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The statistical estimation of the Hurst index is one of the fundamental problems
in the literature of long-range dependent and self-similar processes. In this article,
the Hurst index estimation problem is addressed for a special class of self-similar
processes that exhibit long-memory, the Hermite processes. These processes gen-
eralize the fractional Brownian motion, in the sense that they share its covariance
function, but are non-Gaussian. Existing estimators such as the R/S statistic,
the variogram, the maximum likelihood and the wavelet-based estimators are re-
viewed and compared with a class of consistent estimators which are constructed
based on the discrete variations of the process. Convergence theorems (asymp-
totic distributions) of the latter are derived using multiple Wiener-Itô integrals
and Malliavin calculus techniques. Based on these results, it is shown that the
latter are asymptotically more efficient than the former.
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1.1. Introduction

1.1.1. Motivation

A fundamental assumption in many statistical and stochastic models is that of in-
dependent observations. Moreover, many models that do not make this assumption
have the convenient Markov property, according to which the future of the system
is not affected by its previous states but only by the current one.

The phenomenon of long memory has been noted in nature long before the con-
struction of suitable stochastic models: in fields as diverse as hydrology, economics,
∗Both authors’ research partially supported by NSF grant 0606615.
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chemistry, mathematics, physics, geosciences, and environmental sciences, it is not
uncommon for observations made far apart in time or space to be non-trivially
correlated.

Since ancient times the Nile River has been known for its long periods of dryness
followed by long periods of floods. The hydrologist Hurst ([13]) was the first one
to describe these characteristics when he was trying to solve the problem of flow
regularization of the Nile River. The mathematical study of long-memory processes
was initiated by the work of Mandelbrot [16] on self-similar and other stationary
stochastic processes that exhibit long-range dependence. He built the foundations
for the study of these processes and he was the first one to mathematically define the
fractional Brownian motion, the prototype of self-similar and long-range dependent
processes. Later, several mathematical and statistical issues were addressed in the
literature, such as derivation of central (and non-central) limit theorems ([5], [6],
[10], [17], [27]), parameter estimation techniques ([1], [7], [8], [27]) and simulation
methods ([11]).

The problem of the statistical estimation of the self-similarity and/or long-
memory parameter H is of great importance. This parameter determines the math-
ematical properties of the model and consequently describes the behavior of the
underlying physical system. Hurst ([13]) introduced the celebrated rescaled ad-
justed range or R/S statistic and suggested a graphical methodology in order to
estimate H. What he discovered was that for data coming from the Nile River the
R/S statistic behaves like a constant times kH , where k is a time interval. This
was called later by Mandelbrot the Hurst effect and was modeled by a fractional
Gaussian noise (fGn).

One can find several techniques related to the Hurst index estimation problem
in the literature. There are a lot of graphical methods including the R/S statistic,
the correlogram and partial correlations plot, the variance plot and the variogram,
which are widely used in geosciences and hydrology. Due to their graphical nature
they are not so accurate and thus there is a need for more rigorous and sophisticated
methodologies, such as the maximum likelihood. Fox and Taqqu ([12]) introduced
the Whittle approximate maximum likelihood method in the Gaussian case which
was later generalized for certain non-Gaussian processes. However, these approaches
were lacking computational efficiency which lead to the rise of wavelet-based esti-
mators and discrete variation techniques.

1.1.2. Mathematical Background

Let us first recall some basic definitions that will be useful in our analysis.

Definition 1.1. A stochastic process {Xn;n ∈ N} is said to be stationary if the
vectors (Xn1 , . . . , Xnd) and (Xn1+m, . . . , Xnd+m) have the same distribution for all
integers d, m ≥ 1 and n1, . . . , nd ≥ 0. For Gaussian processes this is equivalent to
requiring that Cov(Xm, Xm+n) := γ(n) does not depend on m. These two notions
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Fig. 1.1. Yearly minimum water levels of the Nile River at the Roda Gauge (622-1281 A.D.).

The dotted horizontal lines represent the levels ±2/
√

600. Since our observations are above these

levels, it means that they are significantly correlated with significance level 0.05.

are often called strict stationarity and second-order stationarity, respectively. The
function γ(n) is called the autocovariance function. The function ρ(n) = γ(n)/γ(0)
is the called autocorrelation function.

In this context, long memory can be defined in the following way:

Definition 1.2. Let {Xn;n ∈ N} be a stationary process. If
∑
n ρ (n) = +∞ then

Xn is said to exhibit long memory or long-range dependence. A sufficient condition
for this is the existence of H ∈ (1/2, 1) such that

lim inf
n→∞

ρ(n)
n2H−2

> 0.

Typical long memory models satisfy the stronger condition limn→∞ ρ(n)/n2H−2 >

0, in which case H can be called the long memory parameter of X.

A process that exhibits long-memory has an autocorrelation function that decays
very slowly. This is exactly the behavior that was observed by Hurst for the first
time. In particular, he discovered that the yearly minimum water level of the Nile
river had the long-memory property, as can been seen in Figure 1.1.

Another property that was observed in the data collected from the Nile river
is the so-called self-similarity property. In geometry, a self-similar shape is one
composed of a basic pattern which is repeated at multiple (or infinite) scale. The
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Fig. 1.2. Self-similarity property for the fractional Brownian motion with H = 0.75. The first

graph shows the path from time 0 to 10. The second and third graph illustrate the normalized
sample path for 0 < t < 5 and 0 < t < 1 respectively.

statistical interpretation of self-similarity is that the paths of the process will look
the same, in distribution, irrespective of the distance from which we look at then.
The rigorous definition of the self-similarity property is as follows:

Definition 1.3. A process {Xt; t ≥ 0} is called self-similar with self-similarity
parameter H, if for all c > 0, we have the identity in distribution{

c−HXc t : t ≥ 0
} D∼ {Xt : t ≥ 0} .

In Figure 1.2, we can observe the self-similar property of a simulated path of
the fractional Brownian motion with parameter H = 0.75.

In this paper, we concentrate on a special class of long-memory processes which
are also self-similar and for which the self-similarity and long-memory parameters
coincide, the so-called Hermite processes. This is a family of processes parametrized
by the order q and the self-similarity parameter H. They all share the same covari-
ance function

Cov(Xt, Xs) =
1
2
(
t2H + s2H − |t− s|2H

)
. (1.1)

From the structure of the covariance function we observe that the Hermite processes
have stationary increments, they are H-self-similar and they exhibit long-range
dependence as defined in Definition 1.2 (in fact, limn→∞ ρ (n) 6 /n2H−2 = H(2H −
1)). The Hermite process for q = 1 is a standard fractional Brownian motion
with Hurst parameter H, usually denoted by BH , the only Gaussian process in the
Hermite class. A Hermite process with q = 2 known as the Rosenblatt process. In
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the sequel, we will call H either long-memory parameter or self-similarity parameter
or Hurst parameter. The mathematical definition of these processes is given in
Definition 1.5.

