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Abstract

We consider a random variable X satisfying almost-sure conditions involving G :=
〈
DX,−DL−1 X

〉
where DX is X ’s Malliavin derivative and L−1 is the pseudo-inverse of the generator of the Ornstein-
Uhlenbeck semigroup. A lower- (resp. upper-) bound condition on G is proved to imply a Gaussian-type
lower (resp. upper) bound on the tail P [X > z]. Bounds of other natures are also given. A key ingredient
is the use of Stein’s lemma, including the explicit form of the solution of Stein’s equation relative to the
function 1x>z , and its relation to G. Another set of comparable results is established, without the use of
Stein’s lemma, using instead a formula for the density of a random variable based on G, recently devised
by the author and Ivan Nourdin. As an application, via a Mehler-type formula for G, we show that the
Brownian polymer in a Gaussian environment, which is white-noise in time and positively correlated in
space, has deviations of Gaussian type and a fluctuation exponent χ = 1/2. We also show this exponent
remains 1/2 after a non-linear transformation of the polymer’s Hamiltonian.
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1. Introduction

1.1. Background and context

Ivan Nourdin and Giovanni Peccati have recently made a long-awaited connection between
Stein’s lemma and the Malliavin calculus: see [9], and also [10]. Our article uses crucial basic
elements from their work, to investigate the behavior of square-integrable random variables
whose Wiener chaos expansions are not finite. Specifically, we devise conditions under which
the tail of a random variable is bounded below by Gaussian tails, by using Stein’s lemma and
the Malliavin calculus. Our article also derives similar lower bounds by way of a new formula
for the density of a random variable, established in [12], which uses Malliavin calculus, but not
Stein’s lemma. Tail upper bounds are also derived, using both methods.

Stein’s lemma has been used in the past for Gaussian upper bounds, e.g. in [3] in the context
of exchangeable pairs. Malliavin derivatives have been invoked for similar upper bounds in [22].
In the current paper, the combination of these two tools yields a novel criterion for a Gaussian
tail lower bound. We borrow a main idea from Nourdin and Peccati [9], and also from [12]: to
understand a random variable Z which is measurable with respect to a Gaussian field W , it is
fruitful to consider the random variable

G := 〈DZ ,−DL−1 Z〉H ,

where D is the Malliavin derivative relative to W , 〈·, ·〉H is the inner product in the canonical
Hilbert space H of W , and L is the generator of the Ornstein-Uhlenbeck semigroup. Details on
D, H , L , and G, will be given below.

The function g (z) = E [G|Z = z] has already been used to good effect in the density formula
discovered in [12]; this formula implied new lower bounds on the densities of some Gaussian
processes’ suprema. These results are made possible by fully using the Gaussian property and, in
particular, by exploiting both upper and lower bounds on the process’s covariance. The authors
of [12] noted that, if Z has a density and an upper bound is assumed on G, in the absence of any
other assumption on how Z is related to the underlying Gaussian process W , then Z ’s tail is sub-
Gaussian. On the other hand, the authors of [12] tried to discard any upper bound assumption,
and assume instead that G was bounded below, to see if they could derive a Gaussian lower
bound on Z ’s tail; they succeeded in this task, but only partially, as they had to impose some
additional conditions on Z ’s function g, which are of upper-bound type, and which may not be
easy to verify in practice.

The techniques used in [12] are well adapted to studying densities of random variables under
simultaneous lower and upper bound assumptions, but less so under single-sided assumptions.
The point of the current paper is to show that, while the quantitative study of densities via the
Malliavin calculus seems to require two-sided assumptions, as in [12], single-sided assumptions
on G are, in essence, sufficient to obtain single sided bounds on tails of random variables, and
there are two strategies to this end: Nourdin and Peccati’s connection between Malliavin calculus
and Stein’s lemma, and exploiting the Malliavin-calculus-based density formula in [12].

A key new component in our work, relative to the first strategy, may be characterized by saying
that, in addition to a systematic exploitation of the Stein-lemma–Malliavin-calculus connection
(via Lemma 3.5 below), we carefully analyze the behavior of solutions of the so-called Stein
equation, and use them profitably, rather than simply use the fact that there exist bounded
solutions with bounded derivatives. We were inspired to work this way by the similar innovative
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use of the solution in the context of Berry-Esséen theorems in [10]. The novelty in our second
strategy is simply to note that the difficulties inherent to using the density formula of [12] with
only one-sided assumptions, tend to disappear when one passes to tail formulas.

Our work follows in the footsteps of Nourdin and Peccati’s. One major difference in focus
between our work and theirs, and indeed between ours and the main use of Stein’s method
since its inception in [19] to the most recent results (see [3,4,17], and references therein), is
that Stein’s method is typically concerned with convergence to the normal distribution while we
are only interested in rough bounds of Gaussian or other types for single random variables (not
sequences), without imposing conditions which would lead to normal or any other convergence.
While the focus in [9] is on convergence theorems, its authors were already aware of the ability
of Stein’s lemma and the Malliavin calculus to yield bounds for fixed r.v.’s, not sequences: their
work implies that a bound on the deviation of a single G from the value 1 has clear implications
for the distance from Z ’s distribution to the normal law. In fact, the main technical tool therein
([9, Theorem 3.1]) is stated for fixed random variables, yielding bounds on various distances
between the distributions of such r.v.’s and the normal law, based on expectation calculations
using G−1 explicitly; also see [9, Remark 3.6]. Nourdin and Peccati’s motivations only required
them to make use of [9, Theorem 3.1] as applied to convergences of sequences.

