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Abstract We analyze the performance of mutual funds from a multiple inference
perspective. When the number of funds is large, random fluctuations will cause some
funds falsely to appear to outperform the rest. To account for such “false discover-
ies,” a multiple inference approach is necessary. Performance evaluation measures are
unlikely to be independent across mutual funds. At the same time, the data are typi-
cally not sufficient to estimate the dependence structure of performance measures. In
addition, the performance evaluation model can be misspecified. We contribute to the
existing literature by applying an empirical Bayes approach that offers a possible way
to take these factors into account. We also look into the question of statistical power of
the performance evaluation model, which has received little attention in mutual fund
studies. We find that the assumption of independence of performance evaluation mea-
sures results in significant bias, such as over-estimating the number of outperforming
mutual funds. Adjusting for the mutual fund investment objective is helpful, but it still
does not result in the discovery of a significant number of successful funds. A detailed
analysis reveals a very low power of the study. Even if outperformers are present in
the sample, they might not be recognized as such and/or too many years of data might
be required to single them out.
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1 Introduction

The studies of performance of mutual funds go back at least 40 years (Jensen 1968),
and this area is still of interest to researchers (Ammann and Verhofen 2009; Cornell
et al. 2010). Although a typical mutual fund study has included a large number of funds,
the issue of multiple inference (a.k.a. “simultaneous testing,” “multiple testing”) has
received little attention.

Its importance can be illustrated as follows: suppose that we want to evaluate the
performance of a large number of fund managers, a certain proportion of whom do
not perform well. The performance is measured by a certain test statistic obtained
from a performance evaluation model. For instance, such statistic can be a p-value
obtained under the null hypothesis of “no outperformance”. Testing each manager
separately at a fixed significance level, one should expect to obtain a certain number
of “false discoveries”, i.e. the cases where the null hypothesis of “no outperformance”
is rejected incorrectly. To distinguish between true and false discoveries, a multiple
inference procedure has to be employed.

Multiple inference is straightforward when the test statistics can be assumed inde-
pendent or “weakly” dependent (Sect. 2.3). This assumption is utilized in Barras et al.
(2010) to evaluate the performance of about two thousand US equity mutual funds.
Cuthbertson et al. (2008b) apply the same method to perform analysis of UK funds.
An almost identical method is used for German data in Otamendi et al. (2008).

However, the independence assumption is unlikely to hold in practice. A typical
way to handle this is to propose a parametric or non-parametric model for the depen-
dence structure and incorporate it into the multiple inference procedure. An attempt
to consider the dependence across mutual funds via non-parametric approach is made
in Kosowski et al. (2006). Unfortunately, neither approach is feasible because the
amount of historical mutual fund data is not sufficient to obtain a proper estimate of
the dependence structure (Sect. 2.3).

In addition, the performance evaluation model used to obtain the test statistics can
be misspecified, which contributes an unknown amount of bias to the inference. To
the best of our knowledge, this issue has never been investigated in the mutual fund
literature.

In this paper we contribute to the existing literature by using a multiple infer-
ence method that seems to offer a viable alternative that does not suffer from the
abovementioned shortcomings. Recently, Efron and Tibshirani (2002), Efron (2004a,
2007a,b,c, 2008a,b) developed an empirical Bayes approach that does not rely on the
independence of test statistics or the direct estimation of their dependence structure.
There is evidence that in some cases, the proposed method can take into account the
misspecification of performance evaluation model as well. The approach of Kosowski
et al. (2006) is largely different from our method (with the exception that, like them,
we use a bootstrap method for the individual estimation of test statistics). It is more
appropriate to think of our method as an extension of Barras et al. (2010).

Yet another poorly explored but important question is the statistical power of the
performance evaluation model. In a typical mutual fund study, no power diagnostics
are provided (Daniel et al. 1997; Carhart 1997; Chen et al. 2000; Kosowski et al.
2006; Barras et al. 2010). Kothari and Warner (2001) try to shed some light on the
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issue but their study does not appear exhaustive, especially given that it is not based
on the data from the real mutual funds. On the other hand, Efron’s method comes with
comprehensive and insightful power analysis tools. In addition, it provides a rigorous
and efficient way of looking into the performance of subgroups of funds, another issue
of practical interest.

We apply the new approach to about two thousand US equity mutual funds observed
in 1993–2007. We obtain compelling evidence that assuming independence of test sta-
tistics is inappropriate. It introduces a significant bias that results in overestimation
of the number of both over- and underperforming funds. Our analysis shows that,
although Efron’s approach offers higher precision and power, we are still unable to
find a significant number of funds that are outperforming after fees and expenses.
This result is consistent with Barras et al. (2010), but is different from the findings
of Kosowski et al. (2006), who report the existence of a sizable minority of skilled
managers.

Finally, the power analysis shows that the study is very underpowered which leaves
many outperformers unrecognized as present in the population of all funds. For the
subset of funds that are recognized as outperformers, it is hard to separate them from
the rest (e.g., for investment purposes). The power is especially low when we try to
reduce the history to only the most recent 3–5 years of data.

Section 2 describes the data and proposed approach in detail. Section 3 presents
the empirical results for US data. Section 4 concludes.

2 Methodology

2.1 Data

This study is focused on open-end, actively managed US equity mutual funds. The
monthly dataset is obtained from CRSP in 03/2008 and it spans 01/1993–06/2007 (14
1/2 years). It is cleared of inappropriate types of funds, such as international, money
market, index funds, etc. The minimal total net assets (TNA) in the sample is $5M,
and the minimal number of observations per fund is 50. Eventually, net returns for
1911 funds are obtained. Based on the investment objective information, we define
three subgroups: 886 Growth (G) funds, 398 Growth & Income (GI) funds, and 627
Aggressive Growth (AG) funds.

The pre-expense returns dataset is obtained from the first dataset by adding the
known amount of expense to the net returns. Because of missing expense information,
the second dataset includes 1876 funds, with 871 G, 387 GI, and 618 AG funds. The
fund monthly return is computed by weighting the return of each fund’s shareclass
by its monthly TNA. For both datasets, the average number of observations per fund
is about 129 (10 3/4 years). Detailed information about the sample construction is
available upon request.

2.2 Carhart performance evaluation model

The four-factor (Carhart 1997) performance evaluation model is:
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ri,t = αi + bi · rm,t + si · rsmb,t + hi · rhml,t + mi · rmom,t + εi,t

t = 1, . . . T (2.2.1)

i = 1, . . . m

where ri,t is the excess return in time period t over the risk-free rate for the
fund number i; rm,t is the excess return on the overall equity market portfolio;
rsmb,t , rhml,t , rmom,t are the returns on so-called factor portfolios for size, book-to-
market, and momentum factors (all obtained from CRSP). In the simplest case, the
error terms εt = (ε1,t , . . . , εm,t ) are assumed i.i.d. multivariate normal N (0, �0). All
returns are observed and the quantities αi , bi , si , hi , mi are estimated through mul-
tiple linear regression, separately for each fund. To obtain more robust estimates in
the case when (2.2.1) is misspecified, the regression is estimated via a non-parametric
bootstrap procedure similar to that in Kosowski et al. (2006) and Barras et al. (2010).

The parameter αi is measured in % per month and its value shows by how much the
fund outperforms (αi > 0) or underperforms (αi < 0). For each fund i, we compute
a single one-sided p-value from the test:

H0
i : αi = 0 vs. Ha

i : αi > 0 (2.2.2)

The obtained p-values, {pi }, i = 1, m are converted into normal z-scores:

zi = �−1(1 − pi ) (2.2.3)

where �−1(.) is the inverse normal cdf. For instance, pi = 0.025 corresponds to a
fund that is likely to outperform and its zi = 1.96; if, on the other hand, pi = 0.975
(corresponds to a negative αi ) the fund is likely to underperform and its zi = −1.96.
From now on, the term “test statistics” will refer to either p-values, or their equivalent
z-values.

The composition of our sample (except for the time span) and the performance
evaluation model correspond to those in Barras et al. (2010). After 1992, there has to
be a significant overlap between their data and our sample.

2.3 False discovery rate and dependent test statistics: a brief review of existing
approaches

This section is dedicated to describing the various approaches to working with depen-
dent test statistics that have been previously used in the literature. Suppose we perform
the m separate tests, each with a significance level γ . Let Q be the number of rejected
true null hypotheses (called “false discoveries”) divided by the number of all rejec-
tions. Q is a random variable termed False Discovery Proportion, and the expected
value of Q is called False Discovery Rate (FDR). The goal of a multiple inference
procedure is to force FDR below a pre-specified level q, by choosing an appropriate
value of γ .

Denote by P0 a vector of m0 p-values that correspond to true null hypotheses. When
the components of P0 are independent and stochastically less or equal to U(0,1), FDR

123



Mutual fund performance

control can be performed based on a procedure proposed by Benjamini and Hochberg
(1995), Benjamini and Yekutieli (2001)).

Further, if we assume that the components of P0 are i.i.d. U(0,1), the procedure
can be empowered by estimating the unknown number of true null hypotheses, m0
(Benjamini and Hochberg 2000; Benjamini et al. 2006). The idea is to consider the
subset of p-values

p(λ) = {pi : pi > λ}, λ ∈ (0,1) (2.3.1)

For λ large enough, p(λ) will consist mostly of p-values corresponding to true nulls,
i.e. the points in p(λ) will approximately have U (λ, 1) distribution. This is used to
estimate λ: e.g., in the histogram of p-values, the plot should “level off” to the right of
a certain point on the horizontal axis, that point being λ̂. Then, the estimate of m0 is:

m̂0 =
[
number of points in p(λ̂)

]
/
(

1 − λ̂
)

(2.3.2)

This approach is behind the spline estimator proposed in Storey and Tibshirani (2003)
and the bootstrap estimator used in (Storey et al. 2004; Storey 2002). The latter
approach is used in Barras et al. (2010).

The first practical concern about the method above is that the components of
P0 can be dependent. It is usually assumed that the distribution of P0 can be
adequately approximated by the first two moments. Therefore, we use the terms
“dependence structure”, “dependence”, “correlation structure”, “variance-covariance
matrix”, “joint distribution” interchangeably.