Another class of processes used to model long-memory phenomena are the frac-
tional ARIMA (Auto Regressive, Integrated, Moving Average) or FARIMA pro-
cesses. The main technical difference between a FARIMA and a Hermite process is
that the first one is a discrete-time process and the second one a continuous-time
process. Of course, in practice, we can only have discrete observations. However,
most phenomena in nature evolve continuously in time and the corresponding ob-
servations arise as samplings of continuous time processes. A discrete-time model
depends heavily on the sampling frequency: daily observations will be described
by a different FARIMA model than weekly observations. In a continuous time
model, the observation sampling frequency does not modify the model. These are
compelling reasons why one may choose to work with the latter.

In this article we study the Hurst parameter estimation problem for the Hermite
processes. The structure of the paper is as follows: in Section 2, we provide a survey
of the most widely used estimators in the literature. In Section 3 we describe the
main ingredients and the main definitions that we need for our analysis. In Section
4, we construct a class of estimators based on the discrete variations of the process
and describe their asymptotic properties, including a sketch of the proof of the
main theoretical result, Theorem 1.4, which summarizes the series of papers [6],
[7], [27] and [28]. In the last section, we compare the variations-based estimators
with the existing ones in the literature, and provide an original set of practical
recommendations based on theoretical results and on simulations.

1.2. Most Popular Hurst parameter Estimators

In this section we discuss the main estimators for the Hurst parameter in the litera-
ture. We start with the description of three heuristic estimators: the R/S estimator,
the correlogram and the variogram. Then, we concentrate on a more traditional
approach: the maximum likelihood estimation. Finally, we briefly describe the
wavelet-based estimator.

The description will be done in the case of the fractional Brownian mo-
tion (fBm)

{
BHt ; t ∈ [0, 1]

}
. We assume that it is observed in discrete times

{0, 1, . . . , N − 1, N}. We denote by
{
XH
t ; t ∈ [0, 1]

}
the corresponding increment

process of the fBm (i.e. XH
i
N

= BHi
N

− BHi
N

) , also known as fractional Gaussian
noise.

1.2.1. Heuristic Estimators

R/S Estimator :
The most famous among these estimators is the so-called R/S estimator
that was first proposed by Hurst in 1951, [13], in the hydrological problem
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regarding the storage of water coming from the Nile river. We start by
dividing our data in K non-intersecting blocks, each one of which contains
M =

[
N
K

]
elements. The rescaled adjusted range is computed for various

values of N by

Q := Q(ti, N) =
R(ti, N)
S(ti, n)

at times ti = M(i− 1), i = 1, . . . ,K. For

Y (ti, k) :=
k−1∑
j=0

XH
ti+j − k

 1
n

n−1∑
j=0

XH
ti+j

 , k = 1, . . . , n

we define R(ti, n) and S(ti, n) to be

R(ti, n) := max {Y (ti, 1), . . . , Y (ti, n)} −min {Y (ti, 1), . . . , Y (ti, n)} and

S(ti, n) :=

√√√√√ 1
n

n−1∑
j=0

XH 2
ti+j
−

 1
n

n−1∑
j=0

XH
ti+j

2

.

Remark 1.1. It is interesting to note that the numerator R(ti, n) can be
computed only when ti + n ≤ N .

In order to compute a value for H we plot the logarithm of R/S (i.e logQ)
with respect to log n for several values of n. Then, we fit a least-squares
line y = a + b log n to a central part of the data, that seem to be nicely
scattered along a straight line. The slope of this line is the estimator of H.

This is a graphical approach and it is really in the hands of the statistician
to determine the part of the data that is “nicely scattered along the straight
line”. The problem is more severe in small samples, where the distribution
of the R/S statistic is far from normal. Furthermore, the estimator is bi-
ased and has a large standard error. More details on the limitations of this
approach in the case of fBm can be found in [2].

Correlogram :
Recall ρ(N) the autocorrelation function of the process as in Definition 1.1.
In the Correlogram approach, it is sufficient to plot the sample autocorre-
lation function

ρ̂(N) =
γ̂(N)
γ̂(0)

against N . As a rule of thumb we draw two horizontal lines at ±2/
√
N . All

observations outside the lines are considered to be significantly correlated
with significance level 0.05. If the process exhibits long-memory, then the
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plot should have a very slow decay.

The main disadvantage of this technique is its graphical nature which can-
not guarantee accurate results. Since long-memory is an asymptotic notion,
we should analyze the correlogram at high lags. However, when for exam-
ple H = 0.6 it is quite hard to distinguish it from short-memory. To avoid
this issue, a more suitable plot will be this of log ρ̂(N) against logN . If
the asymptotic decay is precisely hyperbolic, then for large lags the points
should be scattered around a straight line with negative slope equal to
2H − 2 and the data will have long-memory. On the other hand when the
plot diverges to −∞ with at least exponential rate, then the memory is
short.

Variogram :
The variogram for the lag N is defined as

V (N) :=
1
2
E
[(
BHt −BHt−N

)2]
.

Therefore, it suffices to plot V (N) against N . However, we can see that the
interpretation of the variogram is similar to that of the correlogram, since
if the process is stationary (which is true for the increments of fractional
Brownian motion and all other Hermite processes), then the variogram is
asymptotically finite and

V (N) = V (∞)(1− ρ(N)).

In order to determine whether the data exhibit short or long memory this
method has the same problems as the correlogram.

The main advantage of these approaches is their simplicity. In addition, due to
their non-parametric nature, they can be applied to any long-memory process. How-
ever, none of these graphical methods are accurate. Moreover, they can frequently
be misleading, indicating existence of long-memory in cases where none exists. For
example, when a process has short-memory together with a trend that decays to
zero very fast, a correlogram or a variogram could show evidence of long-memory.

In conclusion, a good approach would be to use these methods as a first heuristic
analysis to detect the possible presence of long-memory and then use a more rigorous
technique, such as those described in the remainder of this section, in order to
estimate the long-memory parameter.

1.2.2. Maximum Likelihood Estimation

The Maximum Likelihood Estimation (mle) is the most common technique of pa-
rameter estimation in Statistics. In the class of Hermite processes, its use is limited
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to fBm, since for the other processes we do not have an expression for their dis-
tribution function. The mle estimation is done in the spectral domain using the
spectral density of fBm as follows.