One other difference between our motivations and theirs is that we do not consider the
case of a single Wiener chaos. Their work does, in principle, apply to random variables with
arbitrary infinite chaos expansions (see e.g. again [9, Theorem 3.1], and also [9, Remark 3.8])
but their motivation is largely to apply the general theorem to r.v.’s in a fixed Wiener chaos.
That we systematically consider random variables with infinitely many non-zero Wiener chaos
components, comes from the application which we also consider in this article, to the so-called
fluctuation exponent χ of a polymer in a random environment. Details on this application, where
we show that χ = 1/2 for a certain class of environments, are in Section 5. There is a more
fundamental obstacle to seeking upper or lower Gaussian tail bounds on an r.v. in a single Wiener
chaos: unlike convergence results for sequences of r.v.’s, such as [15], a single qth chaos r.v. has a
tail of order exp

(
− (x/c)2/q

)
(see [2]), it never has a Gaussian behavior; our lower-bound results

below (e.g. Theorem 1.3 Point 3) does apply to such an r.v., but the result cannot be sharp.
Since submitting the first version of this article, there have been rapid developments in the use

of Malliavin calculus, Stein’s lemma, and the random variable G, which apply to situations not
restricted to single Wiener chaos: see, in particular [11], where the authors prove a second-order
Poincaré inequality to again assess the distance between a single r.v.’s law and the Gaussian law,
and [16] where the authors use the G-based density formula of [12] to find Gaussian upper and
lower bounds for solutions of some stochastic heat equations.

1.2. Summary of results

We now describe our main theoretical results. All stochastic analytic concepts used in this
introduction are described in Section 2. Let W be an isonormal Gaussian process relative to
a Hilbert space H = L2 (T,B, µ) (for instance if W is the Wiener process on [0, 1], then
T = [0, 1] and µ is the Lebesgue measure). The norm and inner products in H are denoted
by ‖·‖H and 〈·; ·〉H . Let L2 (Ω) be the set of all random variables which are square-integrable
and measurable with respect to W . Let D be the Malliavin derivative with respect to W (see Paul
Malliavin’s or David Nualart’s texts [8,13]). Thus DX is a random element in L2 (Ω)with values
in the Hilbert space H . The set of all X ∈ L2 (Ω) such that ‖DX‖H ∈ L2 (Ω) is called D1,2. Let
Φ̄ be the tail of the standard normal distribution
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Φ̄ (u) :=
∫
∞

u
e−x2/2dx/

√
2π.

The following result, described in [22] as an elementary consequence of a classical stochastic
analytic inequality found for instance in Üstünel’s textbook [21, Theorem 9.1.1], makes use of
a condition based solely on the Malliavin derivative of a given r.v. to guarantee that its tail is
bounded above by a Gaussian tail.

Proposition 1.1. For any X ∈ D1,2, if ‖DX‖H is bounded almost surely by 1, then X is a
standard sub-Gaussian random variable, in the sense that P [|X − E [X ]| > u] ≤ 2e−u2/2.

Remark 1.2. The value 1 in this proposition, and indeed in many places in this paper, has the
role of a dispersion coefficient. Since the Malliavin derivative D is linear, the above proposition
implies that for any X ∈ D1,2 such that ‖DX‖H ≤ σ almost surely, then P [|X − E [X ]| > u] ≤
2e−u2/(2σ 2). This trivial normalization argument can be used throughout this paper, because
our hypotheses are always based on linear operators such as D. We use this argument in our
application in Section 5.

The question of whether a lower bound on ‖DX‖2H gives rise to an inequality in the opposite
direction, as in the above proposition, arises naturally. However, we were unable to find any
proof of such a result. Instead, after reading Eulalia Nualart’s article [14] where she finds
a class of lower bounds by considering exponential moments on the divergence (Skorohod
integral) of a covering vector field of X , we were inspired to look for other Malliavin calculus
operations on X which would yield a Gaussian lower bound on X ’s tail. We turned to the
quantity G :=

〈
DX;−DL−1 X

〉
H , identified in [9], and used profitably in [12]. Here L−1, the

pseudo-inverse of the so-called generator of the Ornstein–Uhlenbeck semigroup, is defined in
Section 3.2. This article’s first theoretical result is that a lower (resp. upper) bound on G can
yield a lower (resp. upper) bound similar to the upper bound in Proposition 1.1. For instance,
summarizing the combination of some consequences of our results and Proposition 1.1, we have
the following.

Theorem 1.3. Let X be a random variable in D1,2. Let G :=
〈
DX;−DL−1 X

〉
H .

1. If G ≥ 1 almost surely, then

Var [X ] = E [G] ≥ 1.

2. If G ≥ 1 almost surely, and if for some c > 2, E
[
X c
]
<∞, then

lim sup
z→∞

P [X − E [X ] > z] /Φ̄ (z) ≥
c − 2

c
. (1)

3. If G ≥ 1 almost surely, and if there exist c′ ∈ (0, 1/2) and z0 > 0, such that G ≤ c′X2

almost surely when X ≥ z0, then for z > z0,

P [X − E [X ] > z] ≥
(
1− 2c′

)
Φ̄ (z) .

4. If G ≤ 1 almost surely, and X has a density, then for every z > 0

P [X − E [X ] > z] ≤
(

1+
1

z2

)
Φ̄ (z) . (2)
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5. If ‖DX‖2H ≤ 1 almost surely, then Var [X ] ≤ (π/2)2 and for z > 0,

P [X − E [X ] > z] ≤ e−z2/2. (3)

Remark 1.4. Item 1 in this theorem is Corollary 4.2 Point 1. Item 2 here comes from
Corollary 4.2 Point 3. Item 3 here follows from Corollary 4.5 Point 1. Item 4 is from Theorem 4.1.
Inequality (3) in Item 5 here is equivalent to Proposition 1.1. The variance upper bound in
Item 5 here follows from [21, Theorem 9.2.3 part (iii)]. Other, non-Gaussian comparisons are
also obtained in this article: see Corollary 4.5.