Benjamini and Yekutieli (2001) show that the FDR procedure is still adequate if the
test statistics vector has so-called “positive dependency on each one from a subset”
structure (PRDS). E.g., suppose that the vector of test statistics is multivariate normal
N (μ,�). Then, if each null statistic has a non-negative correlation with any other sta-
tistic, the joint distribution is PRDS. Verifying the PRDS property is straightforward
in some controlled experiments, where the property is implied by the experimental
design. However, a mutual fund study is an observational study where, typically, we
may not simplify the dependence in this manner. Claiming that each null statistic is
non-negatively correlated with the rest is too restrictive to adopt as an assumption.

Another approach is to try to estimate the joint distribution of the test statistics
non-parametrically. In Yekutieli and Benjamini (1999) a bootstrap procedure gener-
ates m-dimensional samples of p-values under “complete null” setting, i.e. when all
m hypotheses are null. A similar resampling scheme is proposed in White (2000),
Romano and Wolf (2005), Romano et al. (2007), Romano et al. (2008). Their “StepM
procedure” is also akin to the approach developed for biostatistical purposes by
van der Laan and Hubbard (2005). These methods assume that there are no constraints
on the dependence structure.

A parametric approach can be illustrated as follows. Under the Carhart framework,
the dependence structure of the test statistics is defined by �0, the variance-covariance
matrix of the vector εt = (ε1,t , . . . , εm,t ). One can reduce the number of estimated
parameters in �0 by proposing a few “residual factors” that presumably account for
all of the cross-sectional (across i) dependence of ε′i,t s. The residual factors can be
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“qualitative”: e.g., one may assume that error terms coming from mutual funds with
the same investment objective are correlated with the same correlation coefficient. It
is also possible to derive the residual factors from the data using “dimension reduc-
tion” techniques, e.g. Principal Component Analysis (PCA). For instance, Jones and
Shanken (2005) utilize a combination of “qualitative” and PCA-based residual factors.

Both parametric and non-parametric modeling techniques appear to have a funda-
mental problem: they only work when the utilized estimate is a “good” estimate of �0,
which requires too much historical data. Yekutieli and Benjamini (1999) and White
(2000) show that the control of FDR is attained only asymptotically, i.e., for a fixed
m and T → ∞. This “size problem” is also investigated by Fan et al. (2008), who
demonstrate the inadequacy of a variance-covariance matrix estimator when the data
are insufficient. Efron (2007c) refers to the work of van der Laan et al. to emphasize
that the corresponding results are applicable only asymptotically and are not to be used
unless T is larger than m. In the context of mutual fund studies, we have m about 2000
and T between 50 and 300, which amounts to a severe “size problem”. The various
dimension reduction techniques allow us to “reduce the dimension” of the available
data (i.e., use the available data efficiently), but they provide no solution for the size
problem. In particular, PCA takes as input the estimated variance-covariance matrix of
residuals from (2.2.1), and simplifies it by extracting the main principal components.
While this extraction can keep most of the information, the problem is that the very
input of PCA is a poor estimate of �0 due to T being far smaller than m.

The “size problem” is often ignored in applications. Yekutieli and Benjamini (1999)
give a weather analysis example where m = 1977 and T = 39, while using another,
simulated dataset to show that FDR is controlled in which m = 40 and T in between
200 and 1,000. In the mutual fund performance area, the “cross-sectional bootstrap”
procedure of Kosowski et al. (2006) performs a non-parametric estimate of the depen-
dence structure with m over 2,000 and T about 300. Cuthbertson et al. (2008a) borrow
this approach and apply it to UK data with m = 900 and T about 340. Barras et al.
(2010) conduct a few Monte-Carlo experiments to see how their approach works when
certain forms of dependence are introduced. However, to specify the data generating
process, one has to be able to estimate the dependence adequately, which is impossi-
ble because of “size problem”. For instance, one of their simulations is based on the
residual correlation matrix for 898 mutual funds. Apparently, an adequate estimate
would require at least 898 monthly observations, or 75 years, of data. Instead, only
60 monthly values are used and there is no way to say whether the true dependence
structure is close to what is assumed in the experiment.

Another complication is that the equity market data show that �0 is very time-
dependent. The correlation between equity funds can go up and down depending on
the state of economy. Avellaneda and Lee (2008) illustrate this effect by considering
a large number of US stocks observed daily between 2002 and 2008. They show that
during the “good times” of 2004–2006, the equity returns are significantly less corre-
lated than during “bad times” (2002, 2007–2008). Therefore, in a multifactor model
with a fixed number of factors, the cross-sectional dependence structure of the error
terms can change drastically over time, which aggravates the already serious “size
problem”.
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One more way to handle the dependence is the assumption of “weak dependence”
(Storey et al. 2004; Storey and Tibshirani 2003; Storey 2003). When the assumption is
satisfied, the p-values are treated as if independent and the (asymptotic) FDR control
still takes place. There is no statistical procedure to test for weak dependence, even
though one could make a qualitative argument that it holds for particular datasets: e.g.,
it is likely to hold when the test statistics are only dependent (if at all) within small
groups with the groups being independent of each other.

Storey et al. (2004) also show that under weak dependence FDR can be controlled
for any fixed value of λ̂ in (2.3.2). The choice of optimal λ̂ is a bias-variance tradeoff
problem which they solve via bootstrapping from the m p-values. Resampling from a
set of (weakly) dependent p-values is a questionable technique for which no analytical
results are available. Still, some numerical examples show that the bootstrap estimation
of λ̂ is robust under “small group” type of weak dependence (Storey and Tibshirani
2001). The application of FDR in Barras et al. (2010) rests on the assumption of weak
dependence for the purpose of both FDR control and the estimation of the optimal λ̂

via bootstrap.
This assumption may not be justifiable. As stated in Barras et al. (2010) itself,

mutual funds may exhibit correlated trading behaviors in large groups that can be
caused, for instance, by being exposed to the same industrial sector or “herding” into
particular stock(s). To address that, Barras et al. (2010) argue that the funds’ test sta-
tistics are not very dependent because 15% of the fund histories in their sample do not
overlap in time, and on average only 55% of return observations overlap. How much
independence does the “lack of overlap” introduce? Compare this to an example of a
weakly dependent structure with m = 3, 000 and the group size of 10 in Storey et al.
(2004). For a mutual fund study with m = 2, 000, where the degree of independence is
associated with the absence of overlap, we obtain the following: the entire time period
should be divided into subintervals with under 10 funds observed on each subinterval.
Hence, it requires at least 200 subintervals. An average fund being observed for over
10 years, it implies the study’s time span has to be over 2000 years. In reality, the
dataset in Barras et al. (2010) spans only 32 years, which makes the “lack of overlap”
argument doubtful.

Therefore, the weak dependence property inevitably implies some rather ques-
tionable and/or hard-to-check assumptions about the data. Explicit modeling of the
high-dimensional correlation structure is not feasible either. Even very restrictive
assumptions may not reduce the number of model parameters to the point where
the amount of data is sufficient for estimation. The next section introduces a novel
approach to large-scale simultaneous inference that can offer a viable alternative.

2.4 Alternative approach: structural model and empirical null hypothesis

2.4.1 Structural model

Following Efron (2004a, 2007a,b,c, 2008a,b), we propose a model for the density of
z-values that are obtained from (2.2.3):
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α ∼ g(α)

z|α ∼ N (α, σ 2
0 ) (2.4.1)

f (z) = g(α) ∗ ϕ(z|0, σ 2
0 )

where ϕ(z|μ, σ 2) denotes the density of a normal with mean μ and variance σ 2. The
α value itself is a random variable with an arbitrary (not necessarily continuous) dis-
tribution. Without loss of generality, denote by g(α) the density of α, and by Pg the
corresponding probability measure. Each observed z-value is normal with mean α and
variance σ 2

0 . As a result, the density f (z) is a mixture of normals with random means,
which can also be expressed as a convolution (denoted by “*”) of g(α) and ϕ(z|0, σ 2

0 ).
Although the αvalues in (2.4.1) are not the same as αi in (2.2.2), they are denoted

by the same symbol because their signs coincide: a positive (zero, negative) sign for αi

in (2.2.2) corresponds to a positive (zero, negative) sign for α in (2.4.1). The observed
test statistic zi can be seen as a noisy signal from which one has to “back out” the sign
of αi .

Our interest is in testing some hypothesis about α, and the support of g(α) can be
arbitrarily split into two disjoint “null” and “alternative” sets, depending on which
case αfalls under:

g(α) = p0g0(α) + p1g1(α) (2.4.2)

where

g0(α) is the “null” component (i.e. it is the density of the values of α given that they
fall under the null hypothesis)

g1(α) is the “alternative” component (i.e. it is the density of the values of α given
that they fall under the alternative hypothesis)
p0 = Pg {α is in null set}, the probability that α is null
p1 = Pg {α is in alternative set}, the probability that α is alternative
p0 + p1 = 1

In terms of corresponding z-values this will result in a splitting of the density f of
observed z values:

f0(z) = g0 ∗ ϕ
(
z|0, σ 2

0

)
is the null density of z’s

f1(z) = g1 ∗ ϕ
(
z|0, σ 2

0

)
is the alternative density of z’s (2.4.3)

f (z) = p0 f0(z) + p1 f1(z) is therefore a mixture resulting in the density of z’s

For instance, if we decided to test H0 :αi = 0 vs. Haαi �= 0, the “null” set would
consist of one point {α = 0}, the “alternative” set would be {α �= 0}. If all null
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p-values are i.i.d. U(0,1), the corresponding density of null z-values would then be
f0(z) = ϕ(z|0, 1).

We can also consider a non-atomic null set, e.g. {α ≤ 0}, and set the following
notations:

g(α) = p0g0(α) + p+
1 g+

1 (α) (2.4.4)

where

p0 = Pg{α ≤ 0} is the probability that α is null,
p+

1 = Pg{α > 0} is the probability that α is alternative
g0(α) is the density of the composite null, with support on {α ≤ 0}
g+

1 (α) is the density of the alternative, with support on {α > 0}.
Then the mixture density

f (z) = p0 f0(z) + p+
1 f1(z) is the density of zs

where we defined

f0(z) = g0 ∗ φ
(
z|0, σ 2

0

)
for the conditional density of null z’s

f +
1 (z) = g+

1 ∗ φ
(
z|0, σ 2

0

)
for the conditional density of alternative z’s

and it must hold that p0 + p+
1 = 1

Since in this case the distribution of null z-values, f0(z), is a result of convolution
over a non-atomic set of α values, we are going to call such f0(z) a “composite null
distribution”.