Denote by XH =
(
XH

0 , X
H
1 , . . . , X

H
N

)
the vector of the fractional Gaussian noise

(increments of fBm) and by XH ′ the transposed (column) vector; this is a Gaussian
vector with covariance matrix ΣN (H) = [σij(H)]i,j=1,...,N ; we have

σij := Cov
(
XH
i ; XH

j

)
=

2
(
i2H + j2H − |i− j|2H

)
.

Then, the log-likelihood function has the following expression:

log f(x;H) = −N
2

log 2π − 1
2

log [det (ΣN (H))]− 1
2
XH (ΣN (H))−1

XH ′ .

In order to compute Ĥmle, the mle for H, we need to maximize the log-likelihood
equation with respect to H. A detailed derivation can be found in [3] and [9]. The
asymptotic behavior of Ĥmle is described in the following theorem.

Theorem 1.1. Define the quantity D(H) = 1
2π

∫ π
−π
(
∂
∂H log f(x;H)

)2
dx. Then

under certain regularity conditions (that can be found in [9]) the maximum likelihood
estimator is weakly consistent and asymptotically normal:

(i) Ĥmle → H , as N →∞ in probability;
(ii)
√
N
√

2 D(H)
(
Ĥmle −H

)
→ N (0, 1) in distribution, as N →∞.

In order to obtain the mle in practice, in almost every step we have to maximize
a quantity that involves the computation of the inverse of Σ(H), which is not an
easy task.

In order to avoid this computational burden, we approximate the likelihood
function with the so-called Whittle approximate likelihood which can be proved to
converge to the true likelihood, [29]. In order to introduce Whittle’s approximation
we first define the density on the spectral domain.

Definition 1.4. Let Xt be a process with autocovariance function γ(h), as in Defi-
nition 1.1. The spectral density function is defined as the inverse Fourier transform
of γ(h)

f(λ) :=
1

2π

∞∑
h=−∞

e−iλhγ(h).

In the fBm case the spectral density can be written as

f(λ;H) =
1

2π
exp

{
− 1

2π

∫ π

−π
log f1 dλ

}
, where

f1(λ;H) =
1
π

Γ(2H + 1) sin(πH)(1− cosλ)
∞∑

j=−∞
|2πj + λ|−2H−1
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The Whittle method approximates each of the terms in the log-likelihood function
as follows:

(i) limN→∞ log det(ΣN (H)) = 1
2π

∫ π
−π log f(λ;H)dλ.

(ii) The matrix Σ−1
N (H) itself is asymptotically equivalent to the matrix A(H) =

[α(j − `)]j`, where

α(j − `) =
1

(2π)2

∫ π

−π

e−i(j−`)λ

f(λ;H)
dλ

Combining the approximations above, we now need to minimize the quantity

(log f(λ;H))∗ = −N
2

log 2π − n

2
1

2π

∫ π

−π
log f(λ;H)dλ− 1

2
X A(H)X

′
.

The details in the Whittle mle estimation procedure can be found in [3]. For the
Whittle mle we have the following convergence in distribution result as N →∞√

N

[2 D(H)]−1

(
ĤWmle −H

)
D→ N (0, 1) (1.2)

It can also be shown that the Whittle approximate mle remains weakly consistent.

1.2.3. Wavelet Estimator

Much attention has been devoted to the wavelet decomposition of both fBm and
the Rosenblatt process. Following this trend, an estimator for the Hurst parameter
based on wavelets has been suggested. The details of the procedure for the con-
structing this estimator, and the underlying wavelets theory, are beyond the scope
of this article. For the proofs and the detailed exposition of the method the reader
can refer to [1], [11] and [14]. This section provides a brief exposition.

Let ψ : R→ R be a continuous function with support in [0, 1]. This is also called
the mother wavelet. Q ≥ 1 is the number of vanishing moments where∫

R
tpψ(t)dt = 0, for p = 0, 1, . . . , Q− 1,∫

R
tQψ(t)dt 6= 0.

For a “scale” α ∈ N∗ the corresponding wavelet coefficient is given by

d(α, i) =
1√
α

∫ ∞
−∞

ψ

(
t

α
− i
)
ZHt dt,

for i = 1, 2, . . . , Nα with Nα =
[
N
α

]
− 1, where N is the sample size. Now, for (α, b)

we define the approximate wavelet coefficient of d(α, b) as the following Riemann
approximation

e(α, b) =
1√
α

N∑
k=1

ZHk ψ

(
k

α
− b
)
,
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where ZH can be either fBm or Rosenblatt process. Following the analysis by J.-
M. Bardet and C.A. Tudor in [1], the suggested estimator can be computed by
performing a log-log regression of 1

Nαi(N)

Nαi(N)∑
j=1

e2 (αi(N), j)


1≤i≤`

against (i αi(N))1≤i≤`, where α(N) is a sequence of integer numbers such that
Nα(N)−1 → ∞ and α(N) → ∞ as N → ∞ and αi(N) = iα(N). Thus, the
obtained estimator, in vectors notation, is the following

Ĥwave :=
(

1
2
, 0
)′ (

Z
′

`, Z`

)−1

Z−1
`

1
2

Nαi(N)∑
j=1

e2 (αi(N), j)


1≤i≤`

− 1
2
, (1.3)

where Z`(i, 1) = 1, Z`(i, 2) = log i for all i = 1, . . . , `, for ` ∈ N r {1}.

Theorem 1.2. Let α(N) as above. Assume also that ψ ∈ Cm with m ≥ 1 and ψ is
supported on [0, 1]. We have the following convergences in distribution.

(1) Let ZH be a fBm; assume Nα(N)−2 → 0 as N →∞ and m ≥ 2; if Q ≥ 2, or
if Q = 1 and 0 < H < 3/4, then there exists γ2(H, `, ψ) > 0 such that√

N

α(N)

(
Ĥwave −H

)
D→ N (0, γ2(H, `, ψ)), as N →∞. (1.4)

(2) Let ZH be a fBm; assume Nα(N)−
5−4H
4−4H → 0 as N α(N)−

3−2H+m
3−2H → 0; if

Q = 1 and 3/4 < H < 1, then(
N

α(N)

)2−2H (
Ĥwave −H

)
D→ L, as N →∞ (1.5)

where the distribution law L depends on H, ` and ψ.
(3) Let ZH is be Rosenblatt process; assume Nα(N)−

2−2H
3−2H → 0 as

N α(N)−(1+m) → 0; then(
N

α(N)

)1−H (
Ĥwave −H

)
D→ L, as N →∞ (1.6)

where the distribution law L depends on H, ` and ψ.