The results in Theorem 1.3 point to basic properties of the Malliavin derivative and generator
of the Ornstein–Uhlenbeck semigroup when investigating tail behavior of random variables. The
importance of the relation of G to the value 1 was already noticed in [9, Theorem 3.1] where
its L2-convergence to 1 for a sequence of r.v.’s was a basic building block for convergence to
the standard normal distribution. Here we show what can still be asserted when the condition
is significantly relaxed. An attempt was made to prove a version of the theorem above in [12,
Section 4]; here we significantly improve that work by: (i) removing the unwieldy upper bound
conditions made in [12, Theorem 4.2] to prove lower bound results therein; and (ii) improving
the upper bound in [12, Theorem 4.1] while using a weaker hypothesis.

Our results should have applications in any area of pure or applied probability where Malliavin
derivatives are readily expressed. In fact, Nourdin and Peccati [9, Remark 1.4, point 4] already
hint that G is not always as intractable as one may fear. We present such an application in this
article, in which the deviations of a random polymer in some random media are estimated, and
its fluctuation exponent is calculated to be χ = 1/2, a result which we prove to be robust to
non-linear changes in the polymer’s Hamiltonian.

The structure of this article is as follows. Section 2 presents all necessary background
information from the theory of Wiener chaos and the Malliavin calculus needed to understand
our statements and proofs. Section 3 recalls Stein’s lemma and equation, presents the way it will
be used in this article, and recalls the density representation results from [12]. Section 4 states
and proves our main lower and upper bound results. Section 5 gives a construction of continuous
random polymers in Gaussian environments, and states and proves the estimates on its deviations
and its fluctuation exponent under Gaussian and non-Gaussian Hamiltonians, when the Gaussian
environment has infinite-range correlations. Several interesting open questions are described in
this section as well. The Appendix, contains the proofs of some lemmas.

2. Preliminaries: Wiener chaos and Malliavin calculus

For a complete treatment of this topic, we refer the reader to David Nualart’s textbook [13].
We are in the framework of an isonormal Gaussian process W on a suitable probability space

(Ω ,F ,P): it is defined as a Gaussian field W on a Hilbert space H = L2 (T,B, µ) where µ is
a σ -finite measure that is either discrete or without atoms, and the covariance of W coincides
with the inner product in H . This forces W to be linear on H ; consequently, it can be interpreted
as an abstract Wiener integral. For instance, if T = [0, 1] and µ is the Lebesgue measure, then
W ( f ) represents the usual Wiener stochastic integral

∫ 1
0 f (s) dW (s) of a square-integrable

non-random function f with respect to a Wiener process also denoted by W ; i.e. we confuse the
notation W (t) and W

(
1[0,t]

)
. In general for { fi : i = 1, . . . , n} ∈ Hn , (W ( fi ) : i = 1, . . . , n)

is a centered Gaussian vector, with covariance matrix given by σ 2
i, j =

〈
fi ; f j

〉
H . The set H1 of
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all Wiener integrals W ( f ) when f ranges over all of H is called the first Wiener chaos of W . To
construct higher-order chaoses, one may for example use iterated Itô integration in the case of
standard Brownian motion, where H = L2 [0, 1]. If we denote I0 ( f ) = f for any non-random
constant f , then for any integer n ≥ 1 and any symmetric function f ∈ Hn , we let

In ( f ) := n!
∫ 1

0

∫ s1

0
· · ·

∫ sn−1

0
f (s1, s2, . . . , sn) dW (sn) · · · dW (s2) dW (s1) .

This is the nth iterated Wiener integral of f w.r.t. W .

Definition 2.1. The set Hn := {In ( f ) : f ∈ Hn} is the nth Wiener chaos of W .

We refer to [13, Section 1.2] for the general definition of In and Hn when W is a more general
isonormal Gaussian process.

Proposition 2.2. L2 (Ω) is the direct sum – with respect to the inner product defined by
expectations of products of r.v.’s – of all the Wiener chaoses. Specifically for any X ∈ L2 (Ω),
there exists a sequence of non-random symmetric functions fn ∈ Hn with

∑
∞

n=0 ‖ fn‖
2
Hn < ∞

such that X =
∑
∞

n=0 In ( fn). Moreover E [X ] = f0 = I0 ( f0) and E [In ( fn)] = 0 for all n ≥ 1,
and E [In ( fn) Im (gm)] = δm,nn! 〈 fn, gn〉Hn where δm,n equals 0 if m 6= n and 1 if m = n. In
particular E

[
X2
]
=
∑
∞

n=0 n! ‖ fn‖
2
Hn .

The Malliavin derivative operator is usually constructed via an extension starting from so-
called simple random variables which are differentiable functions of finite-dimensional vectors
from the Gaussian space H1. The reader can consult Nualart’s textbook [13]. We recall the
properties which are of use to us herein.

1. The Malliavin derivative operator D is defined from H1 into H by the formula: for all r ∈ T ,

Dr W ( f ) = f (r) .

The Malliavin derivative of a non-random constant is zero. For any m-dimensional Gaussian
vector G = (Gi )

m
i=1 = (I1 (gi ))

m
i=1 ∈ (H1)

m , for any F ∈ C1 (Rm) such that X = F (G) ∈
L2 (Ω), we have Dr X =

∑m
i=1

∂F
∂xi
(G) gi (r).

2. The Malliavin derivative of an nth Wiener chaos r.v. is particularly simple. Let Xn ∈ Hn ,
i.e. let fn be a symmetric function in Hn and Xn = In ( fn). Then

Dr X = Dr In ( fn) = nIn−1 ( fn (r, ·)) . (4)

The Malliavin derivative being linear, this extends immediately to any random variable X in
L2 (Ω) by writing X as its Wiener chaos expansion

∑
∞

n=0 In ( fn), which means that, using
the covariance formulas in Proposition 2.2, DX ∈ L2 (Ω × T ) if and only if

E
[
‖DX‖2H

]
:=

∞∑
n=1

n n! ‖ fn‖
2
Hn <∞. (5)

The set of all X ∈ L2 (Ω) such that DX ∈ L2 (Ω × T ) is denoted by D1,2.