A slight extension of (2.4.4) would be a three-component model, which would cor-
respond to separating the funds into three groups: underperformers, zero-alpha funds,
and outperformers. This leads one to split the support of g(α) into three subsets, where
the two alternatives are separated. Similarly to (2.4.4), we therefore set the following
notation:

g(α) = p0g0(0) + p+
1 g+

1 (α) + p−
1 g−

1 (α) (2.4.5)

where

p0 = Pg{α = 0}, p+
1 = Pg{α > 0}, p−

1 = Pg{α < 0}
g0(α)—“zero” density equal to delta function
g+

1 (α)—“positive” density with support on {α > 0}
g−

1 (α)—“negative” density with support on {α < 0}

f (z) = p0 f0(z) + p1 f1(z) mixture density of zs

p1 f1(z) = p+
1 f +

1 (z) + p−
1 f −

1 (z)

where

f0(z) = φ
(
z|0, σ 2

0

)
“zero” density of zs

123



N. Tuzov, F. Viens

f +
1 (z) = g+

1 ∗ φ(z|0, σ 2
0 ) “positive” density of z’s

f −
1 (z) = g−

1 ∗ φ
(
z|0, σ 2

0

)
“negative” density of z’s

p+
1 + p−

1 = p1, p0 + p1 = 1

As mentioned in the introduction, in order to analyze the Bayesian concept of false
discovery, we adopt the notion of “local false discovery rate” (fdr), which can be inter-
preted as a “local” version of Benjamini and Hochberg’s FDR. For the two-component
model, (2.4.3), it is defined as follows:

f dr(z) = P{case i is null |zi = z} = p0 f0(z)

f (z)
(2.4.6)

This local fdr, f dr(z), is the posterior probability that the test with corresponding
z-score came from the null distribution. Likewise, for the three-component model, we
may define fdr+ as a posterior probability that the corresponding z-score came from
the fund that is not outperforming.

f dr+(z) = [
p0 f0(z) + p−

1 f −
1 (z)

]
/ f (z) (2.4.7)

For identification of underperformance, f dr−(z)is defined in a similar manner. When
talking about outperforming (underperforming) mutual funds, the term “false discov-
eries” will refer to the funds that are not true outperformers (true underperformers).
For the sake of simplicity, the superscripts will be omitted. The Appendix provides
more details on model identification and estimation.

One may also consider rates for tails:

Fdr(z)= Fdr Le f t (z)= P{case i is null | zi ≤ z}= p0 F0(z)

F(z)
= E f [ f dr(t)|t ≤ z]

Fdr Right (z) = P{case i is null | zi ≥ z} = E f [ f dr(t)|t ≥ z] (2.4.8)

where F0 and F are cdf’s corresponding to f0 and f . FDR and Fdr (also denoted
FdrLeft) are closely related measures that reflect the average false discovery rate within
a tail region. On the other hand, fdr has a local nature and provides more precision
in interpreting z’s on an individual basis. Another advantage of this approach is that
neither (2.4.6) nor (2.4.8) assume any particular dependence structure of z’s such as
PRDS or the weak dependence.

2.4.2 Empirical null hypothesis

The local fdr approach is of the “empirical Bayes” kind: in all the models presented in
the last section, we do not pre-specify the mixture density f (z) and p0 because, unlike
in the “classical Bayes” setting, f (z) and p0 are estimated from the data. The null
density f0(z) is usually pre-specified, e.g. as ϕ(z|0, 1) (called “theoretical null”). In
certain cases it makes sense to estimate f0(z) from the data also. (Efron 2001, 2004a,
2007c,b) introduced the concept of “empirical null” where f0(z) is approximated by
ϕ

(
z|δ0, σ

2
0

)
and the parameters δ0 and σ 2

0 are estimated.
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To understand why this may be necessary, consider the following hierarchical
model. It is used to see how the presence of correlation affects the FDR control if
we treat z’s as if independent (Efron 2007c). Suppose, each pair (zi , z j ) is bivariate
normal with a distinct correlation coefficient ρi j drawn randomly from a certain nor-
mal distribution N (0, τ 2). In marginal terms, 95% of z-values come from N (0, 1) and
5% come from N (2.5, 1.25). For each of 1,000 generated datasets, the Benjamini-
Hochberg procedure is applied with FDR control level of 0.1 to produce a certain
cutoff γ (Sect. 2.3). The realization of False Discovery Proportion, Q, is computed
for each dataset and the average of 1,000 values is compared to the target of 0.1.

It turns out that the average of Q is under control despite the dependence. This is
intuitively clear because, since ρi j are zero on average, their impact should disappear
after averaging across all datasets. However, the variance of False Discovery Propor-
tion is very large, i.e., there are many datasets where the true proportion is far above
or below its target value of 0.1. Efron shows that it is possible to reduce the variance
by conditioning of the realization of a certain “dispersion variate”, A, which can be
estimated from the central portion of the histogram of z-values.

It can also be shown that the ensemble of null z-values will behave closely to an
ensemble of i.i.d. N (0, σ 2

0 ) where σ 2
0 = 1 + √

2A. The positive realizations of A pro-
duce σ 2

0 > 1 (“overdispersion”) and, as a result, too many null cases will be declared
significant (“over-rejection”). A negative value of A results in σ 2

0 < 1 (“underdisper-
sion”), and too few alternative cases are detected. To adjust for A, we have to use
the empirical null f0(z) = ϕ(z|δ0, σ

2
0 ). To see how this can affect the inference, we

introduce another version of (2.4.8):

F̃dr(x |A) = P{zi null | zi ≥ x, A} (2.4.9)

Suppose we are interested in detecting the outperforming funds, so set x = 2.5. The
case A = 0 corresponds to the theoretical null. Our calculations show that, if A takes on
the value of, say, 0.16, the proportion of null z’s in the tail region {z > 2.5} is about 1.8
times as great as it is under A = 0. Suppose F̃dr(2.5|0) is 0.2, then F̃dr(2.5|0.16) is
0.36. If 100 of z’s fall above 2.5, 80 of them are “true discoveries” under the theoretical
null, but under A = 0.16 the number of true discoveries is only 64. In Sect. 3 we are
going to estimate σ 2

0 and report the corresponding value of A based on the relation
A = (σ 2

0 − 1)/
√

2 in order to show whether overdispersion is practically significant.
If we slightly extend the experiment above to estimate the proportion of null cases,

the estimate will be biased downward for A > 0 and upwards for A < 0, but on aver-
age, across all datasets and realizations of A, it will be close to the true value of 95%.
For a particular dataset, however, the results can be biased because the corresponding
value of A can be sizably away from zero, and adjustment for A (i.e., switching to
empirical null) may be necessary.

Barras et al. (2010, Appendix B.2, Tables AI, AII) perform a Monte-Carlo exper-
iment that is similar to the one above: the cross-sectional correlations of error terms
in (2.2.1) are distributed over a narrow interval centered approximately at zero, which
means the correlations of z-values are also centered at about zero. For each of 1,000
simulated datasets, the point estimates of p0, p+

1 , p−
1 are obtained. The confidence

intervals for p0, p+
1 , p−

1 are obtained by taking the corresponding quantiles of 1,000
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values. As expected, the confidence intervals are centered at true values regardless
of whether or not dependence is introduced. However, as a result of dependence, the
width of confidence intervals goes up to the point where it becomes of practical signif-
icance. Consider p+

1 , whose true value is 2%. Under independence, the right boundary
of 90% confidence interval for p+

1 is 3.8%, but dependence inflates it to 6.5%. That
is, due to under- or overdispersion, the point estimate of p+

1 can be possibly off by
an extra 6.5 − 3.8 = 2.7%. For the real dataset, Barras et al. (2010) report the point
estimate of p+

1 as 0.6% with a standard error of 0.8%. If underdispersion is present, the
point estimate might be revised to 2.7 + 0.6 = 3.3%, which will become both prac-
tically and statistically significant. Therefore, these simulation results indicate that
dependence adjustment can be necessary even when the true data-generating process
is identical to that in the Monte-Carlo experiment. Kosowski et al. (2006, Appendix
C), performed a similar experiment where the dependence structure was simulated
non-parametrically. They do not report significant differences from the independent
case. Like in the experiment above, we interpret this as the absence of bias when
averaging across a large number of hypothetical datasets.

Another complication is that the marginal distribution of the null z-values can,
indeed, be closer to N (0, σ 2

0 �= 1) than to N (0, 1). According to Efron (2007b), it
can happen when the model used to obtain the individual test statistics (in our case,
it is (2.2.1)) is misspecified. Possible sources of misspecification are: unconsidered
serial correlation or heteroskedasticity of error terms, application of asymptotically
valid estimation when T is not large enough, and so on. In that case, the above men-
tioned example (Efron 2007c) shows that even independent test statistics can behave
as if dependent. Therefore, it is hard to say whether the observed deviation from the
theoretical null is caused by dependence or model misspecification.

In practice, both cross-sectional dependence and the misspecification of marginal
distribution can be present. While one can try to ignore the former via justifying the
independence/weak dependence assumption, the contribution of the latter is impossi-
ble to assess a priori: if one had known how the model was misspecified, one would
have corrected the misspecification in the first place. Monte-Carlo simulations would
not expose under- or overdispersion caused by model misspecification.

Efron (2007b) shows that, in the above example, not only the point estimate of
f dr(z) but also its estimated standard error, s.e.( f d̂r(z)), are conditioned on the
ancillary statistic A, and, in that sense, are conditioned on the dependence structure
of z’s. Likewise, the standard errors of p̂0, δ̂0, σ̂0 are also conditioned on the depen-
dence structure. In this example, using the empirical null is essentially a way to adjust
the inference for the dependence structure of z′s without having to model it explic-
itly. In addition, this takes into account the possible misspecification of the marginal
distribution of null test statistics.