The limiting distributions L in the theorem above are not explicitly known: they
come from a non-trivial non-linear transformation of quantities which are asymp-
totically normal or Rosenblatt-distributed. A very important advantage of Ĥwave

over the mle for example is that it can be computed in an efficient and fast way.
On the other hand, the convergence rate of the estimator depends on the choice of
α(N).



August 19, 2009 20:16 World Scientific Review Volume - 9.75in x 6.5in H˙estimators˙review2

Hurst Index Estimation for Self-similar processes with Long-Memory 11

1.3. Multiplication in the Wiener Chaos & Hermite Processes

1.3.1. Basic tools on multiple Wiener-Itô integrals

In this section we describe the basic framework that we need in order to describe and
prove the asymptotic properties of the estimator based on the discrete variations of
the process. We denote by {Wt : t ∈[ 0, 1]} a classical Wiener process on a standard
Wiener space (Ω,F , P ). Let

{
BHt ; t ∈ [0, 1]

}
be a fractional Brownian motion with

Hurst parameter H ∈ (0, 1) and covariance function〈
1[0,s],1[0,t]

〉
= RH(t, s) :=

1
2
(
t2H + s2H − |t− s|2H

)
. (1.7)

We denote by H its canonical Hilbert space. When H = 1
2 , then B

1
2 is the standard

Brownian motion on L2([0, 1]). Otherwise, H is a Hilbert space which contains func-
tions on [0, 1] under the inner product that extends the rule

〈
1[0,s],1[0,t]

〉
. Nualart’s

textbook (Chapter 5, [19]) can be consulted for full details.
We will use the representation of the fractional Brownian motion BH with re-

spect to the standard Brownian motion W : there exists a Wiener process W and a
deterministic kernel KH(t, s) for 0 ≤ s ≤ t such that

BH(t) =
∫ 1

0

KH(t, s)dWs = I1
(
KH(·, t)

)
, (1.8)

where I1 is the Wiener-Itô integral with respect to W . Now, let In (f) be the
multiple Wiener-Itô integral, where f ∈ L2([0, 1]n) is a symmetric function. One
can construct the multiple integral starting from simple functions of the form f :=∑
i1,...,in

ci1,...in1Ai1×...×Ain where the coefficient ci1,..,in is zero if two indices are
equal and the sets Aij are disjoint intervals by

In(f) :=
∑

i1,...,in

ci1,...inW (Ai1) . . .W (Ain),

where W
(
1[a,b]

)
= W ([a, b]) = Wb −Wa. Using a density argument the integral

can be extended to all symmetric functions in L2([0, 1]n). The reader can refer to
Chapter 1 [19] for its detailed construction. Here, it is interesting to observe that
this construction coincides with the iterated Itô stochastic integral

In(f) = n!
∫ 1

0

∫ tn

0

. . .

∫ t2

0

f(t1, . . . , tn)dWt1 . . . dWtn . (1.9)

The application In is extended to non-symmetric functions f via

In(f) = In
(
f̃
)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xN ) =
1
n!

∑
σ∈Sn f(xσ(1), . . . , xσ(n)).

In is an isometry between the Hilbert space H�n equipped with the scaled norm
1√
n!
||·||H⊗n . The space of all integrals of order n,

{
In (f) : f ∈ L2([0, 1]n)

}
, is called



August 19, 2009 20:16 World Scientific Review Volume - 9.75in x 6.5in H˙estimators˙review2

12 A. Chronopoulou, F.G. Viens

nth Wiener chaos. The Wiener chaoses form orthogonal sets in L2 (Ω):

E (In(f)Im(g)) = n!〈f, g〉L2([0,1]n) if m = n, (1.10)

= 0 if m 6= n.

The next multiplication formula will plays a crucial technical role: if f ∈ L2([0, 1]n)
and g ∈ L2([0, 1]m) are symmetric functions, then it holds that

In(f)Im(g) =
m∧n∑
`=0

`!C`mC
`
nIm+n−2`(f ⊗` g), (1.11)

where the contraction f ⊗` g belongs to L2([0, 1]m+n−2`) for ` = 0, 1, . . . ,m∧n and
is given by

(f ⊗` g)(s1, . . . , sn−`, t1, . . . , tm−`)

=
∫

[0,1]`
f(s1, . . . , sn−`, u1, . . . , u`)g(t1, . . . , tm−`, u1, . . . , u`)du1 . . . du`.

Note that the contraction (f ⊗` g) is not necessarily symmetric. We will denote its
symmetrization by (f⊗̃`g).

We now introduce the Malliavin derivative for random variables in a finite chaos.
The derivative operator D is defined on a subset of L2 (Ω), and takes values in
L2 (Ω× [0, 1]). Since it will be used for random variables in a finite chaos, it is
sufficient to know that if f ∈ L2([0, 1]n) is a symmetric function, DIn (f) exists and
it is given by

DtIn(f) = n In−1(f(·, t)), ∈ [0, 1].

D. Nualart and S. Ortiz-Latorre in [21] proved the following characterization of
convergence in distribution for any sequence of multiple integrals to the standard
normal law.

Proposition 1.1. Let n be a fixed integer. Let FN = In(fN ) be a sequence of square
integrable random variables in the nth Wiener chaos such that limN→∞E

[
F 2
N

]
= 1.

Then the following are equivalent:

(i) The sequence (FN )N≥0 converges to the normal law N (0, 1).
(ii) ‖DFN‖2L2[0,1] =

∫ 1

0
|DtIn(f)|2 dt converges to the constant n in L2(Ω) as N →

∞.

There also exists a multidimensional version of this theorem due to G. Peccati
and C. Tudor in [22].

1.3.2. Main Definitions

The Hermite processes are a family of processes parametrized by the order and the
self-similarity parameter with covariance function given by (1.7). They are well-
suited to modeling various phenomena that exhibit long-memory and have the self-
similarity property, but which are not Gaussian. We denote by (Z(q,H)

t )t∈[0,1] the
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Hermite process of order q with self-similarity parameter H ∈ (1/2, 1) (here q ≥ 1 is
an integer). The Hermite process can be defined in two ways: as a multiple integral
with respect to the standard Wiener process (Wt)t∈[0,1]; or as a multiple integral
with respect to a fractional Brownian motion with suitable Hurst parameter. We
adopt the first approach throughout the paper, which is the one described in (1.8).

Definition 1.5. The Hermite process (Z(q,H)
t )t∈[0,1] of order q ≥ 1 and with self-

similarity parameter H ∈ ( 1
2 , 1) for t ∈ [0, 1] is given by

Z
(q,H)
t = d(H)

∫ t

0

. . .