Remark 2.3. The general chain rule of point 1 above generalizes to D [h (X)] = h′ (X) DX for
any X ∈ D1,2 such that X has a density, and any function h which is continuous and piecewise
differentiable with a bounded derivative. This is an immediate consequence of [13, Proposition
1.2.3].
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3. Tools: Using Stein’s lemma and Malliavin derivatives

3.1. Stein’s lemma and equation

The version of Stein’s lemma which we use can be found in [9]. Let Z be a standard normal
random variable and Φ̄ (z) = P [Z > z] its tail. Let h be a measurable function of one real
variable. Stein’s equation poses the following question: to find a continuous and piecewise
differentiable function f with bounded derivative such that, for all x ∈ R where f ′ (x) exists,

h (x)− E [h (Z)] = f ′ (x)− x f (x) . (6)

The precise form of the solution to this differential equation for h = 1(−∞,z], given in the next
lemma, was derived in Stein’s original work [19]; a recent usage is found in equalities (1.5),
(2, 20), and (2.21) in [10].

Lemma 3.1. Fix z ∈ R. Let h = 1(−∞,z]. Then Stein’s equation (6) has at a unique solution f
satisfying

∥∥ f ′
∥∥
∞
:= supx∈R

∣∣ f ′ (x)
∣∣ ≤ 1. It is the following:

• for x ≤ z, f (x) =
√

2πex2/2
(
1− Φ̄ (x)

)
Φ̄ (z) ,

• for x > z, f (x) =
√

2πex2/2
(
1− Φ̄ (z)

)
Φ̄ (x).

Corollary 3.2. Let X ∈ L2 (Ω). Setting x = X in Stein’s equation (6) and taking expectations
we get

P [X > z] = Φ̄ (z)− E
[

f ′ (X)
]
+ E [X f (X)] .

The next section gives tools which will allow us to combine this corollary with estimates of
the random variable G :=

〈
DX;−DL−1 X

〉
H in order to get tail bounds. It also shows how G

can be used, as in [12], to express the density of X without using Stein’s lemma.

3.2. Malliavin derivative tools

Definition 3.3. The generator of the Ornstein–Uhlenbeck semigroup L is defined as follows. Let
X =

∑
∞

n=1 In ( fn) be a centered r.v. in L2 (Ω). If
∑
∞

n=1 n2n! | fn|
2 < ∞, then we define a new

random variable L X in L2 (Ω) by −L X =
∑
∞

n=1 nIn ( fn). The pseudo-inverse of L operating
on centered r.v.’s in L2 (Ω) is defined by the formula −L−1 X =

∑
∞

n=1
1
n In ( fn). If X is not

centered, we define its image by L and L−1 by applying them to X − EX .

Definition 3.4. For X ∈ D1,2, we let G :=
〈
DX;−DL−1 X

〉
H .

The following formula will play an important role in our proofs where we use Stein’s lemma.
It was originally noted in [9]. We provide a self-contained proof of this result in the Appendix,
which does not use the concept of divergence operator (Skorohod integral).

Lemma 3.5. For any centered X ∈ D1,2 with a density, with G from Definition 3.4, and for any
deterministic continuous and piecewise differentiable function h such that h′ is bounded,

E [Xh (X)] = E
[
h′ (X)G

]
. (7)

On the other hand, the next result and its proof (see [12]), make no reference to Stein’s lemma.
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Definition 3.6. With X ∈ D1,2 and G as above in Definition 3.6, let the function g be defined
almost everywhere on the support of X as the conditional expectation of G given X :

g (z) := E[G|X = z]. (8)

Proposition 3.7. Let X ∈ D1,2 be centered with a density ρ which is supported on a set I . Then
I is an interval [a, b] and, with g as above, we have for almost all z ∈ (a, b),

ρ (z) =
E |X |
2g (z)

exp
(
−

∫ z

0

ydy

g (y)

)
.

Strictly speaking, the proof of this proposition is not contained in [12], since the authors there
use the additional assumption that g (x) ≥ 1 everywhere, which implies that ρ exists and that
I = R. However, the modification of their arguments to yield the proposition above is straight-
forward, and we omit it: for instance, that I is an interval follows from X ∈ D1,2 as seen in [13,
Proposition 2.1.7].

As one can see from this proposition, and the statement of Theorem 1.3, it is important to
have a technique to be able to calculate DL−1 X . We will use a device which can be found for
instance in a different form in the proof of Lemma 1.5.1 in [13], and is at the core of the so-called
Mehler formula, also found in [13]. It requires a special operator which introduces a coupling
with an independent Wiener space. This operator Rθ replaces W by the linear combination
W cos θ + W ′ sin θ where W ′ is an independent copy of W . For instance, if W is Brownian
motion and one writes the random variable X as X = F (W ) where F is a deterministic Borel-
measurable functional on the space of continuous functions, then

Rθ X := F
(
W cos θ +W ′ sin θ

)
. (9)

We have the following formula (akin to the Mehler formula, and proved in the Appendix), where
sgn (θ) = θ/ |θ |, sgn (0) = 1 by convention, where E′ represents the expectation w.r.t. the ran-
domness in W ′ only, i.e. conditional on W , and where D′ is the Malliavin derivative w.r.t. W ′

only.

Lemma 3.8. For any X ∈ D1,2, for all s ∈ T ,

−Ds

(
L−1 X

)
=

1
2

∫ π/2

−π/2
E′
[
D′s (Rθ X)

]
sgn (θ) dθ

=
1
2

∫ π/2

−π/2
EE′

[
D′s (Rθ X) |W

]
sgn (θ) dθ.

To be specific, note that D′s (Rθ X) can typically be expressed explicitly. For instance, for an
elementary random variable X = f

(
(W (hi ))i=1,...,n

)
with f ∈ C∞b (Rn) and hi ∈ H for all i ,

D′s (Rθ X) = D′s
[

f
((

W (hi ) cos θ +W ′ (hi ) sin θ
)

i

)]
= sin θ

n∑
i=1

hi (s)
∂ f

∂xi

((
W (hi ) cos θ +W ′ (hi ) sin θ

)
i

)
.

