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Abstract

Extensions of the Nourdin–Peccati analysis to Rn-valued random variables are obtained by taking condi-
tional expectation on the Wiener space. Several proof techniques are explored, from infinitesimal geometry,
to quasi-sure analysis (including a connection to Stein’s lemma), to classical analysis on Wiener space.
Partial differential equations for the density of an Rn-valued centered random variable Z = (Z1, . . . ,Zn)

are obtained. Of particular importance is the function defined by the conditional expectation given Z of
the auxiliary random matrix (−DL−1Zi | DZj ), i, j = 1,2, . . . , n, where D and L are respectively the
derivative operator and the generator of the Ornstein–Uhlenbeck semigroup on Wiener space.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

We set up various systems of partial differential equations for the density and other functionals
of the distribution of a random variable, extending to the n-dimensional case a formula from [12]
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based on the Nourdin–Peccati analysis introduced in [8]. The basic tool is the projection (or
equivalently the image) of a vector field defined on the Wiener space through a centered non-
degenerate map Z, as defined in [7, p. 70]; we connect this projection to [8] and [12] by extending
the use of the random variable A = (−DL−1Z | DZ) defined and employed in those references,
where D is the derivative operator and L is the Ornstein–Uhlenbeck generator; these are defined
precisely below, also see [7].

For instance, for an Rn-valued random variable Z = (Z1,Z2, . . . ,Zn) having a density ρ the
one-dimensional density formula in [12] is generalized herein to the system of partial differential
equations in Rn

∂

∂x1

(
β1

j ρ
) + ∂

∂x2

(
β2

j ρ
) + · · · + ∂

∂xn

(
βn

j ρ
) = −xjρ for j = 1,2, . . . , n, (0.1)

where βk
j is the function on Rn given by the conditional expectation

βk
j (x) = EZ=x

[(−DL−1Zj
∣∣ DZk

)]
. (0.2)

First, we introduce definitions and notations, including those needed for the above expressions.

1.1. Non-degenerate maps

We denote by Ω the Wiener space, by μ the standard Wiener measure and by H its Cameron–
Martin space. For a function h ∈ H, and ω ∈ Ω , we define the derivative operator D, see [6,7],
by

DhF(ω) := lim
ε→0

F(ω + εh) − F(ω)

ε
=

1∫
0

DsF(ω)h′(s) ds. (1.1.1)

For a vector field V on the Wiener space and F : Ω → R, we denote DV F := (V | DF) where
(. | .) is the scalar product in the Cameron–Martin space. The divergence operator δ is the dual
of the operator D in L2

μ. This means that for a vector field A and a random variable Ψ (i.e. Ψ is
a real-valued measurable function defined on the Wiener space Ω), respectively in the domain of
the operators δ and D,

E
[
δ(A)Ψ

] = E
[
(A | DΨ )

]
. (1.1.2)

We define the Ornstein–Uhlenbeck operator L by

L := −δD. (1.1.3)

We have

LF = −
1∫
DsF(ω)dω(s). (1.1.4)
0
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The pseudo-inverse L−1 of the operator L plays an important role in our study. For a function
F : Ω → R such that E[F ] = 0, we put

L−1 = −
+∞∫
0

et L dt. (1.1.5)

Using Wiener chaos, for any F ∈ L2
μ(Ω), we can find a sequence of symmetric func-

tions fn ∈ L2([0,1]n), n = 1,2, . . ., such that F = E[F ] + ∑∞
n=1 In(fn) and Var[F ] =∑∞

n=1 n!‖fn‖2
L2([0,1]n)

where In(f ) is n! times the iterated Itô integral of f w.r.t. the Wiener
process ω:

In(f ) = n!
1∫

0

sn−1∫
0

· · ·
s2∫

0

f (s1, . . . , sn) dω(s1) · · ·dω(sn).

Then it turns out that LF = −∑∞
n=1 nIn(fn) and L−1F = −∑∞

n=1 n−1In(fn). Details are in
Nualart’s book [13, Chapter 1].

Let Z = (Z1,Z2, . . . ,Zn) be an Rn-valued random variable defined on the Wiener space Ω .
Assume that Z ∈ D∞(Ω), i.e. Z is infinitely differentiable with respect to the operator D. Let
M be the n×n Gram matrix having for coefficients (DZi | DZj); assume that [det(M)]−1 ∈ L

p
μ

for every p: if all the above conditions are fulfilled, we say that the map Z is non-degenerate.
It is known from [7] that the law of a non-degenerate map Z has a density ρ relatively to the
volume measure of Rn, and that ρ is infinitely differentiable. We denote Z ∗ μ the image of μ

through the map Z; thus Z ∗ μ = ρ(x)dx. For f : Rn → R

∫
f

(
Z(ω)

)
dμ(ω) =

∫
f (x)ρ(x) dx (1.1.6)

where dx = dx1 dx2 · · ·dxn is the volume measure on Rn. Let Φ be an R-valued function de-
fined on the Wiener space and consider the measure dν = Φ(ω)dμ(ω); we denote Z ∗ Φ(ω)dμ

the image measure of ν by Z. If this image measure has a density with respect to the volume
measure dx, we denote this density dZ ∗ (Φ dμ)/dx. The conditional expectation of Φ given
Z = (x1, x2, . . . , xn) is

EZ=(x1,x2,...,xn)[Φ] = dZ ∗ (Φ dμ)/dx

dZ ∗ dμ/dx
(x1, x2, . . . , xn). (1.1.7)

We denote this function by EZ[Φ]. By definition, for any integrable function ψ : Rn → R,