The advantage of Efron’s approach can be summarized as follows: to perform
multiple inference, we need not the dependence structure per se, but the estimates of
f (z) and p0 f0(z). When the “size problem” is present, we know very little about the
true dependence structure. Also, it can be hard to verify the weak dependence/inde-
pendence assumption for test statistics. Therefore, estimating the structural model
directly from the observed z-scores is a viable shortcut one may choose when there is
enough data. Importantly, for Efron’s model, “enough data” means that m (as opposed
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to T in (2.2.1)) has to be large, which implies that the “size problem” turns to our
advantage.

Using the theoretical null is equivalent to assuming that the null p-values are i.i.d.
U(0,1) and the null z-scores are i.i.d. N(0,1), which corresponds to assumptions in
Barras et al. (2010). Given that FDR is very closely related to Fdr (Efron and Tibshi-
rani 2002), we can treat our theoretical null-based procedure as a close match to the
approach of Barras et al. (2010), with directly comparable results. While the theoret-
ical null is always the first option to try, the findings of Efron suggest that it is also
worth checking whether there is strong evidence against the theoretical null. If that is
the case, switching to the empirical null can be a justifiable option.

2.4.3 Parameter estimation

The numerical results in this study are obtained based on the R package locfdr, which
includes both theoretical and empirical null options. Regardless of whether the empir-
ical or theoretical null is used, the estimation of the parameters of null component,
p0 f0(z), is based on the “zero assumption”: it is assumed that only the null component
is supported on a certain “zero interval” (z−; z+). For the theoretical null and a fixed
zero interval, the point estimate of p0 is the same in Barras et al. (2010) (formula
(2.3.2)) and Efron’s approach. A small technical difference is that Barras et al. (2010)
work with two-sided p-values obtained from the test H0

i :αi = 0 vs. Ha
i :αi �= 0 while

in this study we utilize one-sided z-values (2.2.3). In particular, the interval U (λ, 1)
from Sect. 2.3 corresponds to a symmetrical zero interval on z-axis: e.g., U(0.05; 1) is
identical to the zero interval (−1.96; 1.96) . The following formula shows the relation
between λ, z− and z+:

λ = �(z−) + (1 − �(z+)) (2.4.10)

The choice of the zero interval itself is a bias-variance tradeoff problem where the
value of λ or, equivalently, the boundaries of (z−; z+) are the smoothing parameters.
Barras et al. (2010) minimize M SE( p̂0) using λ as a smoothing parameter. For a
fixed λ, M SE( p̂0) is calculated based on bootstrap technique (Sect. 2.3) which we
prefer to avoid. Instead, we use a bias-variance tradeoff estimation method similar to
that in Turnbull (2007). Therefore, our method can be seen as an extension of that in
Barras et al. (2010) in how we choose the zero interval, (z−; z+), and model the null
distribution, f0(z). Appendix provides more details on model estimation.

2.4.4 Power statistics

A high power means that fdr(z) is small on the support of f1(z), which can be described
by an overall (post hoc) power measure:

Efdr =
∫

f dr(z) f1(z)dz/
∫

f1(z)dz = E f1[ f dr(z)] (2.4.11)
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It can be adapted to measure the power in the right tail:

EfdrRight =
+∞∫

0

f dr(z) f1(z)dz/

+∞∫

0

f1(z)dz = E f1 [ f dr(z)|z > 0] (2.4.12)

EfdrLeft is defined similarly for the left tail (z < 0).
To put a cap on the proportion of false discoveries, Efron (2007b) recommends

picking z-values with f dr(z) ≤ 0.2. We also adapt (a more liberal) rule: declare the
fund under- (outperforming) as long as its FdrLeft (FdrRight) are under 0.2. It means
that we shall tolerate up to 20% of false discoveries when we wish to construct an
outperforming fund portfolio. Similarly, we say that the study has decent power when
Efdr is under 0.2.

An interesting question is whether one could improve the study by increasing the
number of observations per fund, T. Assuming that the standard error of α̂i in (2.2.1) is
proportional to 1/

√
T , the package locfdr allows us to gauge how much power would

be gained by increasing the value of T. This is done under the assumption that all
parameters in the model, except T, are fixed at the original estimated values. Taking

one step back, one may ask whether those estimates, such as
�
p

+
1 , are adequate to begin

with. This issue is investigated in Sect. 3.2.

2.4.5 Performance versus investment objective

It would be interesting to look into the net performance versus investment objective.
The findings of Barras et al. (2010) suggest that one may be able to increase the power
by using investment objective as a control factor.

Barras et al. (2010) compare the fund categories by running their bootstrap-based
procedure for each category separately. We can perform an fdr-based analysis which
will not suffer from the possible misspecifications described in Sect. 2.4.2, insofar as
we have the option of using the empirical null.

Efron (2008b) proposes the following method. Suppose that all z-values are divided
into two classes, A and B. In mutual fund context, class A corresponds to the invest-
ment category of interest (e.g. Aggressive Growth), and class B corresponds to the
rest of funds. Then the mixture density and fdr can be decomposed as follows:

f (z) = πA · f A(z) + πB · fB(z) (2.4.13)

πA, πB—a priori probabilities of class A and B

f A(z) = pA0 f A0(z) + pA1 f A1(z)—class A mixture density
f A0(z), f A1(z)—null and alternative densities for class A
f drA(z) = pA0 f A0(z)/ f A(z)—class A fdr
fB(z) = pB0 fB0(z) + pB1 fB1(z)—class B mixture density
fB0(z), fB1(z)—null and alternative densities for class B
f drB(z) = pB0 fB0(z)/ fB(z)—class B fdr
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Fig. 1 Estimated densities for pre-expense returns and theoretical null. The model (2.2.1) is applied to
pre-expense returns of 1876 funds. The histogram represents z-values obtained according to (2.2.2) and
(2.2.3). The solid (green) curve is f̂ (z), an estimate of mixture density in the structural model (2.4.5).
The dashed (blue) curve is p̂0 · ϕ(z|0, 1), an estimate of the null component of mixture density. The thin
(pink) dashes in non-central bins are “thinned counts”. Each thinned count is equal to the full count in the
corresponding bin times p̂1 f̂1(z), an estimate of alternative component in the structural model. Thinned
counts reflect the proportion of alternative cases in each bin

The main hypothesis of interest is:

H0 : f drA(z) = f dr(z) (2.4.14)

We do not have to run a separate fdr analysis for each group as long as the assumption

f A0(z) = fB0(z) (2.4.15)

holds. This is another advantage of Efron’s approach because it allows us to avoid
redundant parameters. A certain logistic regression procedure is utilized to test the
assumption (2.4.15), test the main hypothesis (2.4.14), and obtain an estimate of
f drA(z) (details are available upon request from the authors).

3 Empirical results

3.1 Pre-expense returns, theoretical null

We estimate the structural model (2.4.5) and obtain the following results. Figure 1
shows the histogram of z-scores (y axis indicates the counts of z-scores in each of 90
bins), the estimate of mixture density, f̂ (z), showed by solid (green) curve, and the
estimated null component, p̂0 · ϕ(z|0, 1), showed by dashed (blue) curve.

The thin (pink) dashes in non-central bins are so-called “thinned counts” that are
equal to full z counts times the estimated alternative component, p̂1 f̂1(z). Thinned
counts reflect the proportion of alternative cases in each bin.

In Barras et al. (2010), the corresponding estimates of p0, p+
1 , p−

1 are 85.9 (2.7),
9.6 (1.5), 4.5 (1.0). For our sample, the confidence intervals for p0, p+

1 , p−
1 in Table 1
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Table 1 Estimation results for pre-expense returns and theoretical null

p̂0, % p̂+
1 , % p̂−

1 , %

89.42 (0.75) 6.30 (0.53) 4.28 (0.53)

95% CI (87.95; 90.89) (5.26; 7.33) (3.24; 5.31)

Number of funds 1678 118 80

Zero interval λ̂

(−1.5; 1.5) 0.1336

The table shows the estimated proportions of zero-alpha, outperforming, and underperforming mutual funds
( p̂0, p̂+

1 , p̂−
1 ), based on pre-expense fund returns and theoretical null distribution. The corresponding struc-

tural model is (2.4.5). Standard errors are provided in parentheses, along with 95% confidence intervals in
the 3rd line. The 4th line shows the estimated number of zero-alpha, outperforming, and underperforming
funds in the population of 1,876 funds. To provide more details about the estimation procedure, we report
the boundaries of zero interval and the value of λ̂ (see Sect. 2.4.3) in the bottom line

have a lot of intersection with the corresponding intervals in Barras et al. (2010).
The estimate of positive proportion drops from 9.6 to 6.3%, which is consistent with
post-1992 deterioration of mutual fund performance discovered in Barras et al.
(2010). Still, the proportion of positive performers is both practically and statistically
significant.

The results of Table 1 suggest that some 118 funds out of 1,876 are outperforming
on pre-expense basis. Knowing that some 118 funds are worth looking into is not
the same as knowing those 118 skilled funds by name. The small triangles under the
horizontal axis in Fig. 1 mark the cutoffs where f dr(z) = 0.2. The funds to the right
(left) of the right (left) cutoff can be identified as outperforming (underperforming).
The majority of thinned counts fall in between the cutoffs, so the study appears under-
powered. The power statistics confirm the suspicion: Efdr = 0.56, EfdrRight = 0.5,
and EfdrLeft = 0.64.

It practice it means that, under FdrRight = 0.2, we can identify only 29% (34 out
of 118) of outperformers. The only way to increase the proportion of identifiable
under/outperformers for this sample is to tolerate a higher percentage of false discov-
eries, i.e. to move the left and right cutoffs closer to zero (Table 2). To select 47% (55
funds) out of total 118 outperformers, one has to tolerate FdrRight of about 0.3 mean-
ing that 24 false discoveries have to be selected also: 24/(24 + 55) = 0.3. To select
95% (112 funds) of outperformers, one has to include about 168 false discoveries.
Because of low power and small proportion of outperformers, the quality of “top lists”
of fund managers is not good: e.g., “Top 79 performers” (79 = 55 + 24) will have 24
indistinguishable false discoveries, and the list of “Top 43 performers” will have some
9 false entries in it.