We also note that if we rewrite this example abstractly by setting DX = Ψ (W ) where Ψ
is a measurable function from Ω into H , then the above calculation shows that D′ (Rθ X) =
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(sin θ)Ψ (RθW ), and the result of the lemma above can be rewritten in a form which may be
more familiar to users of Mehler’s formula:

−Ds

(
L−1 X

)
=

1
2

∫ π/2

−π/2
E′ [Ψ (RθW )] |sin θ | dθ.

4. Main results

All results in this section are stated and discussed in the first two subsections, the first one
dealing with consequences of Stein’s lemma, the second with the function g. All proofs are in
the third subsection.

4.1. Results using Stein’s lemma

Our first result is tailored to Gaussian comparisons.

Theorem 4.1. Let X ∈ D1,2 be centered. Assume that almost surely,

G :=
〈
DX;−DL−1 X

〉
H
≥ 1. (10)

Then for every z > 0,

P [X > z] ≥ Φ̄ (z)−
1

1+ z2

∫
∞

z
(2x − z)P [X > x] dx .

Assume, instead, that X has a density and G ≤ 1 almost surely; then for every z > 0,

P [X > z] ≤
(

1+
1

z2

)
Φ̄ (z) .

Before proving this theorem, we record some consequences of its lower bound result in the
next Corollary. In order to obtain a more precise lower bound result on the tail S (z) := P [X > z],
it appears to be necessary to make some regularity and integrability assumptions on S. This is
the aim of the second point in the next corollary. The first and third points show what can be
obtained by using only an integrability condition, with no regularity assumption: we may either
find a universal lower bound on such quantities as X ’s variance, or an asymptotic statement on S
itself.

Corollary 4.2. Let X ∈ D1,2 be centered. Let S (z) := P [X > z]. Assume that condition (10)
holds.

1. We have

Var [X ] = E [G] ≥ 1.

2. Assume there exists a constant c > 2 such that
∣∣S′ (z)∣∣ /S (z) ≥ c/z holds for large z. Then

for large z,

P [X > z] ≥
(c − 2)

(
1+ z2

)
c − 2+ cz2 Φ̄ (z) '

(c − 2)
c

Φ̄ (z) .
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3. Assume there exists a constant c > 2 such that S (z) < z−c holds for large z. Then, for
large z,

sup
x≥z

xcP [X > x] ≥
c − 2

c
zcΦ̄ (z) .

Consequently,

lim sup
z→∞

P [X > z]

Φ̄ (z)
≥

c − 2
c

.

Let us discuss the assumptions and results in the corollary from a quantitative standpoint.
The assumption of point 2,

∣∣S′ (z)∣∣ /S (z) ≥ c/z, when integrated, yields S (z) ≤ S (1) z−c,
implies no more than existence of a moment of order larger than 2; it does, however, represent
an additional monotonicity condition since it refers to S′. The assumption of point 3, which is
weaker because it does not require any monotonicity, also implies the same moment condition.
This moment condition is little more than the integrability required from X belonging to D1,2. If
c can be made arbitrarily large (for instance in point 3, this occurs when X is assumed to have
moments of all orders), asymptotically (c − 2)/c can be replaced by 1, yielding the sharpest
possible comparison to the normal tail. If indeed S is close to the normal tail, it is morally not a
restriction to assume that c can be taken arbitrarily large: it is typically easy to check this via a
priori estimates.

4.2. Results using the function g

We now present results which do not use Stein’s lemma, but refer only to the random variable
G :=

〈
DX;−DL−1 X

〉
H and the resulting function g (z) := E[G|X = z] introduced in (8).

We will prove the theorem below using the results in [12] on representation of densities. Its
corollary shows how to obtain quantitatively explicit upper and lower bounds on the tail of a
random variable, which are as sharp as the upper and lower bounds one might establish on g.
A description of the advantages and disadvantages of using g over Stein’s lemma follows the
statements of the next theorem and its corollary.

Theorem 4.3. Let X ∈ D1,2 be centered. Let G :=
〈
DX;−DL−1 X

〉
H and g (z) := E[G|X =

z]. Assume that X has a density which is positive on the interior of its support (a,+∞), where
a ∈ [−∞,+∞). For x ≥ 0, let

A (x) := exp
(
−

∫ x

0

ydy

g (y)

)
.

Then for all x > 0,

P [X > x] =
E |X |

2

(
A (x)

x
−

∫
∞

x

A (y)

y2 dy

)
. (11)

Remark 4.4. The density formula in Proposition 3.7 shows that g must be non-negative [in fact,
this was already known, and holds true almost surely for G itself, even if X is not known have a
density, assuming only X ∈ D1,2: [9, Proposition 3.9]]. Assuming our centered X ∈ D1,2 has a
density ρ, we have already noted that ρ must be positive on (a, b) and zero outside. To ensure that
b = +∞, as is needed in the above theorem, it is sufficient to assume that g is bounded below on
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[0, b) by a positive constant. If in addition we can assume, as in (10), that this lower-boundedness
of g holds everywhere, then X has a density, and its support is R.

Corollary 4.5. Assume that for some c′ ∈ (0, 1) and some z0 > 1, we have for all x > z0,

g (x) ≤ c′x2. Then, with K := E|X |
2

(c′)
c′

(1+c′)1+c′ , for x > z0,

P [X > x] ≥ K
A (x)

x
. (12)

1. Under the additional assumption (10), g (x) ≥ 1 everywhere, and we have

P [X > z] ≥ K
1
x

exp
(
−

x2

2

)
'
√

2πK Φ̄ (z) .

2. If we have rather the stronger lower bound g (x) ≥ c′′x2 for some c′′ ∈ (0, c′] and all x > z0,
then for x > z0, and with some constant K ′ depending on g, c′′ and z0,

P [X > z] ≥ K ′x−1−1/c′′ .