E
[
ψ

(
Z(ω)

)
Φ(ω)

] =
∫

ψ
(
Z(ω)

)
Φ(ω)dμ(ω), (1.1.8)∫

ψ(x)EZ=x[Φ]ρ(x)dx =
∫

ψ
(
Z(ω)

)
Φ(ω)dμ(ω). (1.1.9)
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1.2. Inner action of vector fields on differential forms

Let v be a vector field on a differentiable manifold M of dimension n, we assume n � 2;
denote

∧p
(M) the vector space of differential forms of degree p on M; for p > 1, the inner

product

i(v) : ∧p
(M) �→ ∧p−1

(M) (1.2.1)

is defined through the identity〈
i(v)(Θ), e1 ∧ · · · ∧ ep−1

〉 = 〈Θ,v ∧ e1 ∧ · · · ∧ ep−1〉 (1.2.2)

where e1, . . . , ep−1 are generic vector fields on M. In particular if M = Rn, and

θ := dx1 ∧ · · · ∧ dxn (1.2.3)

is the canonical volume form of Rn, then i(v)(θ) ∈ ∧n−1
(Rn) and if we represent the vector

field v as

v =
n∑

k=1

βk ∂

∂xk
(1.2.4)

we get

i(v)(θ) = β1 × dx2 ∧ · · · ∧ dxn − β2 × dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·

=
n∑

j=1

(−1)j+1βj ×
∧
k �=j

dxk. (1.2.5)

Let d be the classical differential: if u : Rn → R is a function, then du = ∑n
k=1

∂u
∂xk dxk and for

forms, if

α =
∑

i1<i2<···<ip

αi1···ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip

then

dα =
∑

i1<i2<···<ip

(dαi1···ip ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip . (1.2.6)

We obtain

d
(
i(v)(θ)

) = dβ1 ∧ dx2 ∧ · · · ∧ dxn − dβ2 ∧ dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·

=
∑ ∂βk

∂xk
× θ (1.2.7)
k
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and

du ∧ i(v)(θ) =
(

n∑
k=1

∂u

∂xk
dxk

)
∧ i(v)(θ)

=
n∑

k=1

βk ∂u

∂xk

× θ = Dvu × θ (1.2.8)

where v is the vector field (1.2.4) and we denote

Dvu =
n∑

k=1

βk ∂u

∂xk

. (1.2.9)

1.3. Image of a vector field V on the Wiener space through a non-degenerate map Z : Ω → Rn

Given a measure m(dx) and a vector field v on Rn, n � 1, we define the function divm(v) via
the relation∫

divm(v)(x)ψ(x)dm =
∫

Dvψ(x)dm, ∀ψ : Rn → R, ψ integrable. (1.3.1)

Assume that m(dx) = eu dx where dx = θ is the volume measure and u : Rn → R is a function.
If v = ∑

k βk ∂
∂xk , then integration by parts yields

∫ ∑
k

βk(x)
∂ψ

∂xk
(x)eu(x) dx = −

∑
k

∫
βk(x)ψ(x)

∂u

∂xk

eu(x) dx −
∑

k

∫
ψ(x)

∂βk

∂xk

(x)eu(x) dx

which is the same as

divm(v)(x) = −Dvu −
∑

k

∂βk

∂xk
(1.3.2)

or equivalently, letting m(dx) = ρ(x)dx,

divρ dx(v)(x) = − 1

ρ(x)

∑
k

∂

∂xk

(
βk(x)ρ(x)

)
. (1.3.3)

Let V be a vector field on Ω and let Z = (Z1,Z2, . . . ,Zn) be a non-degenerate map Z : Ω → Rn

with density ρ with respect to the volume measure dx on Rn, then for any integrable function
ψ : Rn → R,

∫
ψ(x)EZ=x[δV ]ρ(x)dx = E

[
(δV )(ω)ψ

(
Z(ω)

)] =
n∑

E

[
∂ψ

∂xk
(Z)

(
V

∣∣ DZk
)]

.

k=1
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We define the vector field v on Rn as

v =
n∑

k=1

βk(x)
∂

∂xk
with βk(x) = EZ=x

[
DV Zk

] = EZ=x
[(

V | DZk
)]

. (1.3.4)

Then from Theorem 2.4, p. 70 in [7], we have

divρ dx(v) = EZ[δV ]. (1.3.5)

The relation (1.3.5) extends to differential forms, see Section 7.3, p. 142 in [7].

1.4. Stein and Nourdin–Peccati lemmas

Recall the following (see Lemma 1.2, part (iii) in [8], and Stein’s original presentation [15]).

Classical Stein equation. For a measurable function s : R �→ R such that ‖s‖∞ � 1, denote

E
[
s(N)

] =
∫
R

(2π)−1/2s(y)e−y2/2 dy

where N is a centered gaussian variable with variance 1, then

f (x) = ex2/2

x∫
−∞

[
s(t) − E

[
s(N)

]]
e−t2/2 dt (1.4.1)

is the unique bounded solution of the differential equation

f ′(x) − xf (x) = s(x) − E
[
s(N)

]
(1.4.2)

for a.e. x; it satisfies ‖f ‖∞ � 4
√

2π and ‖f ′‖∞ � 4.

The differential equation for f is called Stein’s equation. One main interest of Stein’s equation
comes from the boundedness properties of f and f ′. See Lemma 2.5, p. 594 in [15]. Nourdin and
Peccati [8] proved that the existence of a bounded solution for Stein’s equation (Stein’s lemma),
an analytic result, is equivalent to the following non-analytic (probabilistic) interpretation.