How would the result change if we had more years of data? In the original sample,
we have on average 10 3/4 years of observations per fund; we can loosely think of this
as having 10 3/4 years of data for each fund in the sample.

For instance, having 32 years of observations for each fund could help identify 90%
(106 out of 118) of outperformers with FdrRight = 0.2 (Table 3). This corresponds
to EfdrRight = 0.2, confirming that using 0.2 as a rule of thumb for good power is
reasonable.
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Table 2 Identified outperformers and false discoveries versus FdrRight for pre-expense returns and theo-
retical null

FdrRight Proportion of
identified
outperformers, %

Number of identified
outperformers
(rounded)

Number of false
discoveries (rounded)

0.1185 15 18 out of 118 2

0.2 29 34 out of 118 9

0.3 47 55 out of 118 24

0.4 65 78 out of 118 51

0.5 83 98 out of 118 98

0.6 95 112 out of 118 168

0.7 100 118 out of 118 275

This table describes one’s ability to detect outperformers. For each level of FdrRight (defined by 2.4.8) in
the first column, the second and third columns specify the proportion and number of outperformers (out of
total 118) whose z-values fall above the right-hand-side cutoff determined by FdrRight. The last column
shows how many useless funds (false discoveries) have to be tolerated because they also fall above the
cutoff

Table 3 Increase in power versus years of available data for pre-expense returns and theoretical null

Sample size, years Efdr EfdrRight Outperformers identifiable
with FdrRight = 0.2

103/4 0.56 0.50 34 out of 118

15 0.44 0.38 70 out of 118

20 0.36 0.30 90 out of 118

25 0.30 0.25 98 out of 118

32 0.25 0.20 106 out of 118

The table reflects one’s increased ability to identify outperformers as a result of hypothetical increase in
the amount of historical data per fund. The first column indicates the amount of historical data, in years per
fund. Second and third column report the power statistics Efdr and EfdrRight, defined in Sect. 2.4.4. The
last column shows how many out of total 118 outperformers are captured given that the proportion of false
discoveries is capped at 20%

In accordance to EfdrLeft = 0.64, the tables similar to Tables 2 and 3 (not shown)
indicate that power in the left tail is much worse: e.g., even with 40 years per each fund
only about 81% (65 out of 80) of underperformers are identified with FdrLeft = 0.2.

3.2 Pre-expense performance, empirical null

Given that the 95% confidence interval for p0 in Table 1 is (87.95; 90.89), it is possible
to assume that p0 ≥ 0.9. This assumption is necessary if we want to check whether
the theoretical null is adequate for the data (see Appendix). We are going to add two
more free parameters, i.e. assume that f0(z) = ϕ(z|δ0, σ

2
0 ). If the theoretical null is

appropriate, the estimated empirical parameters δ0 and σ0 should not be significantly
different from 0 and 1, respectively.
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Table 4 Estimation results for pre-expense returns and empirical null

Zero interval λ̂ p̂0, % EfdrRight

(−1.7; 1.7) 0.0891 98.11 (0.99) (96.17; 100.05) 0.712

δ̂0 σ̂0 t-value for H0 : σ0 = 1 A

0.0039 (0.0353) 1.179 (0.034) 5.29 0.276

The table shows the estimated proportion of zero-alpha funds, p̂0, along with its 95% confidence interval.
The corresponding structural model is (2.4.5). The boundaries of the zero interval, the value of λ̂ (Sect. 2.4.3),
and the power statistic EfdrRight (Sect. 2.4.4) are also reported. For the empirical null, f0(z) = ϕ(z|δ0, σ 2

0 ),
we report the estimates of δ0, σ0, and the value of dispersion variate A that corresponds to σ̂0 (Sect. 2.4.2).
The reported t-value for H0 : σ0 = 1 measures the statistical significance of overdispersion while the value
of A gauges its practical significance. Figures in parentheses denote the standard errors of the different
estimators

As we see from Table 4, σ̂0 is significantly greater than 1 with the corresponding
t-value of 5.29. In other words, the z-values exhibit statistically significant overdis-
persion.

Comparing Figs. 1 and 2, we see that the empirical null has a much better fit to f̂ (z)
in the central part of the histogram, i.e., the bias of the null distribution is reduced.
In theory, the dashed (blue) curve, p̂0 f̂0(z), must always be under the solid (green)
curve, f̂ (z). This is clearly violated on Fig. 1, indicating high bias. With more free
parameters, the empirical null has lower bias and higher variance. If we compare the
measures of variance and bias (see Appendix) on the same zero interval (−1.7; 1.7),
it turns out that the empirical null produces a variance that is 2.2 times as large and
a bias that is 34.5 times as small, an obviously more favorable bias-variance tradeoff
for the empirical null.

In terms of practical significance, one may think of such z-values as being margin-
ally N(0,1) and pairwise correlated with the correlation density ρ ∼ N (0, τ 2), (see
Sect. 2.4.2). The estimate of the dispersion variate A in Table 4 is 0.276, which is far
greater than the example of A = 0.16 discussed in Sect. 2.4.2. Using F̃dr(x |A) from
(2.4.9), if we assume that F̃dr(2.5|0) = 0.2, then F̃dr(2.5|0.276) = 0.47. It means
that if 100 z’s fall above 2.5, 80 of them are true discoveries if the theoretical null is
used, but with the empirical null that number drops to 53.

Therefore, we have both statistically and practically significant evidence against
the theoretical null. The theoretical null-based inference overestimates the number of
both skilled and unskilled funds in the population. The 95% confidence interval for
p0 changes from (87.95; 90.89) under the theoretical null to (96.17; 100.05) under
the empirical null. The latter means that it is possible that both underperformers
and outperformers are not present in the population at all. The estimated number
of outperformers drops from 118 to 35 (p+

1 = 1.85%) and the estimated number of
underperformers drops from 80 to 1. Neither 35 nor 1 are significant statistically or
practically.

Since this study’s sample has a significant overlap with that of Barras et al. (2010),
it is very likely that the overdispersion effect of similar magnitude is present in their
sample. It means that Barras et al. (2010) overestimated the percentage of skilled and
unskilled funds in the population as well. Under the empirical null, the percentage of
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Fig. 2 Estimated densities for pre-expense returns and empirical null. The model (2.2.1) is applied to pre-
expense returns of 1876 funds. The histogram represents z-values obtained according to (2.2.2) and (2.2.3).
The solid (green) curve is f̂ (z), an estimate of mixture density in the structural model (2.4.5). The dashed
(blue) curve is p̂0 · f̂0(z), an estimate of the null component of mixture density. Since the empirical null is
used, f0(z) = ϕ(z|δ0, σ 2

0 )where parameters δ0 and σ 2
0 are estimated (see Table 4). The thin (pink) dashes

in non-central bins are “thinned counts”. Each thinned count is equal to the full count in the corresponding
bin times p̂1 f̂1(z), an estimate of alternative component in the structural model. Thinned counts reflect the
proportion of alternative cases in each bin

outperformers in Barras et al. (2010) will probably be greater than 1.85%, but only
because of better mutual fund performance prior to 1993.

In addition, the power is quite poor: fdr is above 0.2 everywhere, and Efdr-
Right = 0.712. Even if we assume that the 35 outperformers are indeed present in
the population, to select 50% of outperformers (about 17 out of 35), one has to tol-
erate FdrRight of 0.6 by selecting about 26 false discoveries as well. The “Top 43”
list of funds will have 26 false entries, 43 = 17 + 26. To obtain decent power (Efdr-
Right = 0.2), it would take an unrealistic 43 years of data per fund.

The power measures used above assume that the proportion of outperformers in
the population,p+

1 , is fixed at its estimated value, and it is only the number of obser-
vations per fund, T, that is subject to change. One may ask whether the estimate of
p+

1 itself is adequate. Kothari and Warner (2001) provide some basic results as to
that. They create a large number of artificial mutual funds whose alphas are zero by
construction. Then a certain level of alpha (between 1 and 15% per year) is intro-
duced into all funds and measured via a number of performance evaluation models,
including Carhart. The test rejection rate serves as a rough measure of test quality. For
instance, given 3% alpha and Carhart model, 80% of tests reject the null under 5%
test level.

Our approach uses a similar idea: from the original pre-expense data we select
122 funds with z-values in the interval [−0.9; 0.9]. According to both theoretical
and empirical null-based results above, these funds have zero alphas. We introduce
outperformance of α% per annum by adding α/12 to each monthly return. Then we
re-estimate p+

1 based on the empirical null. The estimated number of outperformers
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Table 5 Estimated number of outperformers in the population versus annual alpha

Annual alpha (%) Estimated number of EfdrRight
outperformers less 35

1 −17 out of 122 0.601

3 −12 out of 122 0.886

5 42 out of 122 0.530

7.5 85 out of 122 0.308

10 105 out of 122 0.248

15 124 out of 122 0.171

This table reflects one’s ability to estimate the proportion of outperformers in the population. According
to the empirical null-based analysis, the original pre-expense dataset contains 35 outperforming funds. We
select another 122 funds that have z-values close to zero and add a positive value of alpha (shown in the
first column) to their returns. Then we repeat the empirical null-based estimation according to the struc-
tural model (2.4.5). The estimated number of outperformers less 35 is reported in the second column and
compared to the target value of 122. The last column shows EfdrRight, a power statistic (Sect. 2.4.4)

minus 35 (the estimated number of outperformers in the original sample) will give us
the idea of how many of 122 outperformers are recognized as present in the population.
The advantage of this approach over that in Kothari and Warner (2001) is twofold.
First, we can work with real funds as opposed to artificial ones. Second, we make a
direct comparison of the true and estimated values of p+

1 , whereas the test rejection
rate does not provide that information.

The results in Table 5 are very discouraging. First, for alpha between 1 and 3%, the
estimated number of outperformers is even less than in the original sample. This coun-
terintuitive result occurs because the corresponding 122 z-values shift to the right, but
still remain relatively close to zero. The central portion of the histogram widens which
increases p̂0 and reduces p̂+

1 . It is clear that the majority of outperformers with eco-
nomically significant alphas up to 5% p.a. are not included into p̂+

1 at all. Those funds
who do manage to make it into p̂+

1 appear to be hardly separable from the rest: Efdr-
Right is well above 0.2 for all values of alpha except for an unrealistic 15% per annum.