∫ t

0

dWy1 . . . dWyq

(∫ t

y1∨...∨yq
∂1K

H′(u, y1) . . . ∂1K
H′(u, yq)du

)
,

(1.12)
where KH′ is the usual kernel of the fractional Brownian motion, d(H) a constant
depending on H and

H ′ = 1 +
H − 1
q
⇐⇒ (2H ′ − 2)q = 2H − 2. (1.13)

Therefore, the Hermite process of order q is defined as a qth order Wiener-Itô integral
of a non-random kernel, i.e.

Z
(q,H)
t = Iq (L(t, ·)) ,

where L(t, y1, . . . , yq) = ∂1K
H′(u, y1) . . . ∂1K

H′(u, yq)du.

The basic properties of the Hermite process are listed below:

• the Hermite process Z(q,H) is H-selfsimilar and it has stationary increments;
• the mean square of its increment is given by

E
[∣∣∣Z(q,H)

t − Z(q,H)
s

∣∣∣2] = |t− s|2H ;

as a consequence, it follows from the Kolmogorov continuity criterion that,
almost surely, Z(q,H) has Hölder-continuous paths of any order δ < H;
• Z(q,H) exhibits long-range dependence in the sense of Definition 1.2. In fact,

the autocorrelation function ρ (n) of its increments of length 1 is asymptotically
equal to H(2H − 1)n2H−2. This property is identical to that of fBm since the
processes share the same covariance structure, and the property is well-known
for fBm with H > 1/2. In particular for Hermite processes, the self-similarity
and long-memory parameter coincide.

In the sequel, we will also use the filtered process to construct an estimator for
H.
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Definition 1.6. A filter α of length ` ∈ N and order p ∈ N \ 0 is an (` + 1)-
dimensional vector α = {α0, α1, . . . , α`} such that

∑̀
q=0

αqq
r = 0, for 0 ≤ r ≤ p− 1, r ∈ Z

∑̀
q=0

αqq
p 6= 0

with the convention 00 = 1.

We assume that we observe the process in discrete times {0, 1
N , . . . ,

N−1
N , 1}. The

filtered process Z(q,H)(α) is the convolution of the process with the filter, according
to the following scheme:

Z(α) :=
∑̀
q=0

αqZ
(q,H)

(
i− q
N

)
, for i = `, . . . , N − 1 (1.14)

Some examples are the following:

(1) For α = {1,−1}

Z(q,H)(α) = Z(q,H)

(
i

N

)
− Z(q,H)

(
i− 1
N

)
.

This is a filter of length 1 and order 1.
(2) For α = {1,−2, 1}

Z(q,H)(α) = Z(q,H)

(
i

N

)
− 2Z(q,H)

(
i− 1
N

)
+ Z(q,H)

(
i− 2
N

)
.

This is a filter of length 2 and order 2.
(3) More generally, longer filters produced by finite-differencing are such that

the coefficients of the filter α are the binomial coefficients with alternating
signs. Borrowing the notation ∇ from time series analysis, ∇Z(q,H) (i/N) =
Z(q,H) (i/N) − Z(q,H) ((i− 1) /N), we define ∇j = ∇∇j−1 and we may write
the jth-order finite-difference-filtered process as follows

Z(q,H)(α) :=
(
∇jZ(q,H)

)( i

N

)
.

1.4. Hurst parameter Estimator based on Discrete Variations

The estimator based on the discrete variations of the process is described by Coeur-
jolly in [8] for fractional Brownian motion. Using previous results by Breuer and
Major, [5], he was able to prove consistency and derive the asymptotic distribution
for the suggested estimator in the case of filter of order 1 for H < 3/4 and for all
H in the case of a longer filter.



August 19, 2009 20:16 World Scientific Review Volume - 9.75in x 6.5in H˙estimators˙review2

Hurst Index Estimation for Self-similar processes with Long-Memory 15

Herein we see how the results by Coeurjolly are generalized: we construct con-
sistent estimators for the self-similarity parameter of a Hermite process of order
q based on the discrete observations of the underlying process. In order to deter-
mine the corresponding asymptotic behavior we use properties of the Wiener-Itô
integrals as well as Malliavin calculus techniques. The estimation procedure is the
same irrespective of the specific order of the Hermite process, thus in the sequel we
denote the process by Z := Z(q,H).

1.4.1. Estimator Construction

Filter of order 1 : α = {−1,+1}.
We present first the estimation procedure for a filter of order 1, i.e. using the
increments of the process. The quadratic variation of Z is

SN (α) =
1
N

N∑
i=1

(
Z

(
i

N

)
− Z

(
i− 1
N

))2

. (1.15)

We know that the expectation of SN (α) is E [SN (α)] = N−2H ; thus, given good
concentration properties for SN (α), we may attempt to estimate SN (α)’s ex-
pectation by its actual value, i.e. E [SN (α)] by SN (α); suggesting the following
estimator for H:

ĤN = − logSN (α)
2 logN

. (1.16)

Filter of order p :
In this case we use the filtered process in order to construct the estimator for
H. Let α be a filter (as defined in (1.6)) and the corresponding filtered process
Z(α) as in (1.14): First we start by computing the quadratic variation of the
filtered process

SN (α) =
1
N

N∑
i=`

(∑̀
q=0

αqZ

(
i− q
N

))2

. (1.17)

Similarly as before, in order to construct the estimator, we estimate SN by its
expectation, which computes as E [SN ] = −N

−2H

2

∑`
q,r=0 αqαr|q − r|2H . Thus,

we can obtain ĤN by solving the following non-linear equation with respect to
H

SN = −N
−2H

2

∑̀
q,r=0

αqαr|q − r|2H . (1.18)

We write that ĤN = g−1(SN ), where g(x) = −N
−2x

2

∑`
q,r=0 αqαr|q − r|2x. In

this case, it is not possible to compute an analytical expression for the estimator.
However, we can show that there exists a unique solution for H ∈ [ 1

2 , 1] as long
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as

N > max
H∈[ 12 ,1]

exp

{∑`
q,r=0 αqαr log |q − r| |q − r|2H∑`

q,r=0 αqαr|q − r|2H

}
.

This restriction is typically satisfied, since we work with relatively large sample
sizes.

1.4.2. Asymptotic Properties of ĤN

The first question is whether the suggested estimator is consistent. This is indeed
true: if sampled sufficiently often (i.e. as N →∞), the estimator converges to the
true value of H almost surely, for any order of the filter.

Theorem 1.3. Let H ∈ ( 1
2 , 1). Assume we observe the Hermite process Z of order

q with Hurst parameter H. Then ĤN is strongly consistent, i.e.

lim
N→∞

ĤN = H a.s.

In fact, we have more precisely that limN→∞

(
H − ĤN

)
logN = 0 a.s.