Nourdin–Peccati lemma. For a measurable function s : R �→ R, such that ‖s‖∞ � 1, there
exists a continuous and Lebesgue almost everywhere differentiable function f with a derivative
bounded by 4 which satisfies

E
[
f ′(Z)

(
1 − h(Z)

)] = E
[
s(Z)

] − E
[
s(N)

]
(1.4.3)

for every non-degenerate map Z : Ω → R and its corresponding function h defined by

h(x) = EZ=x
[(−DL−1Z

∣∣ DZ
)]

(1.4.4)

and N denotes a standard normal r.v.
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The Nourdin–Peccati lemma is useful when one wishes to compare the distribution of a ran-
dom variable Z to the normal distribution, by considering its action on all the functions s in the
unit ball: indeed, the boundedness of f ′ in the above lemma shows that an upper bound on the
difference between the expectation of s(Z) and the corresponding normal expectation, for any
such s, is 4 times the quantity E[|h(Z) − 1|] = ∫

R |h(x) − 1|ρ(x)dx. Since the function h does
not depend on s, but only on the law of Z, this device identifies the proximity of Z to a normal
r.v. by how close the function h is to the constant 1. Many details on this technique can be found
in [8–11].

The equivalence of Stein’s equation with Nourdin–Peccati identity (1.4.3) can be seen via the
key formula (1.1.2). Starting from Stein’s equation, we replace the variable x by Z and we take
the expectation, it gives

E
[
f ′(Z) − Zf (Z)

] = E
[
s(Z)

] − E
[
s(N)

]
. (1.4.5)

Since Z = −δDL−1Z, with (1.1.2), we deduce

E
[
Zf (Z)

] = E
[(−DL−1Z

∣∣ DZ
)
f ′(Z)

] = E
[
h(Z)f ′(Z)

]
and we obtain (1.4.3). Conversely, from (1.4.3), with (1.1.2), we deduce (1.4.5). Indeed, for any
non-degenerate map Z with density ρ,

∫
R

(
xf (x) − f ′(x)

)
ρ(x)dx = −

∫
R

(
s(x) − E

[
s(N)

])
ρ(x)dx.

This implies that f satisfies Stein’s equation.
Other applications are estimates for the distribution function of Z, see (3.14) in [17]. The

Nourdin–Peccati lemma applies to areas as diverse as mathematical physics and theoretical statis-
tics, this can be found in [3,14,17]: the first deals with estimating the long-memory parameter
of a fractional Brownian motion, the second finds upper and lower bounds for the density of
the solution of a stochastic heat equation with non-linear drift, the third proves that Brownian
polymers in some spatially correlated white-noise environments have diffusive fluctuation.

In Section 2, the analysis of Nourdin and Peccati, via the random variable A =
(−DL−1Z | DZ), is extended to Rn in a general geometric setting thanks to an infinitesimal
proof and the functional identity (1.3.5). Section 3 explains the relation between Stein’s lemma
and a lemma of Nourdin and Peccati, by employing the quasi-sure analysis on Wiener space.
An extension of the Nourdin–Peccati analysis for Rn-valued random variables is presented in
Section 4, thanks again to the quasi-sure analysis on Wiener space. In Section 5, we introduce
an approach to the n-dimensional Nourdin–Peccati analysis via partial differential equations for
the density of Rn-valued random variables. The results of Section 5 are used in Section 6 to
propose a way of comparing conditional probabilities of a pair of random variables to Gaussian
conditional probabilities.

It is possible to obtain all the results in this paper as corollaries of the main Theorem 2.1. We
have chosen to present various other proofs of the results in Sections 3–5.
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2. Extension of the Nourdin–Peccati analysis to Rn

Theorem 2.1. Let Z = (Z1,Z2, . . . ,Zn), Z : Ω → Rn be a non-degenerate map; given a smooth
function f : Rn → R. Set F = f ◦ Z; assume that F ∈ D∞(Ω) and that E[F ] = 0. Define on Ω

the gradient vector field

V f = −DL−1(F ),

where L is the Ornstein–Uhlenbeck generator; define the image of V f through Z by

v
f
x =

n∑
k=1

βk(x)
∂

∂xk
, where βk(x) := EZ=x

[
DV f Zk

]
then if θ := dx1 dx2 · · ·dxn is the volume measure on Rn,

f = divρ×θ

(
vf

)
. (2.1)

Proof. From Theorem (2.4) on p. 70 in [7], EZ(δ(V )) = divρ×θ (v): see the identity (1.3.5). To
see that (2.1) is true, it is thus enough to verify that

f (x) = EZ=x[δV ]. (2.2)

This results immediately from the definition of V = −DL−1(f ◦ Z), and the identity δD = −L
which implies δV = f ◦ Z. �
Lemma 2.2. If n > 1, let θ := dx1 ∧ dx2 ∧ · · · ∧ dxn be the volume form in Rn, then the identity
f = divρ×θ (v

f ) is equivalent to

−(fρ) × θ = d
(
ρ × i

(
vf

)
(θ)

)
. (2.3)

Proof. The notations are those of Section 1.2. Set ρ = exp(u), then (2.3) becomes

−f θ = du ∧ i
(
vf

)
(θ) + d

(
i
(
vf

)
(θ)

)
. (2.4)

We calculate each term in the right-hand side of (2.3) with the help of Section 1.2: d(i(vf )(θ)) =∑
k