3.3 Net performance, theoretical null

In Barras et al. (2010), the corresponding estimates of p0, p+
1 , p−

1 are 75.4 (2.5), 0.6
(0.8), 24.0 (2.3). Again, there is a good amount of intersection of corresponding con-
fidence intervals for p0, p+

1 , p−
1 (Table 6, also see Fig. 3). The estimated number of

outperformers (9 funds out of 1911) is not statistically or practically significant. This
is different from the findings Kosowski et al. (2006) who find a sizable minority of
funds that generate a significant amount of wealth per year. It is not possible to per-
form a more quantitative comparison because Kosowski et al. (2006) do not estimate
the proportion of outperformers explicitly. Besides, their dataset includes a number of
funds that have “Balanced and Income” as investment objectives. Such funds are not
included neither in our dataset nor in Barras et al. (2010).

EfdrLeft = 0.35 (still well above 0.2), and the power is not good. In particular,
54% of underperformers (295 out of 547) are identified with FdrLeft = 0.2 (Table 7).
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Table 6 Estimation results for net returns and theoretical null

p̂0, % p̂+
1 , % p̂−

1 , %

70.91 (1.22) 0.45 (0.86) 28.64 (0.86)

95% CI (68.52; 73.30) (−1.24; 2.14) (26.95; 30.33)

Number of funds 1,355 9 547

Zero interval λ̂

(−1.4; 1.4) 0.1615

Efdr EfdrRight EfdrLeft

0.35 0.49 0.35

The table shows the estimated proportions of zero-alpha, outperforming, and underperforming mutual funds
( p̂0, p̂+

1 , p̂−
1 ). The corresponding structural model is (2.4.5). Standard errors are provided in parentheses,

along with 95% confidence intervals in the 3rd line. The 4th line shows the estimated number of zero-alpha,
outperforming, and underperforming funds in the population of 1911 funds. To provide more details about
the estimation procedure, we report the boundaries of zero interval and the value of λ̂ (see Sect. 2.4.3). The
power statistics, Efdr, EfdrRight, EfdrLeft (Sect. 2.4.4) are in the bottom line

Fig. 3 Estimated densities for net returns and theoretical null. The model (2.2.1) is applied to net returns of
1911 funds. The histogram represents z-values obtained according to (2.2.2) and (2.2.3). The solid (green)
curve is f̂ (z), an estimate of mixture density in the structural model (2.4.5). The dashed (blue) curve
is p̂0 · ϕ(z|0, 1), an estimate of the null component of mixture density. The thin (pink) dashes in non-
central bins are “thinned counts”. Each thinned count is equal to the full count in the corresponding bin
times p̂1 f̂1(z), an estimate of alternative component in the structural model. Thinned counts reflect the
proportion of alternative cases in each bin

Despite the low power, a high proportion of underperformers makes it much easier
to construct sizable “Bottom lists” of decent quality: e.g., the “Bottom 181” list has
FdrLeft of 0.11 which corresponds to about 20 false discoveries in the list.

Increasing T to 15 years per fund reduces EfdrLeft from 0.35 to 0.29, and only the
unrealistic 26 years of data per fund brings EfdrLeft to 0.2. Still, if it is possible to
extend back the sample and obtain 15 years of data per fund, it pays off because the
identifiable (under FdrLeft = 0.2) proportion of underperformers increases from 54 to
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Table 7 Identified underperformers and false discoveries versus FdrLeft for net returns and theoretical
null

FdrLeft FdrLeft Proportion of Number of Number of false
identified identified discoveries
underperformers, % underperformers

0.11 29 161 out of 547 20

0.2 54 295 out of 547 75

0.3 80 438 out of 547 188

0.4 96 525 out of 547 350

0.5 100 547 out of 547 547

This table describes one’s ability to detect underperformers. For each level of FdrLeft (defined by 2.4.8) in
the first column, the second and third columns specify the proportion and number of underperformers (out
of total 547) whose z-values fall below the left-hand-side cutoff determined by FdrLeft. The last column
shows how many useless funds (false discoveries) have to be tolerated because they also fall below the
cutoff

72% (394 funds out of 547). For 26-year sample, that proportion is 90% (492 funds
out of 547).

3.4 Net performance, composite empirical null

For net returns data, it is not possible to fit the simple empirical null directly as in
Sect. 3.2 because p0, the proportion of funds with zero performance, is far below 0.9
(see Appendix). Therefore, we recourse to the composite empirical null (2.4.4).

From the results in the previous section, we would expect the optimal z+ to
be at least 1.4. Efron (2004b) suggests a non-symmetrical parametric null, such as
split-normal f0(z) = SN (δ0, σ

2
1 , σ 2

2 ), in order to avoid the influence of the left-tail
z’s on the inference in the right tail. However, fitting a split-normal distribution along
with normal f0(z) = ϕ(z|δ0, η

2
0) for z− = −4 and z+ ∈ [1.4; 2.2] showed that the

corresponding null components p̂0 f̂0(z) are virtually identical and ϕ(z|δ0, η
2
0) is quite

adequate for modeling the composite null.
Here we expect a much higher power to identify outperformers than in Sect. 3.2.

First, the mean of null density is shifted to the left by a sizable value of 0.624. Sec-
ondly, inclusion of z-values in [−4;−1.4] reduced the standard error of p̂0 by 0.38%
without causing any increase in the bias in the right tail. Inclusion of z-values in [1.4;
1.6] reduces s.e.( p̂0) by another 0.14% and overall it drops from 1.22% (Table 6) to
0.7% (Table 8, also see Fig. 4).

In spite of this, the estimated number of outperformers grows from 9 to only 15
(still practically insignificant) and is not statistically different from zero. The only
explanation is that the estimated null distribution f̂0(z) = ϕ(z|δ̂0, η̂

2
0) reflects the

fact that σ 2
0 in (2.4.4) is much greater than 1. Taking that overdispersion into account

drastically reduces the final estimated number of outperformers. It eliminates all the
benefits we hoped to get from the composite empirical null. In addition, EfdrRight is
above 0.725 and the power is abysmal. In particular, the list of “Top 15” performers
has FdrRight = 0.58 that amounts to about 9 false discoveries in the list.
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Table 8 Estimation results for net returns and composite empirical null

p̂0, % p̂+
1 , %

99.21 (0.7) 0.79 (0.7)
95% CI (97.84; 100.58) (−0.58; 2.16)
Number of funds 1896 15
Zero interval λ̂

(−4; 1.6) 0.055
δ̂0 η̂0 EfdrRight
−0.624 (0.033) 1.229 (0.028) 0.725

The table shows the estimated proportions of non-outperforming and outperforming funds ( p̂0, p̂+
1 ), along

with 95% confidence intervals in the 3rd line. The corresponding structural model is (2.4.4). The 4th line
shows the estimated number of non-outperforming and outperforming funds in the population of 1911
funds. To provide more details about the estimation procedure, we report the boundaries of zero interval
and the value of λ̂ (Sect. 2.4.3). Since the composite empirical null, f0(z) = ϕ(z|δ0, η2

0), is utilized, we

report the estimates of δ0 and η2
0. The power statistic, EfdrRight, (Sect. 2.4.4), is also shown. Figures in

parentheses denote the standard deviation of the different estimators

Fig. 4 Estimated densities for net returns and composite empirical null. The model (2.2.1) is applied to
net returns of 1911 funds. The histogram represents z-values obtained according to (2.2.2) and (2.2.3). The
solid (green) curve is f̂ (z), an estimate of mixture density in the structural model (2.4.4). The dashed (blue)
curve is p̂0 · f̂0(z), an estimate of the null component of mixture density. Since the empirical null is used,
f0(z) = ϕ(z|δ0, η2

0) where parameters δ0 and η2
0 are estimated (see Table 8). The thin (pink) dashes in

right hand side bins are “thinned counts”. Each thinned count is equal to the full count in the corresponding
bin times p̂1 f̂1(z), an estimate of alternative component in the structural model. Thinned counts reflect the
proportion of alternative cases in each bin

3.5 Net outperformance versus mutual fund investment objective

Using the method outlined in Sect. 2.4.5, let us take a look at how the net outperfor-
mance depends on the investment objective category. We apply the structural model
(2.4.4) like we did in the last section.
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Table 9 Net outperformance versus investment objective under composite empirical null

Category Number
of funds

p-value for H0 :
f A0(z) = fB0(z)

p-value for
H0 : f drA(z) =
f dr(z)

Number of
outperformers

Proportion

G 886 0.7083 0.5606 7 0.79%

GI 398 0.9698 0.0006 0 0%

AG 627 0.6997 0.0079 19 3%

Population 1911 n/a n/a 15 0.79%

The table shows the number of outperformers in each of three investment objective categories estimated
using the methodology outlined in Sect. 2.4.5. The 2nd column shows the number of “Growth” (G), “Growth
and Income” (GI), and “Aggressive Growth” (AG) funds. The 3rd column reports the p-value for the hypoth-
esis that the null distribution in the corresponding investment objective category is the same as in the entire
population of 1911 funds. The 4th column shows the p-value for the hypothesis that the false discovery rate
in the investment objective category is the same as in the population. Finally, the number and proportion of
outperformers are reported in the last two columns

Fig. 5 False discovery rate versus mutual fund investment objective. To investigate how net outperformance
depends on the mutual fund investment objective, we use the structural model (2.4.4) and the method out-
lined in Sect. 2.4.5. The dashed (red) line shows f drG I (z) for Growth & Income funds, which is equal
to 1 for all values of z. The solid (blue) line shows f drG (z) for Growth funds, which is no different from
f dr(z) for the entire population of funds. The beaded (green) curve reflects f drAG (z) for Aggressive
Growth funds

Column 3 of Table 9 shows that the hypothesis f A0(z) = fB0(z) is not rejected for
any category, and it means that we do not have to re-run the entire analysis for each
category separately. Column 4 suggests that f drAG(z) �= f dr(z) and f drG I (z) �=
f dr(z), but we fail to reject f drG(z) = f dr(z).

