P 500

example. We compare the CPU time required for the generation of volatility particle filters,

study a question of misspecification, and evaluate the models’ performances in option pricing.

4.1 Reduction of CPU time

In this section, we compare the CPU time that each model needs in order to construct one filter,

for various different numbers of particles. We prefer to use simulated data for the comparison,

to eliminate the uncertainty on estimated parameters.

We simulate each model and use these simulated data as “historical prices” which we

feed into the particle filtering algorithm. We then compute the corresponding CPU time for

the number of particles varying from 10 to 5000. We use 255 data points (corresponding to one

year daily data) and choose H = 0.53 or equivalently d = 0.03, for the long-memory parameter.
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Figure 5: (i) CPU time needed for the continuous time model, (ii) CPU time needed for the

discrete time models.

The results are summarized in Figure 5. We observe that the Fractional ARIMA model is the

fastest one, although the difference with the discretized OU model is not significant, because

the real time as perceived by the user is trivial in both cases. It is not possible to include

the continuous-time filter CPU time on the same graph, since the ratio with discrete-time

performance is 2 orders of magnitude higher. We conclude that our initial goal to reduce

computational time by moving to discrete time models, is achieved.

4.2 Model mis-specification study

As discussed before, even though we have access only to discrete time observations, it is

legitimate to believe that the true phenomena occur in continuous time. Therefore, in this

section, we wish to discuss a model mis-specification issue. Assume that the continuous-time

LMSV model is the true underlying model for stock movements. This means that using any

discrete-time model constitutes a model mis-specification. How significant is this problem, in

each of the two discrete models we study?

We study the effect of this mis-specification on the empirical distribution of the unob-

served process first, and then on option prices. We simulate a continuous fractional OU model

using the following parameters: α = −0.02733, β = 0.07567, µ = −0.00138 and long-memory

parameter H = 0.6.

We assume we have historical observations for K = 100 trading days and we also

simulate intraday data. Note that in all cases we assume thatH is known. Using the techniques
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discussed in Section 2.3, the estimated parameters of the discretized fractional OU model are

found to be:

α = −0.02633, β = 0.06673, µ = −0.00098.

Using the approach in Section 3.2, we fit a fractional ARIMA(1; 0.1; 1) model with estimated

parameters

φ = 0.9831, θ = −0.0025.

For each of the three models we estimate the empirical distribution of the unobserved volatility

using n = 1000 particles. For the continuous time model we use 10000 Euler steps. The three

histograms can be seen in Figure 6. We observe that using discrete and continuous time

OU models we construct very similar volatility filters, in terms of the range of the volatility

values and the corresponding probability weights. On the other hand, the fractional ARIMA

model gives higher weights to lower volatility values. Since our data is actually simulated, it

is possible to see how well our filters track the true volatility. The ARIMA model misspecifies

the volatility much more significantly than the discretized OU model, even in the relatively

moderate daily data frequency.

Using the empirical distribution of the volatility, for each model, we price a European

Call option with the following parameters: stock price today S0 = 120, interest rate r = 0.10%,

time to maturity T = 100 trading days and strike prices varying from K = 90 to K = 210.

The results are summarized in Table 8. Again, the two OU models gives us option prices that

are close to each other, while the fractional ARIMA model is further afield, particularly for

large strike prices.

We conclude that in a continuous-time world, model mis-specification due to discretiza-

tion is more serious for the fractional ARIMA model than for the discretized OU model, even

with moderate-frequency (daily) data.

4.3 Comparison on S&P 500 data

In this final section, we compare the three models using real data. We focus on the same

example as in Section 2.3: to price a European call option on the S&P 500 index on March

30th, 2009 with time to maturity T = 35 business days. The first step is to compute the implied-

H value for each model. In Section 2.3 this was found to be H = 0.53 for the fractional OU

model. It turns out that we obtain the same implied value of H when we use the discretized

fractional OU model, while using the fractional ARIMA (1, d, 1) model we obtain H = 0.52.

The results are repeated in Table 9.
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Figure 6: Empirical distribution of the unobserved volatility using the three models, when the

“true” underlying data are described by a fractional OU model.
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Strike Price fractional OU Discretized fOU fractional ARIMA

90 72.187 72.203 72.185

100 62.335 62.331 62.253

110 52.707 52.779 52.540

120 43.665 43.594 43.750

130 34.863 34.946 34.759

140 27.785 27.480 26.663

150 21.471 21.407 20.645

160 15.307 15.6914 15.276

170 11.730 11.577 10.148

180 8.4018 8.3831 8.0326

190 5.8517 5.6555 5.3244

200 4.1847 4.1151 3.5851

210 2.8696 2.6276 2.0635

Table 8: Call Option Prices for a simulated model using the three models, when the “true”

underlying data are described by a fractional OU model.