∂βk

∂xk × θ and du ∧ i(vf )(θ) = Dvf u × θ . Then (2.4) becomes

−f = Dvf u +
∑

k

∂βk

∂xk
(2.5)

thus the identity (2.3) is equivalent to f = divρ×θ (v
f ). �

By integration and by classical Stokes theorem, we immediately obtain the following.
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Corollary 2.3. For every domain O ⊂ Rn defined by O = {φ(ξ) � 0} where φ : Rn → R is a
smooth map, denoting ∂O the boundary of O, we have∫

O

(fρ) × dx1 ∧ dx2 ∧ · · · ∧ dxn = −
∫

∂O

ρ × i
(
vf

)(
dx1 ∧ dx2 ∧ · · · ∧ dxn

)
. (2.6)

The case n = 1. When n = 1 and f (x) = x, we have V f = −DL−1Z, and therefore β in
Theorem 2.1 takes the simpler expression

β(x) := EZ=x
[(

DZ
∣∣ −DL−1Z

)]
(2.7)

which is the fundamental function introduced by Nourdin and Peccati in their analysis [8] for
the purpose of comparisons of random variable laws to Normal and Gamma laws via Stein’s
lemmas (see Section 1.4 for a description of this comparison). When n = 1, f (x) = x and dx is
the Lebesgue measure on R, Theorem 2.1 gives

x = divρ dx

(
β(x)

∂

∂x

)
(2.8)

that is for any smooth integrable function ψ : R → R,∫
xψ(x)ρ(x) dx =

∫
β(x)ψ ′(x)ρ(x) dx. (2.9)

Let x0 be fixed, then this last identity stays valid for the function ψ = ψε such that ψε(x) = 0 if
x � x0 − ε, ψε(x) = 1

ε
(x − x0 + ε) if x0 − ε � x � x0 and ψε(x) = 1 if x � x0. Passing to the

limit when ε goes to zero, we deduce

+∞∫
x0

xρ(x)dx = β(x0)ρ(x0). (2.10)

In [12] the function β in (2.7) (called g in [12]) was subsequently used to derive a density
formula. Writing ϕ(x) = ∫ ∞

x
tρ(t) dt , this yields ϕ′(x) = −xϕ(x)/β(x). It implies the following

density formula (Eq. (3.14) in [12]).

Lemma 2.4. With Z a non-degenerate real-valued map with a density ρ with respect to Lebesgue
measure, we have

ρ(x) = ϕ(x)

β(x)
= ϕ(0)

β(x)
exp

(
−

x∫
0

y

β(y)
dy

)
(2.11)

on its support, where β = EZ[(DZ | −DL−1Z)]. This function β was called g in [12].
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The case n > 1. For n > 1, the identity f = divρ×θ (v
f ) in (2.1) from Theorem 2.1 can be

written as

vf
(
log

(
ρ(x)

)) = −f (x) −
n∑

k=1

∂

∂xk

(
βk(x)

)
. (2.12)

If we vary f , taking successively f (x1, x2, . . . , xn) = xj for j = 1, . . . , n, we obtain the system
(0.1)–(0.2) which is the n-dimensional analogue of the density formula of [12] (Lemma 2.4
herein). We can also give a direct proof of (0.1)–(0.2). Summarize we have the following result.

Theorem 2.5. Let (Z1,Z2, . . . ,Zn) = Z : Ω → Rn be a random variable. Assume that under
the Wiener measure μ, Z has a density ρ with respect to Lebesgue measure. We define

hi,j (x) = EZ=x
[
Hi,j

]
where Hi,j = −(

DL−1Zi
∣∣ DZj

)
.

Then ρ satisfies the system of partial differential equations:

∂

∂x1

(
hj,1ρ

) + ∂

∂x2

(
hj,2ρ

) + · · · + ∂

∂xn

(
hj,nρ

) = −xjρ for j = 1,2, . . . , n.

Proof. For any suitable test function g : Rn → R, using the relation L = −δD, the duality rela-
tion for δ and D, and the definition of conditional expectation, we have

I := E
[
Zjg(Z1,Z2, . . . ,Zn)

] = −E
[
δ
(
DL−1Zj

)
g
(
Z1,Z2, . . . ,Zn

)]
= −E

[
n∑

k=1

(
DL−1Zj

∣∣ DZk
)( ∂

∂xk

g

)(
Z1,Z2, . . . ,Zn

)]

=
n∑

k=1

∫ (
∂

∂xk

g

)
(x1, x2, . . . , xn)h

j,k(x1, x2, . . . , xn)ρ(x1, x2, . . . , xn) dx.

We integrate by parts, to get

I = −
n∑

k=1

∫
g(x1, x2, . . . , xn)

∂

∂xk

(
hj,k(x1, x2, . . . , xn)ρ(x1, x2, . . . , xn)

)
dx.

On the other hand, by definition of I , we have

I =
∫

xjg(x1, x2, . . . , xn)ρ(x1, x2, . . . , xn) dx.

The result follows by identifying the last two expressions for I . �
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3. Density formula and quasi-sure analysis on Wiener space

The proof of Theorem 2.1 is done without quasi-sure analysis. However it is interesting to
relate Stein’s lemma to the coarea formula and quasi-sure analysis. See [7, pp. 86–148] for a
survey of this theory. In the following, we show how the density identity in the case n = 1 can be
deduced from the Stokes formula on a tube in the Wiener space. Let a random variable be given
by a non-degenerate map Z : Ω → R. We consider the random variable

H := (DZ | A) and its conditional expectation h(x) := EZ=x(H) (3.1)

where A is the vector field on the Wiener space defined as

A := −DL−1Z. (3.2)

Here the notation h coincides with β used in Lemma 2.4. Since L = −δD, it holds that

δ(A) = Z. (3.3)

Recall the expression of conditional expectation through the coarea formula established in [2]
and exposed in [7, Theorem 6.3.1, p. 140], where Z is any non-degenerate map from the Wiener
space to Rn:

E
[
ψ(Z)det

(
Z′) × u

] =
∫

Rn

ψ(x) ×
[ ∫
Z−1(x)

u(x) a(dx)

]
dx (3.4)

where a is the area measure on the submanifold Z−1(x) of the Wiener space. (See [7] for a
detailed definition and [4] for the classical coarea formula.)