Figure 5 shows the curves corresponding to f d̂r(z) (which coincides with
f d̂rG(z)), f d̂rG I (z), and f d̂rAG(z). Apparently, there are no skilled managers in GI
group because for any z f d̂rG I (z) = 1. Using the estimate f d̂rAG(z) and f d̂rG(z),
we conclude that there are 19 outperformers among 627 AG funds and 7 outperformers
among 886 G funds. Therefore, while the percentage of outperformers is 0.79% in the
population (15 out of 1,911), it is about 3% in AG group, 0.79% in G group and 0%
in GI group.
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While f d̂r(z) is always above 0.24, f d̂rAG(z) is under 0.2 for z > 3.56. Unfortu-
nately, only one AG fund has z ≥ 3.56 and can be identified as outperformer. Even if
we raise the fdr cutoff from 0.2 to 0.4, only 4 out of 19 AG outperformers are identi-
fied. Even a relatively superior AG group is unable to produce a number of identifiable
outperformers that would be significant for investment purposes.

The results in Barras et al. (2010) for the same three groups are quite similar: AG
funds are the best, G funds are similar to the entire population, and GI funds are the
worst. The estimated proportions of outperformers are 3.9, 0, 0%, correspondingly,
although they do not investigate whether the difference is statistically significant. We
do find a statistically significant difference, which could have an interesting implica-
tion. We know that the AG group has the highest proportion of “growth” stocks and
the lowest proportion of “value” stocks. For the GI group, it is the other way round,
and the G group is somewhere in between AG and GI. In model (2.2.1) the book-to-
market factor, hi , is also known as “growth versus value” factor. Hence, there should
not be any difference in risk-adjusted performance w.r.t. “growth versus value” dimen-
sion. Our results indicate otherwise, which, at least in terms of statistical significance,
could imply that Carhart’s model does not quite explain the cross-sectional variation
of excess returns.

3.6 Short-term net performance

The long-term results of mutual fund net performance are quite disappointing because
the number of outperformers is never practically significant: 12 in Barras et al. (2010),
and the best result for this study is 26 (7 G and 19 AG funds discovered in Sect. 3.5).

However, the short-term performance may be better, as suggested by Barras et al.
(2010). They partition the data into six non-overlapping subperiods of 5 years each,
from 1977 to 1981 to 2002–2006. If a fund has 60 observations on a subperiod, it
is treated as a separate “fund” with 5-year history. They thus increase the number of
estimated alphas from 2,076 to 3,311 and p̂+

1 goes up from 0.6 (0.8)% to a statistically
significant 2.4 (0.7)%, correspondingly. This is interpreted as evidence for superior
“short-term” performance that exists for a while and gradually disappears in the long-
run equilibrium. Barras et al. (2010) point out that if the equilibrium model holds, the
negative performance has to disappear just as well, which is not observed in reality.

Our major concern about that analysis is that drastically reducing the number of
observations per fund is very likely to increase the overdispersion of z-values. That
alone could explain a higher estimated percentage of short-term outperformers and,
therefore, the utilization of empirical null is even more justified here.

Similarly to Barras et al. (2010), we partition our dataset into three non-overlap-
ping 58-month subperiods. If a fund has 50 or more observations on a subperiod, it is
treated as a separate “short-term fund”. In the end, there are 3,636 of such “funds”.
Applying the theoretical null results in p+

1 = 0.81(0.52)% (29 outperformers), both
statistically and practically insignificant.

Applying instead the composite empirical null, as in Sect. 3.4, we hope that more
positive cases will be identified. However, as predicted above, the overdispersion is
so severe that the estimated number of outperformers not only fails to go up but actu-
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Table 10 Estimation results for “short-term” net performance under composite empirical null

p0, % p+
1 , %

99.63 (0.69) 0.37 (0.69)

95% CI (98.28; 100.98) (−0.98; 1.72)

Number of funds 3623 13

Zero interval λ

(−3.5; 1.6) 0.055

δ0 η0 EfdrRight

−0.467 (0.026) 1.254 (0.024) 0.877

The table shows the estimated proportions of non-outperforming and outperforming funds ( p̂0, p̂+
1 ), along

with 95% confidence intervals in the 3rd line. The corresponding structural model is (2.4.4). The 4th line
shows the estimated number of non-outperforming and outperforming funds in the population of 3,636
“short-term” funds. To provide more details about the estimation procedure, we report the boundaries of
zero interval and the value of λ (Sect. 2.4.3). For the composite empirical null, f0(z) = ϕ(z|δ0, η2

0), we

report the estimates of δ0 and η2
0. The power statistic, EfdrRight, (Sect. 2.4.4), is also shown. Figures in

parentheses denote the standard deviation of the different estimators

ally drops from 29 to 13 funds (Table 10). Therefore, we conclude that there is no
compelling evidence of short-term outperformance in 1993–2007.

3.7 Discussion

In this section, we summarize and discuss the results obtained in this study.
As indicated in Sect. 2.4.2, the results obtained from our approach under the theo-

retical null are directly comparable to the output of Barras et al. (2010). It is reassuring
that despite the difference in the employed datasets, when we use the theoretical null
(Sects. 3.1, 3.3, 3.6), our findings are consistent with the Barras et al. (2010).

The switch to the empirical null is well grounded. The findings in Sect. 3.2 pro-
vide compelling evidence that the theoretical null is biased, because the test statistics
exhibit both statistically and practically significant overdispersion. When the overdis-
persion is taken into account, the inference changes dramatically: over 10% of funds
are either skilled or unskilled on pre-expense basis under the theoretical null, but under
the empirical null that proportion is not distinguishable from zero.

As noted in Sect. 3.2, the empirical null results in lower bias and higher variance
than the theoretical null. For practical purposes, it is convenient to monitor the standard
error s.e.( p̂0). Our results suggest that, all other things being equal, the structural model
of Efron has more precision than the bootstrap-based approach of Barras et al. (2010).
For instance, for pre-expense returns, Barras et al. (2010) report s.e.( p̂0) = 2.7%,
whereas our result in Sect. 3.1 is s.e.( p̂0) = 0.75%, a difference of factor of 3.6 (the
number of funds is about the same). Moreover, when we switch to the empirical null,
we get s.e.( p̂0) = 0.99% which, contrary to expectations, is still significantly less
than 2.7%. Because the proportion of outperformers is always small (well under 10%),
such gain in precision is practically significant.

The empirical Bayes method also allows us to test the net performance under a more
powerful composite empirical null. Because overdispersion is taken into account also,
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even under that powerful setting the number of outperformers proves neither statisti-
cally nor practically significant (Sect. 3.4). Hence, the evidence for the absence of net
outperformance in mutual fund industry in 1993–2007 is substantially reinforced.

The investment objective analysis in Sect. 3.5 tries to add even more power to the
composite empirical null by using the investment objective category as a control var-
iate. Thanks to the rigorous and efficient approach of Efron, we can test whether the
distinct null distributions are necessary for each investment category, and finding that
this is not the case, we avoid redundant parameters. Qualitatively, our findings are
consistent with Barras et al. (2010): AG funds are the best and GI funds are the worst.
In addition, we obtain statistical evidence for the difference in performance across
investment objectives. This result seems to be at odds with the “growth versus value”
factor being present in the Carhart model. Despite the slight increase in power caused
by adjusting for the investment objective, the estimated number of net outperformers
is still practically insignificant (26 out of 1,911).

The results for “short-term” net performance in Sect. 3.6 are also weak. Even when
overdispersion is not taken into account (under theoretical null), there is no evidence of
short-term outperformance in 1993–2007. The fact that the number of outperformers
under the composite empirical null is even less is suggestive of severe overdispersion
of “short-term” test statistics. Therefore, a significant part of “superior short-term per-
formance” effect reported in Barras et al. (2010) must have come from the bias of the
theoretical null.

If we are interested in practical applications of mutual fund performance evaluation,
high power is desirable. A sharp tool to separate good individual funds from the rest
can be useful to an individual investor who is not likely to be able to invest in more
than one fund. Similarly, high power is useful to determine whether an individual fund
manager should be rewarded or punished. One can argue that, once there is an oppor-
tunity to invest in a large number of funds, it only matters that a decent proportion
of outperformers is present in the portfolio, and then even a low power study will
be useful. There is some indication, from the FDR-based fund portfolio of in Barras
et al. observed from 1980 to 2006 (alpha of 1.45% p.a. with p-value of 0.04), that such
a strategy could be hindered today, given the significant decline, after 1990, in mutual
fund industry performance.

The detailed power analysis showed that regardless of whether the utilized null is
theoretical or empirical, and whether we are interested in picking winners or losers,
our ability to do so is very limited. In particular, the “Top N performers” lists (for
both pre-expense and net returns) have low quality: they are likely to contain a large
proportion of funds that are not true outperformers. It is a result of both low proportion
of outperformers and low power. However, thanks to a high proportion of net under-
performers, we can construct sizable lists of “Bottom N net performers” with decent
quality.

Extending the sample back (e.g., Barras et al. (2010) sample with 32-year span)
can increase the number of funds but is not likely to produce many more observations
per fund. For this study, the span is 14 1/2 years with the mean of l0 3/4 years per fund.
Although 10% of the funds span the entire 14 1/2 years, it is still unlikely to obtain a
dataset with, say, more than 15 years of observations per fund on average, regardless
of how far back it is extended. Therefore, power statistics obtained when there are 15
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years of observations for each fund can be considered the upper bounds for the power.
Unfortunately, even having 15 years per fund does bring Efdr to 0.2 (the best result is
EfdrLeft = 0.29 in Sect. 3.3), and the power is still poor. Therefore, an unsatisfactory
power is inherent to both the current and Barras et al. (2010) despite a much larger
time span of the latter.

Besides, a long-lived fund is likely to be managed by a few successive portfolio
managers. According to John Bogle, founder of The Vanguard Group, “…the tenure
of the average portfolio manager is just five years…”. Kothari and Warner (2001) also
indicate that the investor is likely to consider only from 3 to 5 years of fund history.
Practically speaking, there are reservations as to whether the 6–15 year-old data are
relevant for investors. At the same time, reducing the history is bound to reduce the
power to a level where the study is absolutely uninformative. For instance, in Sect. 3.4,
with with T = 10 3/4 years, EfdrRight = 0.725 (very poor). After T is reduced to about
5 years (Sect. 3.6), the power gets even worse: EfdrRight = 0.877.