Remark 1.2. If we look at the above theorem more carefully, we observe that this
is a slightly different notion of consistency than the usual one. In the case of the
mle, for example, we let N tend to infinity which means that the horizon from
which we sample goes to infinity. Here, we do have a fixed horizon [0, 1] and by
letting N →∞ we sample infinitely often. If we had convergence in distribution this
would not be an issue, since we could rescale the process appropriately by taking
advantage of the self-similarity property, but in terms of almost sure or convergence
in probability it is not exactly equivalent.

The next step is to determine the asymptotic distribution of ĤN . Obviously, it
should depend on the distribution of the underlying process, and in our case, on
q and H. We consider the following three cases separately: fBm (Hermite process
of order q = 1), Rosenblatt process (q = 2), and Hermite processes of higher order
q > 2. We summarize the results in the following theorem, where the limit notation

Xn
L2(Ω)→ X denotes convergence in the mean square limN→∞E

[
(XN −X)2

]
= 0,

and D→ continues to denote convergence in distribution.

Theorem 1.4.

(1) Let H ∈ (0, 1) and BH be a fractional Brownian motion with Hurst parameter
H.

(a) Assume that we use the filter of order 1.
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i. If H ∈ (0, 3
4 ), then as N →∞

√
N logN

2
√
c1,H

(
ĤN −H

)
D→ N (0, 1), (1.19)

where c1,H := 2 +
∑∞
k=1

(
2k2H − (k − 1)2H − (k + 1)2H

)2.
ii. If H ∈ ( 3

4 , 1), then as N →∞

N1−H logN
2

√
c2,H

(
ĤN −H

)
L2(Ω)→ Z(2,H), (1.20)

where c2,H := 2H2(2H−1)
4H−3 .

iii. If H = 3
4 , then as N →∞√

N logN
2

√
c3,H

(
ĤN −H

)
D→ N (0, 1), (1.21)

where c3,H := 9
16 .

(b) Now, let α be of any order p ≥ 2. Then,

√
N logN

1
c6,H

(
ĤN −H

)
D→ N (0, 1), (1.22)

where c6,H = 1
2

∑
i∈Z ρ

α
H(i)2.

(2) Suppose that H > 1
2 and the observed process Z2,H is a Rosenblatt process with

Hurst parameter H.

(a) If α is a filter of order 1, then

N1−H logN
1

2c4,H

(
ĤN −H

)
L2(Ω)→ Z(2,H), (1.23)

where c4,H := 16d(H)2.
(b) If α is a filter of order p > 1, then

2c−1/2
7,H N1−H logN

(
ĤN −H

)
L2(Ω)→ Z(2,H) (1.24)

where

c7,H =
64

c(H)2

(
2H − 1

H (H + 1)2

)
×{ ∑̀

q,r=0

bqbr

[
|1 + q − r|2H

′

+ |1− q + r|2H
′

− 2|q − r|2H
′ ]}2

with bq =
∑q
r=0 αr. Here ` is the length of the filter, which is related to the

order p, see Definition 1.6 and examples following.
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(3) Let H ∈ ( 1
2 , 1) and q ∈ N r {0}, q ≥ 2. Let Z(q,H) be a Hermite process of

order q and self-similarity parameter H. Then, for H
′

= 1 + H−1
q and a filter

of order 1,

N2−2H
′

logN
2

c5,H

(
ĤN (α)−H

)
L2(Ω)→ Z(2,2H

′
−1), (1.25)

where c5,H := 4q!d(H)4(H
′
(2H

′
−1))2q−2

(4H′−3)(4H′−2)
.

Remark 1.3. In the notation above, Z(2,K) denotes a standard Rosenblatt random
variable, which means a random variable that has the same distribution as the
Hermite process of order 2 and parameter K at t=1.

Before continuing with a sketch of proof of the theorem, it is important to discuss
the theorem’s results.

(1) In most of the cases above, we observe that the order of convergence of the
estimator depends on H, which is the parameter that we try to estimate. This
is not a problem, because it has already been proved, in [6], [7], [27] and [28],
that the theorem’s convergences still hold when we replace H by ĤN in the rate
of convergence.

(2) The effect of the use of a longer filter is very significant. In the case of fBm, when
we use a longer filter, we no longer have the threshold of 3/4 and the suggested
estimator is always asymptotically normal. This is important for the following
reason: when we start the estimation procedure, we do not know beforehand
the value of H and such a threshold would create confusion in choosing the
correct rate of convergence in order to scale ĤN appropriately. Finally, the fact
that we have asymptotic normality for all H allows us to construct confidence
intervals and perform hypothesis testing and model validation.

(3) Even in the Rosenblatt case the effect of the filter is significant. This is not
obvious here, but we will discuss it later in detail. What actually happens
is that by filtering the process asymptotic standard error is reduced, i.e. the
longer the filter the smaller the standard error.

(4) Finally, one might wonder if the only reason to chose to work with the quadratic
variation of the process, instead of a higher order variation (powers higher than
2 in (1.15) and (1.17)), is for the simplicity of calculations. It turns out that
there are other, better reasons to do so: Coeurjolly ([8]) proved that the use
of higher order variations would lead to higher asymptotic constants and thus
to larger standard errors in the case of the fBm. He actually proved that the
optimal variation respect to the standard error is the second (quadratic ).

Proof. [Sketch of proof of Theorem 1.4] We present the key ideas for proving the
consistency and asymptotic distribution results. We use a Hermite process of order
q and a filter of order 1. However, wherever it is necessary we focus on either fBm
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or Rosenblatt in order to point out the corresponding differences. The ideas for the
proof are very similar in the case of longer filters so the reader should refer to [28]
for the details in this approach.

It is convenient to work with the centered normalized quadratic variation defined
as

VN := −1 +
1
N

N−1∑
i=0

(
Z

(q,H)
i+1
N

− Z(q,H)
i
N

)2

N−2H
. (1.26)

It is easy to observe that for SN defined in (1.15),

SN = N−2H (1 + VN ) .

Using this relation we can see that log (1 + VN ) = 2
(
ĤN −H

)
logN , therefore in

order to prove consistency it suffices to show that VN converges to 0 as N → ∞
and the asymptotic distribution of ĤN depends on the asymptotic behavior of VN .

By the definition of the Hermite process (1.5), we have that

Z
(q,H)
i+1
N

− Z(q,H)
i
N

= Iq (fi,N )

where we denoted

fi,N (y1, . . . , yq) = 1[0, i+1
N ](y1 ∨ . . . ∨ yq)d(H)

∫ i+1
N

y1∨...∨yq
∂1K

H′(u, y1) . . . ∂1K
H′(u, yq)du

− 1[0, iN ](y1 ∨ . . . ∨ yq)d(H)
∫ i

N

y1∨...∨yq
∂1K

H′(u, y1) . . . ∂1K
H′(u, yq)du.