In the case n = 1 we have

det
(
Z′) = ‖DZ‖ = √

(DZ | DZ). (3.5)

Denote N the vector of norm 1 defined as

N := 1

‖DZ‖DZ. (3.6)

Note that Nω is the unit normal at the hypersurface Z−1(x) for Z(ω) = x. Taking u = (A | N) =
(A | DZ)/‖DZ‖ and writing ρ(x) for the density of the law of Z relatively to the volume mea-
sure, it holds

E
[
ψ(Z)‖DZ‖ × u

] = E
[
ψ(Z)(A | DZ)

]
=

∫
ψ(x)EZ=x

[
(A | DZ)

]
ρ(x)dx =

∫
ψ(x)EZ=x[H ]ρ(x)dx.
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Therefore from (3.4),

EZ=x[H ] = 1

ρ(x)

∫
Z−1(x)

(Au | Nu)a(du). (3.7)

Theorem 3.1. Consider the tube

D(x,x′) := {
ω ∈ Ω; Z(ω) ∈ [x, x′]}, x′ > x, (3.8)

then

−
∫

Z−1(x′)

(Au | Nu)a(du) +
∫

Z−1(x)

(Au | Nu)a(du) =
∫

D(x,x′)

Z μ(dω). (3.9)

Proof. From the Stokes formula in [7, p. 143], identifying vector fields with 1-differential forms
we get

−
∫

Z−1(x′)

(Au | Nu)a(du) +
∫

Z−1(x)

(Au | Nu)a(du) =
∫

D(x,x′)

δ(A)μ(dω) (3.10)

which, together with (3.3), proves the theorem. We also give the following direct proof of (3.10)
via an approximation: if x < x′, define the continuous function φε : R → R with φε(η) = 1
if x � η � x′, φε(η) = 0 if η � x − ε or η � x′ + ε and linear otherwise. Since φ′

ε(η) = 0 if
x � η � x′, we have

E
[
(δA)1x�Z(ω)�x′

]
= lim

ε→0

x∫
x−ε

φ′
ε(u)

( ∫
Z−1(u)

(A | N)da(ω)

)
du + lim

ε→0

x′+ε∫
x′

φ′
ε(u)

( ∫
Z−1(u)

(A | N)da(ω)

)
du.

Taking into account that φ′
ε(η) = 1/ε if x − ε < η < x and φ′

ε(η) = −1/ε if x′ < η < x′ + ε, we
obtain (3.10). Then with (3.10) and (3.3), we get (3.9). �

Combining (3.9) with (3.7) yields the following.

Corollary 3.2. Let Z be a real valued non-degenerate map with density ρ. Then for any
x1, x2 ∈ R, with the function h defined in (3.1),

−ρ(x2)h(x2) + ρ(x1)h(x1) =
x2∫

x1

xρ(x)dx. (3.11)

Letting x2 → +∞ leads immediately to the density formula of Lemma 2.4.
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4. Nourdin–Peccati analysis for Rn-valued random variables and quasi-sure analysis on
Wiener space

The above quasi-sure analysis and resulting theorem can be generalized to a non-degenerate
Rn-valued random variable Z = (Z1,Z2, . . . ,Zn). Consider the Rn-valued function F =
(F 1,F 2, . . . ,F n) defined by

F i(x0) =
∫

D(x0,+∞)

xi ρ(dx) =
∫

Z−1(D(x0,+∞))

Zj (ω)dμ(ω), i = 1,2, . . . , n, (4.1)

where D(x0,+∞) is the positive orthant with corner x0, i.e.

D(x0,+∞) := {
x ∈ Rn; xi > xi

0, ∀i
}
. (4.2)

The function F is similar to a cumulative distribution function: it would be thus if one removed xi

from the integrand. The presence of the factor xi is to facilitate comparisons to Gaussian r.v.’s,
just as is the case when n = 1: see (2.10) and Lemma 2.4.

Assume E[Z] = 0. Similarly to A in (3.2), let Ai be the vector fields defined by

Ai := −D
(

L−1)(Zi
)
. (4.3)

The relevant analogue of the scalar r.v. H in (3.1) from the Nourdin–Peccati analysis is the
random matrix

Hi,j := DAi Zj = (
Ai

∣∣ DZj
)
, (4.4)

along with its conditional expectation

hi,j (x) = EZ=x
[
Hi,j

]
. (4.5)

Since

δAi = Zi

we can rewrite

F i(x0) =
∫

Z−1(D(x0,+∞))

δAi(ω)dμ(ω). (4.6)

We can use an approximation technique to prove the following theorem when n = 2.

Theorem 4.1. With Z a centered non-degenerate random variable in R2, with F i defined in (4.1),
and hi,j defined in (4.5), we have for each i = 1,2, and each x = (x1, x2) ∈ R2,

F i(x) =
∞∫
2

hi,1(x1, u2)ρ(
x1, u2)du2 +

∞∫
1

hi,2(u1, x2)ρ(
u1, x2)du1. (4.7)
x x
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Proof. By (4.6) we have

Fj
(
x1, x2) =

∫
Z−1(D(x0,+∞))

δAi(ω)dμ(ω) = E
[
δAj 1Z1>x1 1Z2>x2

]
, j = 1,2.