3. If we have instead that g (x) ≥ c1x p for some c1 > 0, p < 2, and for all x > z0, then for
x > z0, and with some constant K ′′ depending on g, c1, p, and z0,

P [X > z] ≥ K ′′ exp
(
−

x2−p

(2− p) c1

)
.

4. In the last two points, if the inequalities on g in the hypotheses are reversed, the conclusions
are also reversed, without changing any of the constants: i.e.

(a) if ∃c′′ ≤ c′, ∃z0 > 0 : ∀x > z0, g (x) ≤ c′′x2 then x > z0 ⇒ P [X > z] ≤ K ′x−1−1/c′′
;

(b) if ∃c1 > 0, ∃p < 2, ∃z0 > 0 : ∀x > z0, g (x) ≤ c1x p then x > z0 ⇒ P [X > z] ≤

K ′′ exp
(
−

x2−p

(2−p)c1

)
.

The tail formula (11) in Theorem 4.3 readily implies asymptotic estimates on S of non-
Gaussian type if one is able to compare g to a power function. Methods using Stein’s lemma, at
least in its form described in Section 3.1, only work efficiently for comparing S to the Gaussian
tail. Arguments found in Nourdin and Peccati’s articles (e.g. [9]) indicate that Stein’s method
may be of use in some specific non-Gaussian cases, which one could use to compare tails to
the Gamma tail, and perhaps to other tails in the Pearson family, which would correspond to
polynomial g with degree at most 2. The flexibility of our method of working directly with g
rather than Stein’s lemma, is that it seems to allow any type of tail. Stein’s method has one
important advantage, however: it is not restricted to having a good control on g; Theorem 4.1
establishes Gaussian lower bounds on tails by only assuming (10) and mild conditions on the tail
itself. This is to be compared to the lower bound [12, Theorem 4.2] proved via the function g
alone, where it required growth conditions on g which may not be that easy to check.

There is one intriguing, albeit perhaps technical, fact regarding the use of Stein’s method: in
Point 1 of the above Corollary 4.5, since the comparison is made with a Gaussian tail, one may
wonder what the usage of Stein’s lemma via Theorem 4.1 may produce when assuming, as in
Point 1 of Corollary 4.5, that g (x) ≥ 1 and g grows slower than x2. As it turns out, Stein’s
method is not systematically superior to Corollary 4.5, as we now see.
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Corollary 4.6 (Consequence of Theorem 4.1). Assume that g (x) ≥ 1 and, for some c′ ∈ (0, 1/2)
and large x > z0, g (x) ≤ c′x2. Then for z > z0,

P [X > z] ≥
1+ z2

1+ (1− 2c′)−1 z2
Φ̄ (z) '

(
1− 2c′

)
Φ̄ (z) .

When this corollary and Point 1 in Corollary 4.5 are used in an efficient situation, this means
that X is presumably “sub-Gaussian” as well as being “super-Gaussian” as a consequence of
assumption (10). For illustrative purposes, we can translate this roughly as meaning that for
some α > 0, g (x) is in the interval [1, 1 + α] for all x . This implies that we can take c′ → 0
in both Corollaries 4.5 and 4.6; as a consequence, the first corollary yields P [X > z] ≥ Φ̄ (z),
while the second gives P [X > z] ≥ (

√
2πE |X | /2) Φ̄ (z). The superiority of one method over

another then depends on how
√

2πE |X | /2 compares to 1. It is elementary to check that, in “very
sharp” situations, which means that α is quite small,

√
2πE |X | /2 will be close to 1, from which

one can only conclude that both methods appear to be equally efficient.

4.3. Proofs

We now turn to the proofs of the above results.

Proof of Theorem 4.1. Step 1: exploiting the negativity of f ′. From Lemma 3.1, we are able to
calculate the derivative of the solution f to Stein’s equation:

• for x ≤ z, f ′ (x) = Φ̄ (z)
(

1+
√

2π
(
1− Φ̄ (x)

)
xex2/2

)
;

• for x > z, f ′ (x) =
(
1− Φ̄ (z)

) (
−1+

√
2πΦ̄ (x) xex2/2

)
.

We now use the standard estimate, valid for all x > 0 (see [6, Problem 2.9.22, page 112]):

x

(x2 + 1)
√

2π
e−x2/2

≤ Φ̄ (x) ≤
1

x
√

2π
e−x2/2. (13)

In the case x > z, since z > 0, the upper estimate yields f ′ (x) ≤
(
1− Φ̄ (z)

)
(−1+ 1) = 0.

Now by the expression for P [X > z] in Corollary 3.2, the negativity of f ′ on {x > z} implies
for all z > 0,

P [X > z] = Φ̄ (z)− E
[
1X≤z f ′ (X)

]
− E

[
1X>z f ′ (X)

]
+ E [X f (X)]

≥ Φ̄ (z)− E
[
1X≤z f ′ (X)

]
+ E [X f (X)] .

Step 2: Exploiting the positivities and the smallness of f ′. Using Step 1, we have

P [X > z] ≥ Φ̄ (z)− E
[
1X≤z f ′(X)

]
+ E

[
1X≤z X f (X)

]
+ E

[
1X>z X f (X)

]
.

We apply Lemma 3.5 to the function h (x) = ( f (x)− f (z)) 1x≤z ; h is continuous everywhere;
it is differentiable everywhere with a bounded derivative, equal to f ′ (x) 1x≤z , except at x = z.
Applying this lemma is legitimized by the fact, proved in [12], that G ≥ 1 a.s. implies X has a
density (see the explanation given after the statement of Proposition 3.7). Thus we get

P [X > z] ≥ Φ̄ (z)− E
[
1X≤z f ′(X)

]
+ E [Xh(X)]

+E
[
1X≤z X

]
f (z)+ E

[
1X>z X f (X)

]
≥ Φ̄ (z)+ E

[
1X≤z f ′ (X) (−1+ G)

]
+ E

[
1X≤z X

]
f (z)+ E

[
1X>z X f (X)

]
. (14)
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When x ≤ z, we can use the formula in Step 1 to prove that f ′ (x) ≥ 0. Indeed this is trivial
when x ≥ 0, while when x < 0, it is proved as follows: for x = −y < 0, and using the upper
bound in (13)

f ′ (x) = Φ̄ (z)
(

1+
√

2π
(
1− Φ̄ (x)

)
xex2/2

)
= Φ̄ (z)

(
1−
√

2πΦ̄ (y) yey2/2
)
≥ 0.