Model Implied Ĥ

Continuous fOU 0.53

Discretized fOU 0.53

fARIMA 0.52

Table 9: Implied H for the S&P 500 on March 30th 2009, under the three models.
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Strike Price Continuous fOU Discretized fOU fractional ARIMA

670 123.96 125.66 129.54

680 115.82 117.54 119.76

690 107.94 108.53 111.79

700 100.32 101.34 104.40

710 92.99 94.05 97.36

720 85.98 86.59 89.52

730 79.26 80.87 83.31

740 72.87 75.17 76.28

750 66.81 69.18 71.23

760 61.07 63.67 65.41

770 55.67 58.00 60.11

780 50.59 52.35 55.03

790 45.85 47.69 51.23

800 41.43 42.69 46.09

810 37.33 39.13 41.63

820 33.54 35.09 37.79

830 30.05 31.24 34.31

840 26.83 27.28 30.70

850 23.90 24.85 27.88

Table 10: Call Option Prices on the S&P 500 with S0 = $787.5, r = 0.21% and T = 35 business

days.

Now, using the implied values of H and the corresponding estimated parameters for

each model, we price the call option announced above. The option prices are presented in

Table 10 and a graphical comparison with the continuous fractional OU model can be seen in

Figure 7.

We observe that both discrete time models are close to the continuous time one. Al-

though we computed a different implied H for the fractional ARIMA model, in Figure 7 it

seems to be slightly closer to the continuous time fractional OU model. However, if we com-

pare the mean square error of the option prices with the center of the bid-ask spread for the

three models, then the continuous time model is significantly better than the other two (has

a lower MSE), the second best being the discretized fractional OU model and the last is the

fractional ARIMA model. This is empirical evidence that the continuous-time fractional OU
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Figure 7: Comparison of Call Option Prices on the S&P 500 using the three models.
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model is superior in option-pricing modeling terms irrespective of computational time, and

also confirms the conclusions of the mis-specification study.

5 Conclusions and recommendations

This article studies statistical memory in financial volatility, and its effect on option prices

in liquid markets, where high-frequency data is available. It proposes several long-memory

stochastic models for stock and index prices, and implements a calibration framework to de-

termine the memory length (value of the long-memory parameter). The main calibration

criterion is the consistency of calculated call option prices with those observed on the option

market.

In accordance with established practice in continuous-time finance, martingale exten-

sions of the Black-Scholes framework are used: the basic continuous-time model is that of

Comte and Renault [14], in which the volatility is an autonomous stochastic process, namely

a fractional Ornstein-Uhlenbeck (OU) process, which has the desirable properties of being

mean-reverting and having long memory. The resulting model is arbitrage-free. This article

also proposes two discrete models for the purpose of reducing the computational time for pa-

rameter estimation and option pricing. One is a discretization of the Comte-Renault model

(discretized fractional OU model), the other is a fractional ARIMA model proposed by Harvey

[31] and Breidt et al. [9].

Parameter estimation and option pricing should be based on the premise that option

market makers are forward-looking, in their expectations of where the market volatility might

be heading. This warrants this article’s integrated technique which trusts current option data

to determine whether the stock market’s volatility has any statistical memory, and which

uses the option data to determine simultaneously the volatility memory parameter and the

current option prices based on this parameter. The other model parameters are estimated

using standard statistical methodology, for each possible value of the long-memory parameter,

whose final value is determined by minimizing the distance between computed option prices

and observed market prices. Several minimizing schemes can be used, depending on observed

trade volumes or on user preferences. The option-pricing step is based on the multinomial

recombining tree proposed by Florescu and Viens [23] for generic random volatility settings,

combined with the long-memory stochastic volatility filter implemented in [13].

By working with both simulated data and call option data from the S&P 500 index, the

article determines that the continuous model is the most accurate one. The best estimation and

pricing results, as judged by comparisons to market prices, are obtained by using trade volumes
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to weigh these prices. Local minimizing schemes based on restricted ranges of option strike

prices also produce good results, even when volatility is tracked using a moderate frequency of

observations.

More generally, the empirical volatility distribution obtained from the stochastic volatil-

ity filter, and as a consequence, the calibrated value of the long memory parameter, are rather

insensitive to the frequency of observations. However, the entire integrated estimation and

pricing technique requires high-frequency data in order to estimate the non-memory model

parameters.

In order to have manageable CPU times, discrete models must be used. The discretized

fractional OU model performs better than the fractional ARIMA model at all observation fre-

quencies. This is no surprise, since the best fit of all is obtained from the more computationally

intensive continuous-time fractional OU model, which therefore provides the best description

of the underlying phenomenon. In conclusion, in order to have reasonable CPU times and

accurate option prices, in markets where the volatility is suspected to have statistical long

memory, the discretized fractional OU model is recommended.
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