Then we proceed as in the direct proof of (3.10). We define an approximation of the set
function 1D(x,+∞). For small ε > 0, we define the continuous and almost everywhere differ-
entiable function φε : R2 → R by φε(η1, η2) = 1 if η = (η1, η2) ∈ D(x,+∞) and φε(η1, η2) = 0
if η = (η1, η2) /∈ D(x − (ε, ε),+∞). We join these two pieces by planes. For that we put
φε(η1, η2) = ε−1(η1 − (x1 − ε)) if x1 − ε < η1 < x1 and η1 − x1 < η2 − x2, then φε(η1, η2) =
ε−1(η2 − (x2 − ε)) if x2 − ε < η2 < x2 and η1 − x1 � η2 − x2. We have

1D(x,+∞) = lim
ε→0

φε almost everywhere w.r.t. the measure dx

and the derivatives of φε exist almost everywhere. We deduce

Fj
(
x1, x2) = lim

ε→0
E

[
δAjφε

(
Z1(ω),Z2(ω)

)]
= lim

ε→0
E

[(
Aj

∣∣ DZ1)∂φε

∂η1

(
Z1(ω),Z2(ω)

)]
+ lim

ε→0
E

[(
Aj

∣∣ DZ2)∂φε

∂η2

(
Z1(ω),Z2(ω)

)]
. (4.8)

The partial derivatives of φε are zero for η ∈ D(x,+∞) and η /∈ D(x − (ε, ε),+∞). On the strip
(of width ε) x1 − ε < η1 < x1 and η1 − x1 < η2 − x2, we have ∂φε/∂η1 = ε−1. We thus obtain
the theorem from (4.8). �

For fixed x0 ∈ R2, we proved the above theorem approximating the boundary of the domain
D(x0,+∞). However we may define the boundary of the submanifold Z−1(D(x0,+∞)) in
Wiener space. The boundary ∂D(x0,+∞) is constituted by the two half-lines l1, l2, starting
from x0 satisfying dx2

0 |l1 = 0, and dx1
0 |l2 = 0, i.e.

l1 = {(
η1, x2

0

)
, η1 � x1

0

}
and l2 = {(

x1
0 , η2), η2 � x2

0

}
. (4.9)

For k = 1,2 and j = 1,2, j �= k, we let Lk = Z−1(lk), i.e.

Lk = {
Zk(ω) � xk

0 , Zj (ω) = x
j

0

}
(4.10)

thus L1,L2 are two submanifolds of codimension 1 of the Wiener space and the boundary of
Z−1(D(x0,+∞)) is

∂
[
Z−1(D(x0,+∞)

)] = L1 ∪ L2. (4.11)

Then with quasi-sure analysis [5,16], we can consider the previous theorem as a projection on R2

of the Stokes formula on the Wiener space. Let A be a vector field on the Wiener space. For a
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differentiable function ψ : Ω → R, it holds
∫

ψ(ω)(δ A)dμ(ω) = ∫
(A | Dψ)dμ(ω). If ψ is not

differentiable but is the set function 1Z−1(D(x0,+∞)), we have Stokes theorem

∫
Z−1(D(x0,+∞))

(δ A)dμ(ω) =
∫

∂[Z−1(D(x0,+∞))]
A

where we specify the meaning of the boundary integral of the vector field A on the right-hand
side by ∫

∂[Z−1(D(x0,+∞))]
A =

∫
L1

A +
∫
L2

A.

This interpretation therefore generalizes to the n-dimensional case, as follows.

Theorem 4.2. Let Z : Ω → Rn be a non-degenerate map and A be a vector field on Ω . Let
x0 = (x1, x2, . . . , xn) ∈ Rn. The boundary ∂[Z−1(D(x0,+∞))] is

∂
[
Z−1(D(x0,+∞)

)] =
⋃

1�k�n

Pk

where Pk is the subset of the Wiener space defined by

Pk = {
Zk(ω) = xk, Zj (ω) � xj , ∀j �= k

}
.

It is a submanifold of codimension one in the Wiener space. We have

∫
Z−1(D(x0,+∞))

(δ A)dμ(ω) =
∫

∂[Z−1(D(x0,+∞))]
A =

n∑
j=1

∫
Pk

A

with ∫
Pk

A = − ∂

∂ηk

∣∣∣∣
η=x0

∫
Z−1(D(η,+∞))

(
A

∣∣ DZk
)
dμ(ω)

where we put η = (η1, η2, . . . , ηn).

Proof. Following [18], one only needs to consider distributions on the Wiener space: we have

∫
Z−1(D(x0,+∞))

(δ A)dμ(ω) =
n∑

j=1

E

[(
A

∣∣ DZj
) ×

∏
k, k �=j

1Zk(ω)�xk × ∂

∂xj
1Zj (ω)�xj

]
. �
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5. Approach to n-dimensional density formulae via partial differential equations

In dimension n � 2, as we have seen that (0.1)–(0.2) are consequence of Section 2, it is
possible to find implicit expressions for the density of an Rn-valued random variable Z using
partial differential equations as a consequence of Theorem 2.1.