By the lower bound hypothesis (10), we also have positivity of −1 + G. Thus the second term
on the right-hand side of (14) is non-negative. In other words we have

P [X > z] ≥ Φ̄ (z)+ E
[
1X≤z X

]
f (z)+ E

[
1X>z X f (X)

]
(15)

=: Φ̄ (z)+ A. (16)

The sum of the last two terms on the right-hand side of (15), which we call A, can be rewritten
as follows, using the fact that E [X ] = 0:

A := E
[
1X≤z X

]
f (z)+ E

[
1X>z X f (X)

]
= E

[
1X≤z X

]
f (z)+ E

[
1X>z X ( f (X)− f (z))

]
+ f (z)E

[
1X>z X

]
= E

[
1X>z X ( f (X)− f (z))

]
.

This quantity A is slightly problematic since, f being decreasing on [z,+∞), we have A < 0.
However, we can write f (X) − f (z) = f ′ (ξ) (X − z) for some ξ > z. Note that this ξ is
random and depends on z; in fact on the event X > z, we have ξ ∈ [z, X ], but we will only need
to use the lower bound on ξ : we use the lower bound in (13) to get that for all ξ > z,∣∣ f ′ (ξ)

∣∣ = − f ′ (ξ) =
(
1− Φ̄ (z)

) (
1−
√

2πΦ̄ (ξ) ξeξ
2/2
)
≤ 1 ·

(
1−

ξ2

1+ ξ2

)
=

1

1+ ξ2 . (17)

This upper bound can obviously be further bounded above uniformly by
(
1+ z2

)−1
, which

means that

|A| ≤ E
[
1X>z X (X − z)

] 1

1+ z2 .

By using this estimate in (16) we finally get

P [X > z] ≥ Φ̄ (z)− E
[
1X>z X (X − z)

] 1

1+ z2 . (18)

Step 3: Integrating by parts. For notational compactness, let S (z) := P [X > z]. We integrate
the last term in (18) by parts with respect to the positive measure −dS (x). We have, for any
z > 0,

E
[
1X>z X (X − z)

]
= −

∫
∞

z
x (x − z) dS (x)

= z (z − z) S (z)− lim
x→+∞

x (x − z) S (x)+
∫
∞

z
(2x − z)S (x) dx

≤

∫
∞

z
(2x − z)S (x) dx .
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The conclusion (18) from the previous step now implies

S (z) ≥ Φ̄ (z)−
1

1+ z2

∫
∞

z
(2x − z)S (x) dx,

which finishes the proof of the theorem’s lower bound.
Step 4: Upper bound. The proof of the upper bound is similar to, not symmetric with, and

less delicate than, the proof of the lower bound. Indeed, we can take advantage of a projective
positivity result on the inner product of DX and −DL−1 X , namely [9, Proposition 3.9] which
says that E [G|X ] ≥ 0. This allows us to avoid the need for any additional moment assumptions.
Since X is assumed to have a density, we may use Lemma 3.5 directly with the function h = f ,
which is continuous, and differentiable everywhere except at x = z: we have

P [X > z] = Φ̄ (z)− E
[

f ′ (X)
]
+ E

[
f ′ (X)G

]
= Φ̄ (z)+ E

[
1X≤z f ′ (X) (−1+ G)

]
+ E

[
1X>z f ′ (X) (−1+ G)

]
≤ Φ̄ (z)+ E

[
1X>z f ′ (X) (−1+ G)

]
(19)

where the last inequality simply comes from the facts that by hypothesis−1+G is negative, and
when x ≤ z, f ′ (x) ≥ 0 (see previous step for proof of this positivity). It remains to control the
term in (19): since E [G|X ] ≥ 0, and using the negativity of f ′ on x > z,

E
[
1X>z f ′ (X) (−1+ G)

]
= E

[
1X>z f ′ (X)E [(−1+ G) |X ]

]
≤ −E

[
1X>z f ′ (X)

]
= E

[
1X>z

∣∣ f ′ (X)
∣∣] .

This last inequality together with the bound on f ′ obtained in (17) imply

E
[
1X>z f ′ (X) (−1+ G)

]
≤ P [X > z]

1

1+ z2 .

Thus we have proved that

P [X > z] ≤ Φ̄ (z)+ P [X > z]
1

1+ z2

which implies the upper bound of the theorem, finishing its proof. �

Proof of Corollary 4.2. To simplify the expressions of the constants in this corollary, we have
ignored the term z in the factor (2x − z) in the lower bound of Theorem 4.1, which of course
yields a stronger lower bound statement. One also notes that, by a result in [12], condition (10)
implies that X has a density.

Proof of Point 1. Since X has a density, we can apply Lemma 3.5, from which it trivially
follows that Var [X ] = E [X X ] = E [G] ≥ 1.

Proof of Point 2. Since X has a density, S′ is defined, and we get

F (z) :=
∫
∞

z
xP [X > x] dx =

∫
∞

z
x S (x) dx ≤

1
c

∫
∞

z
x2
∣∣S′ (x)∣∣ dx

=
1
c

(
z2S (z)− lim

x→∞
x2S (x)+

∫
∞

z
2x S (x) dx

)
≤

1
c

(
z2S (z)+ 2F (z)

)
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which implies

F (z) ≤
1

c − 2
z2S (z) .