Now, using the multiplication property (1.11) of multiple Wiener-Itô integrals we
can derive a Wiener chaos decomposition of VN as follows:

VN = T2q + c2q−2T2q−2 + . . .+ c4T4 + c2T2 (1.27)

where c2q−2k := k!
(
q
k

)2 are the combinatorial constants from the product formula
for 0 ≤ k ≤ q − 1, and

T2q−2k := N2H−1I2q−2k

(
N−1∑
i=0

fi,N ⊗k fi,N

)
,

where fi,N ⊗k fi,N is the kth contraction of fi,N with itself which is a function of
2q − 2k parameters.

To determine the magnitude of this Wiener chaos decomposition VN , we study
each of the terms appearing in the decomposition separately. If we compute the L2
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norm of each term, we have

E
[
T 2

2q−2k

]
= N4H−2(2q − 2k)!

∥∥∥∥∥
(
N−1∑
i=0

fi,N ⊗k fi,N

)s∥∥∥∥∥
2

L2([0,1]2q−2k)

= N4H−2(2q − 2k)!
N−1∑
i,j=0

〈fi,N ⊗̃kfi,N , fj,N ⊗̃kfj,N 〉L2([0,1]2q−2k)

Using properties of the multiple integrals we have the following results

• For k = q − 1, E
[
T 2

2

]
∼ 4d(H)4(H′(2H′−1))2q−2

(4H′−3)(4H′−2) N2(2H′−2)

• For k = 0, . . . , q − 2

E
[
N2(2−2H′)T 2

2q−2k

]
= O

(
N−2(2−2H′)2(q−k−1)

)
.

Thus, we observe that the term T2 is the dominant term in the decomposition
of the variation statistic VN . Therefore, with

c1,1,H =
4d(H)4(H ′(2H ′ − 1))2q−2

(4H ′ − 3)(4H ′ − 2)
,

it holds that

lim
N→∞

E
[
c−1
1,1,HN

(2−2H′)2c−2
2 V 2

N

]
= 1.

Based on these results we can easily prove that VN converges to 0 a.s. and then
conclude that ĤN is strongly consistent.

Now, in order to understand the asymptotic behavior of the renormalized se-
quence VN it suffices to study the limit of the dominant term

I2

(
N2H−1N (2−2H′)

N−1∑
i=0

fi,N ⊗q−1 fi,N

)

When q = 1 (the fBm case), we can use the Nualart–Ortiz-Latorre criterion
(Proposition 1.1) in order to prove convergence to Normal distribution. How-
ever, in the general case for q > 1, using the same criterion, we can see that
convergence to a Normal law is no longer true. Instead, a direct method can
be employed to determine the asymptotic distribution of the above quantity. Let
N2H−1N (2−2H′)

∑N−1
i=0 fi,N ⊗q−1 fi,N = fN2 + r2, where r2 is a remainder term and

fN2 (y, z) := N2H−1N (2−2H′)d(H)2a(H ′)q−1

N−1∑
i=0

1[0, iN ](y ∨ z)
∫
Ii

∫
Ii

dvdu∂1K(u, y)∂1K(v, z)|u− v|(2H
′−2)(q−1).
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It can be shown that the term r2 converges to 0 in L2([0, 1]2), while fN2 converges in
L2([0, 1]2) to the kernel of the Rosenblatt process at time 1, which is by definition

(H ′(2H ′−1))(q−1)d(H)2N2H−1N2−2H′
N−1∑
i=0

∫
Ii

∫
Ii

|u−v|(2H
′−2)(q−1)∂1K

H′(u, y)∂1K
H′(v, z).

This implies, by the isometry property (1.10) between double integrals and
L2([0, 1]2), that the dominant term in VN , i.e. the second-chaos term T2, con-
verges in L2 (Ω) to the Rosenblatt process at time 1. The reader can consult [6],
[7], [27] and [28] for all details of the proof. �

1.5. Comparison & Conclusions

In this section, we compare the estimators described in Sections 2 and 4. The
performance measure that we adopt is the asymptotic relative efficiency, which we
now define according to [24]:

Definition 1.7. Let Tn be an estimator of θ for all n and {αn} a sequence of
positive numbers such that αn → +∞ or αn → α > 0. Suppose that for some
probability law Y with positive and finite second moment,

αn (Tn − θ)
D→ Y,

(i) The asymptotic mean square error of Tn (amseTn(θ)) is defined to be the asymp-
totic expectation of (Tn − θ)2, i.e.

amseTn(θ) =
EY 2

αn
.

(ii) Let T
′

n be another estimator of θ. The asymptotic relative efficiency of T
′

n with
respect to Tn is defined to be

eTn,T ′n(θ) =
amseTn(θ)
amseT ′n(θ)

. (1.28)

(iii) Tn is said to be asymptotically more efficient than T
′

n if and only if

lim sup
n

eTn,T ′n(θ) ≤ 1, for all θ and

lim sup
n

eTn,T ′n(θ) < 1, for some θ.

Remark 1.4. These definitions are in the most general setup: indeed (i) they are
not restricted by the usual assumption that the estimators converge to a Normal
distribution; moreover, (ii) the asymptotic distributions of the estimators do not
have to be the same. This will be important in our comparison later.

Our comparative analysis focuses on fBm and the Rosenblatt process, since the
maximum likelihood and the wavelets methods cannot be applied to higher order
Hermite processes.
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1.5.1. Variations estimator vs. mle

We start with the case of a filter of order 1 for fBm. Since the asymptotic behavior of
the variations estimator depends on the true value of H we consider three different
cases:

• If H ∈ (0, 3/4), then

eĤN (α), Ĥmle
(H) =

2+
∑∞
k=1(2k2H−(k−1)2H−(k+1)2H)2

2
√
N logN

[2 D(H)]−1
√
N

≈ 1
logN

.

This implies that

lim sup eĤN (α),Ĥmle
(H) = 0,

meaning that ĤN (α) is asymptotically more efficient than Ĥmle.
• If H ∈ (3/4, 1), then

eĤN (α), Ĥmle
(H) =

2H2(2H−1)
4H−3

4 N1−H logN

[2 D(H)]−1
√
N

≈ NH−1/2

logN

This implies that

lim sup eĤN (α), Ĥmle
(H) =∞,

meaning that Ĥmle is asymptotically more efficient than ĤN (α).
• If H = 3/4, then

eĤN (α), ĤmleN
(H) =

16
9

4
√
N logN

[2 D(H)]−1
√
N

≈ 1√
logN

Similarly, as in the first scenario the variations estimator is asymptotically more
efficient than the mle.