5.1. A system of PDEs employing DZ and LZ

If one is able to calculate functions based on DZ and LZ, a system was already known in [1,
pp. 355–360]. Let Z : Ω → Rn be an Rn-valued random variable, Z = (Z1,Z2, . . . ,Zn). We
assume that Z has a density ρ(x1, x2, . . . , xn) with respect to the Lebesgue measure dx. We
denote

βij (x) = EZ=x
[(

DZi
∣∣ DZj

)]
and γj = −EZ=x

[
LZj

]
then according to [1], the density ρ satisfies the system of partial differential equations (S):

∂

∂x1
(β1j ρ) + ∂

∂x2
(β2j ρ) + · · · + ∂

∂xn

(βnjρ) = −γjρ for j = 1,2, . . . , n. (S)

Like in Section 2, we can deduce the system (S) from a more general result, as we now see.

Proposition 5.1. Let Z = (Z1,Z2, . . . ,Zn) : Ω → Rn be an Rn-valued random variable with
density ρ. Let ψ : Rn → R, and denote

βk
ψ(x) = EZ=x

[(
D(ψ ◦ Z)

∣∣ DZk
)]

and γψ(x) = −EZ=x
[

L(ψ ◦ Z)
]

then

n∑
k=1

∂

∂xk

(
βk

ψρ
) = −γψρ. (5.1.1)

Proof. For any test function g : Rn → R with suitable boundedness and smoothness assump-
tions, and μ the Wiener measure, we have by definition of the density and the conditional
expectation, first using −L = δD, then integration by parts, and finally the duality relation be-
tween δ and D and the chain rule for D,∫

g(x)γψ(x)ρ(x) dx = −
∫

g(Z)L(ψ ◦ Z)dμ =
∫

g(Z)δD(ψ ◦ Z)dμ

=
∑

k

∫
∂g

∂xk

(Z)
(
DZk

∣∣ D(ψ ◦ Z)
)
dμ =

∫ ∑
k

∂g

∂xk

(x)βk
ψ(x)ρ(x) dx.

Integrating again by parts yields (5.1.1). Another proof of this proposition is to apply Theo-
rem 2.1 with f (x) = γψ(x). �
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Example 5.2. Let Z = (ω(t1),ω(t2)), then βij = ti ∧ tj and Lω(tj ) = ω(tj ), thus γj (x1, x2) =
EZ=(x1,x2)[Lω(tj )] = EZ[ω(tj )] = xj . The system (S) becomes

t1
∂

∂x1
ρ + t1 ∧ t2

∂

∂x2
ρ = −x1ρ, t1 ∧ t2

∂

∂x1
ρ + t2

∂

∂x2
ρ = −x2ρ.

The solution is given by ρ(x1, x2) = exp(− x2
1

2t1
) exp(− (x2−x1)

2

2(t2−t1)
).

As can be seen in the above example, the proposition is easily interpreted when Z is jointly
Gaussian: one notes that then the system (S) becomes

n∑
i=1

βi,j ∂ρ

∂xi

= −xjρ(x) for j = 1,2, . . . , n,

whose solution is evidently the density of Z. An economy of functional parameters can be
achieved, and a greater ability to compare the law of an arbitrary random variable Z to a Gaus-
sian law, if one reverts to the use of the matrix h defined in (0.2), see Theorem 2.5. The Gaussian
case is equivalent to the case where h is a constant matrix, equal to the covariance matrix of Z.
We easily see in this case that the system (S) is identical to the system (0.1)–(0.2). In general,
this is not the case. Indeed, while the matrix α in (S) is always symmetric, the matrix h, which
coincides with the matrix α only in the Gaussian case, is typically non-symmetric when Z is not
Gaussian. On the other hand, from the point of view of PDEs, assume that the hj,k are constants
and that the matrix (hj,k) is invertible; then the system (0.1)–(0.2) has a solution if and only if
the matrix (hj,k) is symmetric. This is proved writing the integrability conditions for the system
as follows. Let h−1 be the inverse of the matrix h. We have ∂ logρ/∂xj = ∑

k(h
−1)j,kxk and

∂2 logρ/∂xp∂xj = (h−1)j,p . The condition that ∂2 logρ/∂xp ∂xj is symmetric in j , p implies
that the matrix (h−1)j,p is symmetric.

5.2. A general system. Comparison of two random variables

The following proposition is also a consequence of Theorem 2.1. It covers both system (S)
and system (0.1)–(0.2), see Theorem 2.5. Let Y = (Y 1, Y 2, . . . , Y p) and Z = (Z1,Z2, . . . ,Zn)

be two random variables with values respectively in Rp and in Rn. Let f : Rp → R. In the next
proposition, to obtain the system (S) of Section 5.1, we take n = p and Y j = Zj and to obtain
(0.1)–(0.2), we take Y j = L−1Zj .

Proposition 5.3. Let ψ : Rp → R. With Y = (Y 1, Y 2, . . . , Y p) and Z = (Z1,Z2, . . . ,Zn) as
above, we denote, for x ∈ Rn,

γψ(x) = EZ=x
[

L(ψ ◦ Y)
]

and βk
ψ(x) = −EZ=x

[(
D(ψ ◦ Y)

∣∣ DZk
)]

.

We assume that the variable Z has a density ρ with respect to the n-dimensional Lebesgue
measure. Then ρ satisfies the following system of PDEs for j = 1,2, . . . , n:

n∑
k=1

∂

∂xk

(
βk

ψρ
) = −γψρ.
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Proof. The proof is similar to those of Theorem 2.5 or of Proposition 5.1. For a bounded differ-
entiable test function g : Rn → R, we calculate

E
[

L(ψ ◦ Y)g
(
Z1,Z2, . . . ,Zn

)]
in two different ways:

E
[

L(ψ ◦ Y)g
(
Z1,Z2, . . . ,Zn

)] =
∫

g(x1, x2, . . . , xn)Z ∗ (
L(ψ ◦ Y)

)
dμ

=
∫

g(x1, x2, . . . , xn)
Z ∗ (L(ψ ◦ Y))dμ

Z ∗ dμ
Z ∗ dμ

=
∫

g(x1, x2, . . . , xn)E
Z
[

L(ψ ◦ Y)
]
(x1, x2, . . . , xn)Z ∗ dμ

=
∫

g(x)γψ(x)ρ(x) dx.