The power issues above have the following implication: assuming that the propor-
tion of outperformers is estimated correctly, it is still very hard to separate outperform-
ers from the rest. Section 3.2 indicates that there is a big problem with estimating the
proportion of outperformers itself. Consider a good fund manager whose true alpha
is 5% p.a. According to the results in Sect. 3.2, such manager is not even likely to be
included in p̂+

1 , that is, its z-value falls into a bin where f d̂r(z) = 1. Even when the
good manager is recognized as present in the population, a high value of EfdrRight
will not allow the investor to separate him from the rest.

It appears that any mutual fund study that is based on monthly data and a similar
multifactor performance evaluation model (e.g., CAPM, Fama and French) is likely to
be underpowered. While such models provide a theoretically grounded way to adjust
the performance for risk, their finite sample properties cause difficulties in their imple-
mentation. In particular, identification of market efficiency from the lack of evidence
of risk-adjusted outperformance, means implicitly that a fairly precise tool has been
used to search for such evidence. In contrast, our results are not inconsistent with the
undetected presence of many good funds.

One notes that performance measures of the above types are avoided in mutual
fund prospectus. According to Kothari and Warner (2001), a possible way out is to use
trade-based performance measures. However, the information on fund trades can be
restricted, even for institutional investors. Another way to obtain an edge is presented
in Mamaysky et al. (2007), who argue that it is unlikely for a single performance eval-
uation model to be equally good for all funds. They show that using a few competing
models, combined with back-testing, can significantly improve the performance of
mutual fund portfolios. Using such an approach coupled with a multiple inference
procedure can be an interesting topic for future research.

4 Conclusion

When evaluating the performance of a large number of mutual funds simultaneously,
one has to weed out false discoveries. This task is fairly straightforward when the
performance test statistics are independent across funds. However, independence is
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unlikely to hold for real data. On the other hand, there are not enough years of data to
estimate the dependence structure of test statistics directly. In addition, a misspecified
performance evaluation model can bias the results. Is there a way around these prob-
lems? The state-of-the-art approach of Efron offers a viable alternative. It also helps
us investigate the usually neglected issue of statistical power in a mutual fund study.

In this paper, we analyze the performance of about 2,000 US equity mutual funds
over a period of 14 1/2 years. In contrast to existing studies, we neither assume inde-
pendence of test statistics across funds, nor do we try to estimate the dependence
structure based on the data that are clearly insufficient for that purpose. In addition,
certain features of Efron’s approach make it more powerful and precise, as well as
being able to perform a rigorous and efficient analysis of subgroups of funds.

Our analysis suggests that it is not appropriate to treat the test statistics as mutu-
ally independent with pre-specified null distribution. The data indicate that doing so
leads to both statistically and practically significant bias, when the proportions of
both under- and outperformers are overestimated. Despite the advantages of Efron’s
approach, we fail to identify a practically or statistically significant proportion of net
outperformers. The power analysis shows that, due to the nature of data and the per-
formance evaluation model (monthly dataset, a multifactor model), the study has a
very low power. That is, we are hardly able to detect and single out the true out- or
underperformers. It would require an unrealistically large history of data and/or level
of outperformance to increase the power to a decent level.

Appendix

For the empirical null, f0(z) can be approximated by a parametric distribution, such
as symmetrical normal N (δ0, σ

2
0 ) or skewed split-normal SN (δ0, σ

2
1 , σ 2

2 ). For a given
zero interval, the parameters of interest are estimated with the method of moments
(denoted CME in locfdr).

An additional restriction p0 ≥ 0.9 has to hold when we use the empirical null.
Efron (2004a) provides theoretical and numerical results that justify the restriction:
if p0 ≥ 0.9 and the theoretical null is valid, then the MLE or CME estimates of δ0
and σ0 have to be close to 0 and 1, respectively. If they are not, it implies that the
theoretical null is inadequate. If p0 < 0.9 then the estimates of (δ0, σ0) can be sig-
nificantly different from (0, 1) even when the theoretical null is valid. Hence, if one
wants to check whether a switch to the empirical null is necessary, first he has to make
sure that p0 ≥ 0.9. Using an empirical null when the theoretical null is valid and
p0 < 0.9 has an effect of ignoring a lot of alternative cases. For instance, if we were
to use model (2.4.5) for net returns, we would end up underestimating the proportion
of underperformers. However, since the proportion of net outperformers is small, it is
still possible to use the empirical null for that, which we did in Sect. 3.4.

The choice of the zero interval itself is a bias-variance tradeoff problem: for a large
interval, the estimate of p0 (and, if applicable, the parameters of the empirical null)
have low variance but a high bias since many non-null cases are likely to fall into the
wide zero interval. For a narrow zero interval, the bias is small, but the estimates of p0
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and other parameters have large variance because too few z-values fall into(z−; z+).
To solve the problem, we consider the error of p̂0 f̂0(z) scaled by 1/ f (z):

Error(z) = 1

f (z)

[
p0 f0(z) − p̂0 f̂0(z)

]
(A.1)

The optimal zero interval is where the integrated M SE(Error(z)) is at the minimum,
so we have to estimate the squared bias and variance. The locfdr package does not
provide a direct estimate of M SE(Error(z)), and we are going to use some proxies
to obtain the shape of bias-variance tradeoff curve.

First, we use the bias on the zero interval as a proxy for overall bias. On the zero
interval we have

p0 f0(z) = f (z), and

Error(z) = 1

f (z)

[
p0 f0(z) − p̂0 f̂0(z)

]
= 1 − p̂0 f̂0(z)

f (z)
(A.2)

The mixture density f (z) is unknown, but the expected error can be estimated by
using an unbiased estimator of f (z) which is obtained in locfdr via Poisson regression
over the entire z axis. The locfdr package also produces the estimates f d̂r(z) and

V ar
[
log( f d̂r(z))

]
. As a result, the estimate of average squared bias is (all integrals

are computed as corresponding sums):

Bîas2
λ = 1

z+ − z−

z+∫

z−

(
1 − f d̂r(z)

)2
dz (A.3)

The error variance at point z will be

V ar [Error(z)] = V ar
[

f d̂r(z)
]

(A.4)

We are going to use the available V ar
[
log (̂ f dr(z))

]
instead and then get the estimate

of overall variance as:

V ârλ =
∞∫

−∞
V ar

[
log (̂ f dr(z))

]
dz (A.5)

For the theoretical null, f0(z) is not estimated, V ar( f̂ (z)) does not depend on λ and
its magnitude is much larger than that of V ar( p̂0 · ϕ(z|0, 1)) (Efron 2005). For that
reason, we are going to use V arλ( p̂0) instead of (A.5) for the theoretical null. For the
empirical null, we are using the full version (A.5).

V ârλ and Bîas2
λ are not on the same scale, but we can still use them to estimate

the shape of MSE curve. Following (Storey and Tibshirani 2001), we divide each
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estimate by its median over the range of the smoothing parameter to get the value of
bias-variance tradeoff, BV Tλ:

BV Tλ = V arλ

medianλ′(V arλ′)
+ Bias2

λ

medianλ′
(
Bias2

λ′
) (A.6)

BV Tλ is not equal to the integrated M SE(Error(z)), but it reflects the shape of MSE
curve, and the optimal value of λ is determined by minimizing BV Tλ over the range
of λ. In Sect. 3, we do not provide the plots of BV Tλ to save space, but, in all cases
considered, the plot of BV Tλ has a familiar U-shape. The estimated parameters of
empirical component are not very sensitive to changes in the limits of (z−; z+) which
is consistent with findings of Barras et al. (2010).

Efron’s method and locfdr package are designed for a two-component model
like (2.4.2) and (2.4.4), but the three-component model (2.4.5) has a problem: the
locfdr package produces the estimate of p1 f1(z), but its decomposition into posi-
tive p+

1 f +
1 (z) and negative p−

1 f −
1 (z) components is not identified. To get around

this issue, note that f −
1 (z) is a (possibly continuous) mixture of normal densities

ϕ(z|α, σ 2
0 ), α<0. Because all of the normal densities in the mixture have negative

means, f −
1 (z) is non-increasing for positive z’s. Typically, the estimation produces

f d̂r(z) = p̂0 f̂0(z)/ f̂ (z) = 1 in some interval (−l; l), such as (−0.4; 0.4). It implies
that f̂1(z), f̂ −

1 (z) and f̂ +
1 (z) are equal to zero on (−l; l). Hence, f̂ −

1 (z) cannot have
support for z > l and f̂ −

1 (z) = 0 ∀z > 0. Similarly, f̂ +
1 (z) = 0 ∀z < 0. Therefore,

while in theory some α < 0 can produce positive z’s, the estimation results imply that
such z’s can be produced only by α ≥ 0, and negative z’s can only be produced by
α ≤ 0. Hence, f dr+(z)defined in (2.4.7) is equal to 1 for negative z’s and is equal to
f d̂r(z) for nonnegative z’s. A similar conclusion applies to f dr−(z).

Then, the value of p+
1 is estimated as follows:

p̂+
1 =

∫ ∞
0

[
1 − f d̂r(z)

]
dz

∫ ∞
0

f̂ +
1 (z)

f̂ (z)
dz

(A.7)

and similarly for p̂−
1 .

For the two-component model, s.e.( p̂0) = s.e.
(

p̂1
)
, but s.e.

(
p̂+

1

)
and s.e.

(
p̂−

1

)
for the three-component model are not available from locfdr. Let us assume that

s.e.
(

p̂+
1

) = s.e.
(

p̂−
1

) = κ and corr
(

p̂+
1 , p̂−

1

) ≤ 0 (A.8)

then

V ar [ p̂0] ≤ 2κ2 ⇒ κ ≥ s.e.( p̂0)/
√

2 (A.9)

The lower bound for κ is reported instead of s.e.
(

p̂+
1

)
and s.e.

(
p̂−

1

)
whenever the

three-component model is used.
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