Remark 1.5. By Ĥmle we mean either the exact mle or the Whittle approximate
mle, since both have the same asymptotic distribution.

Before discussing the above results let us recall the Cramér-Rao Lower Bound
theory (see [24]). Let X = (X1, . . . , XN ) be a sample (i.e. identically distributed
random variables) with common distribution PH and corresponding density function
fH . If T is an estimator of H such that E (T ) = H, then

V ar (T ) ≥ [I(H)]−1 (1.29)

where I(H) is the Fisher information defined by

I (H) := E

{[
∂

∂H
log fH(X)

]2
}
. (1.30)
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Ĥmle (dotted), ĤN (bold) Asymptotic Relative Efficiency

Fig. 1.3. Comparison of the variations’ estimator and mle for a filter of order p =1.

The inverse of the Fisher information is called Cramér-Rao Lower Bound.

Remark 1.6. It has been proved by Dahlhaus, [9], that the asymptotic variance of
both the approximate and exact mle converges to the Cramér-Rao Lower Bound and
consequently both estimators are asymptotically efficient according to the Fisher
criterion. Thus how can the variations estimator be more efficient in some cases?

The variations-based estimator is computed using data coming from a fixed time
horizon and more specifically [0, 1], i.e. data such as Xa = (X0, X 1

N
, . . . , X1), while

the mle is computed using data of the form Xb = (X0, X1, . . . , XN ). The time-
scaling makes a big difference since the vectors Xa and Xb do not have the same
distribution. The construction of the Fisher information (and accordingly the
asymptotic Cramér-Rao Lower Bound) depends on the underlying distribution of
the sample and it is going to be different for Xa and Xb. This implies that the
Cramér-Rao Lower Bound attained by the mle using Xb is not the same as the
Cramér-Rao Lower Bound attained by the mle using Xa. By the self-similarity
property we can derive that Xa =D NHXb, which indicates that if we want to
compute the information matrix for the rescaled data, the scaling contains the
parameter H and this will alter the information matrix and its rate of convergence.

We begin by observing what happens in practice for a filter of order 1. In the
following graphs, we compare the corresponding variations estimator with the mle,
in the case of a simulated fractional Brownian motion with H = 0.65, by plotting
the asymptotic variance against the sample size N .

As we observe in Figure 1.3, the mle performs better than the estimator based
on the variations of the process with filter order p = 1. It has a smaller asymptotic
variance and the asymptotic relative efficiency seems to converge to zero extremely
slowly, even for a very large sample size N . This is because ĤN is faster only by
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Ĥmle (dotted), ĤN (bold) Asymptotic Relative Efficiency

Fig. 1.4. Comparison of the variations’ estimator and mle for a filter of order p = 10.

the factor logN (which is quite slow) and the constants in the case of ĤN are quite
large.

Let us consider now the case of longer filters (p ≥ 2). Using the results proved in
the previous sections (esp. Theorem 1.4 part (1.b)), we have that for all H ∈ (0, 1)

eĤN (α), ĤmleN
(H) ≈ 1

logN

and from this we conclude that the variations estimator is always asymptotically
more efficient than the mle. If we do the same plots as before we can see (Figure
1.4) that the constant is now significantly smaller.

1.5.2. Variations’ vs. Wavelet Estimator

In this subsection we compare the variations and the wavelets estimators for the
both the fBm and the Rosenblatt process.

fBm :

(1) Let 0 < H < 3/4, then for a filter of order p ≥ 1 in the variations estimator,
and for any Q ≥ 1 in the wavelets estimator, we have

eĤN (α), Ĥwave
(H) ≈ 1√

α(N) logN
.

Based on the properties of α(N) as stated before (Theorem 1.2), we con-
clude that

lim
N→0

eĤN (α), Ĥmle
(H) = 0,
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which implies that the variations estimator is asymptotically more efficient
than the wavelets estimator.

(2) When 3/4 < H < 1, then for a filter of order p = 1 in the variations
estimator, and Q = 1 for the wavelets estimator, we have

eĤN (α), Ĥwave
(H) ≈ N2−2H

α(N)2−2H logN

If we choose α(N) to be the optimal as suggested by Bardet and Tudor in
[1] , i.e. α(N) = N1/2+δ for δ small, then eĤN (α), Ĥwave

(H) ≈ N(1−H)(1−2δ)

logN ,
which implies that the wavelet estimator performs better.

(3) When 3/4 < H < 1, then for a filter of order p ≥ 2 in the variations
estimator and Q = 1 for the wavelets estimator, using again the optimal
choice of α(N) as proposed in [1], we have

eĤN (α), Ĥwave
(H) ≈ N ( 1

2−H)−2δ(1−H)

logN
,

so the variations estimator is asymptotically more efficient than the wavelets
one.

Rosenblatt process :
Suppose that 1/2 < H < 1, then for any filter of any order p ≥ 1 in the
variations estimator, and any Q ≥ 1 for the wavelets based estimator, we have

eĤN (α), Ĥwave
(H) ≈ 1

α(N)1−H logN
.

Again, with the behavior of α(N) as stated in Theorem 1.2, we conclude that the
variations estimator is asymptotically more efficient than the wavelet estimator.

Overall, it appears that the estimator based on the discrete variations of the
process is asymptotically more efficient than the estimator based on wavelets, in
most cases. The wavelets estimator does not have the problems of computational
time which plague the mle: using efficient techniques, such as Mallat’s algorithm,
the wavelets estimator takes seconds to compute on a standard PC platform. How-
ever, the estimator based on variations is much simpler, since it can be constructed
by simple transformation of the data.

Summing up, the conclusion is that the heuristic approaches (R/S, variograms,
correlograms) are useful for a preliminary analysis to determine whether long mem-
ory may be present, due to their simplicity and universality. However, in order to
estimate the Hurst parameter it would be preferable to use any of the other tech-
niques. Overall, the estimator based on the discrete variations is asymptotically
more efficient than the estimator based on wavelets or the mle. Moreover, it can
be applied not only when the data come from a fractional Brownian motion, but
also when they come from any other non-Gaussian Hermite process of higher order.
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Finally, when we apply a longer filter in the estimation procedure, we are able to
reduce the asymptotic variance and consequently the standard error significantly.

The benefits of using longer filters needs to be investigated further. It would
be interesting to study the choice of different types of filters, such as wavelet-type
filters versus finite difference filters. Specifically, the complexity introduced by the
construction of the estimator based on a longer filter, which is not as straightfor-
ward as in the case of filter of order 1, is something that will be investigated in a
subsequent article.
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