On the other hand

E
[

L(ψ ◦ Y)g
(
Z1,Z2, . . . ,Zn

)] = −E
[
δ
(
D(ψ ◦ Y)

)
g
(
Z1,Z2, . . . ,Zn

)]
= −

n∑
k=1

E

[(
D(ψ ◦ Y)

∣∣ DZk
) ∂g

∂xk

(
Z1,Z2, . . . ,Zn

)]

=
n∑

k=1

∫
βk

ψ(x)
∂g

∂xk

(x)ρ(x) dx

= −
n∑

k=1

∫
∂

∂xk

(
βk

ψρ
)
(x)g(x) dx

finishing the proof of the proposition. �
The above general proposition gives information when n = 1, p = 1, for calculating condi-

tional expectations for D-differentiable r.v.’s. Indeed, assume Z and V are D-differentiable, and
let Y = L−1V . Then

γ (x) = E[V | Z = x] and β(x) = −EZ=x
[〈
DL−1V,DZ

〉]
.

Let ρ be the density of Z. The proposition yields (βρ)′ = −γρ. In particular,

β(x)ρ(x) =
∞∫

x

γ (y)ρ(y) dy = E[V 1Z>x].

This relation helps to see how β and γ are connected to the issue of how Z and V are correlated.
For instance one way to signify that V and Z are from the same distribution but are non-trivially
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correlated, is to say that there is some constant K ∈ (0,1) such that for x > 0, γ (x) = EZ=x[Y ] �
Kx. Then for x > 0,

β(x)ρ(x) � K

+∞∫
x

zρ(z) dz = Kϕ(x)

where we used the notation ϕ as in Lemma 2.4. Recall from therein that the density formula of
Lemma 2.4 is equivalent to ϕ = ρh where h(x) = −EZ=x[〈DL−1Z,DZ〉] as usual. Therefore
on the support of Z, with x > 0 therein,

β(x) � Kh(x).

In other words, the non-trivial correlation of Y and Z can be read off of the above inequality as
well.

6. Estimating conditional probabilities

Theorem 4.1 is a special case, in dimension 2, of a corollary of the PDE-based Theorem 2.5
(i.e. of the system of PDEs (0.1)–(0.2)), which we now give. Theorem 4.1 and this corollary have
the advantage of not referring to the derivatives of ρ.

Corollary 6.1. Under the assumptions of Theorem 2.5, recall the distribution-moment-type func-
tion F defined in (4.1), i.e.

F i(x) =
∞∫

x1

∞∫
x2

· · ·
∞∫

xn

yiρ(y) dyn · · ·dy2 dy1 = E[Zi1Z1>x11Z2>x2 · · ·1Zn>xn ]

for i = 1,2, . . . , n, and the corresponding matrix h from (4.5). Then for each i, and each x =
(x1, x2, . . . , xn) ∈ Rn,

F i(x) =
n∑

j=1

I i,j

where

I i,j :=
∞∫

x1

· · ·
∞̂∫

xj

· · ·
∞∫

xn

hi,j (z1, . . . , xj , . . . , zn)ρ(z1, . . . , xj , . . . , zn) dz1 · · · d̂zj · · ·dzn,

where the symbol .̂ means that the corresponding expression is to be omitted.

Proof. For each fixed i = 1,2, . . . , n, if we integrate the corresponding equation in the system
of PDEs (0.1)–(0.2), over the orthant D(x,+∞), the expression on the left-hand side of (0.1) be-
comes precisely the sum −∑n

j=1 I i,j above, while the expression on the right-hand side of (0.1)

becomes precisely −F i(x), proving the corollary. �
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Let us now go back to the special case n = 2. Consider the conditional distribution function
of Z2 given Z1, and conversely: with ρZi the density of Zi , we define

ψ1(x) :=
∞∫

x2

ρ(x1, z2) dz2 = ρZ1(x1)P
Z1=x1

[
Z2 > x2

]
,

ψ2(x) :=
∞∫

x1

ρ(z1, x2) dz1 = ρZ2(x2)P
Z2=x2

[
Z1 > x1

]
.

Note that F i is an antiderivative with respect to xi of −ziψ
i . Given prior information about the

marginal densities ρZ1 and ρZ2 , estimates on H translate into relations on the two functions ψi ,
as the next proposition shows.

Proposition 6.2. With the notation of Theorem 2.5 with n = 2, assume that, for some c ∈ R, for
all x ∈ R2, hi,i(x) � 1 for i = 1,2, and hi,j (x) � c when i �= j . Then

∞∫
x1

ψ1(z1, x2)z1 dz1 � ψ1(x) + cψ2(x),

∞∫
x2

ψ2(x1, z2)z2 dz2 � cψ1(x) + ψ2(x).

Similarly, if the inequalities in the assumptions are both reversed, then so are the inequalities in
the conclusions.

Proof. This follows immediately from Corollary 6.1 (or Theorem 4.1), the fact that F 1(x1, x2) =∫ ∞
x1

ψ1(z1, x2)z1 dz1 (similarly for F 2), the non-negativity of ρ, and the definitions of ψi . �
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