With the lower bound conclusion of Theorem 4.1, we obtain

S (z) ≥ Φ̄ (z)−
2z2

1+ z2

1
c − 2

S (z)

which is equivalent to the statement of Point 2.
Proof of Point 3. From Theorem 4.1, we have for large z,

S (z) ≥ Φ̄ (z)−
1

1+ z2

∫
∞

z
2x1−cxc S (x) dx

≥ Φ̄ (z)−
1

1+ z2 sup
x>z

[
xc S (x)

] ∫ ∞
z

2x1−cdx = Φ̄ (z)

−
z2−c2/ (c − 2)

1+ z2 sup
x>z

[
xc S (x)

]
which implies

sup
x>z

[
xc S (x)

] ( 2
c − 2

+ 1
)
≥ zcΦ̄ (z)

which is equivalent to the first part of the statement of Point 3, the second part following from
the fact that zcΦ̄ (z) is decreasing for large z. �

Proof of Theorem 4.3. By Proposition 3.7, with L = E |X | /2, for x ∈ (a,+∞),

ρ (x) = L A (x) /g (x) .

By definition we also get A′ (x) = −x A (x) /g (x) = −x L−1ρ (x), and thus

P [X > x] =: S (x) = L
∫
+∞

x

−A′

y
dy = L

(
A (x)

x
− lim

y→∞

A (y)

y
−

∫
+∞

x

A (y)

y2 dy

)
.

Since g is non-negative, A is bounded, and the term limy→∞ A (y) /y is thus zero. Equality (11)
follows immediately, proving the theorem. �

Proof of Corollary 4.5. Proof of inequality (12). From Theorem 4.3, with L = E |X | /2, and
k > 1, and using the fact that A is decreasing, we can write

S (x) =: P [X > x] = L

(
A (x)

x
−

∫ kx

x

A (y)

y2 dy −
∫
+∞

kx

A (y)

y2 dy

)
≥ L

(
A (x)

x
−

A (x)

x

(
1−

1
k

)
−

A (kx)

kx

)
= L

A (x)

x

1
k

(
1−

A (kx)

A (x)

)
.

It is now just a matter of using the assumption g (x) ≤ c′x2 to control A (kx) /A (x). We have
for large x ,

A (kx)

A (x)
= exp

(
−

∫ kx

x

ydy

g (y)

)
≤ exp

(
−

1
c′

log k

)
= k−1/c′ .
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This proves

S (x) ≥ L
A (x)

x

1
k

(
1− k−1/c′

)
.

The proof is completed simply by optimizing this over the values of k > 1: the function k 7→(
1− k−1/c′

)
/k reaches its maximum of

(
c′
)c′ (1+ c′

)−c′−1 at
(
1+ 1/c′

)c′ .
Proof of Points 1, 2, 3, and 4. Point 1 is immediate since g (x) ≥ 1 implies A (x) ≥ exp(
−x2/2

)
. Similarly, for Point 2, we have

A (x) ≥ exp
(
−

∫ y0

0

ydy

g (y)

)
exp

(
−

1
c′′

∫ x

y0

dy

y

)
= cst x−1/c′′ ,

and Point 3 follows in the same fashion. Point 4 is shown identically by reversing all inequalities,
concluding the proof of the Corollary. �

Proof of Corollary 4.6. This is in fact a corollary of the proof of Theorem 4.1. At the end of
Step 2 therein, in (18), we prove that (10), the lower bound assumption G ≥ 1, implies

S (z) ≥ Φ̄ (z)− E
[
1X>z X (X − z)

] 1

1+ z2 . (20)

Let us investigate the term B := E
[
1X>z X (X − z)

]
. Using Lemma 3.5 with the function h (x) =

(x − z) 1x>z , we have

B = E
[
1X>zG

]
= E

[
1X>zg (X)

]
.

Now use the upper bound assumption on g: we get, for all z ≥ z0,

B ≤ c′E
[
1X>z X2

]
= c′E

[
1X>z X (X − z)

]
+ c′zE

[
1X>z X

]
= c′B + c′zE

[
1X>z X

]
= c′B + c′z

(
zS (z)+

∫
∞

z
S (x) dx

)
, (21)

where we used integration by parts for the last inequality. Again using integration by parts, but
directly on the definition of B :=

∫
∞

z

(
x2
− zx

)
ρ (x) dx , yields

B = 2
∫
∞

z
x S (x) dx − z

∫
∞

z
S (x) dx .

Introducing the following additional notation: D := z
∫
∞

z S (x) dx and E := 2
∫
∞

z x S (s) dx , we
see that B = E − D and also that E ≥ 2D. Moreover, in (21), we also recognize the appearance
of D. Therefore we have

(E − D)
(
1− c′

)
≤ c′D + c′z2S (z) ≤

(
c′/2

)
E + c′z2S (z) .

With E − D ≥ E/2, we now get E
(
1− c′

)
≤ c′E + 2c′z2S (z), i.e.

B ≤ E ≤
2c′

1− 2c′
z2S (z) .

From (20), we now get

S (z) ≥ Φ̄ (z)−
2c′
(
1− 2c′

)−1 z2

1+ z2 S (z)
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from which we obtain, for z ≥ z0

S (z) ≥
1+ z2

1+
(

2c′ (1− 2c′)−1
+ 1

)
z2

Φ̄ (z) ,

finishing the proof of the corollary. �

5. Fluctuation exponent and deviations for polymers in Gaussian environments

Lemma 3.8 provides a way to calculate G :=
〈
DX;−DL−1 X

〉
H in order to check, for in-

stance, whether it is bounded below by a positive constant c2. If c2
6= 1, because of the bilinearity

of Condition (10), one only needs to consider X/c instead of X in order to apply Theorem 4.1,
say. To show that such a tool can be applied with ease in a non-trivial situation, we have chosen
the issue of fluctuation exponents for polymers in random environments.

We can consider various polymer models in random environments constructed by analogy
with the so-called stochastic Anderson models (see [18,5]). A polymer’s state space R can be
either Rd or the d-dimensional torus Sd , or also Zd or Z/pZ; we could also use any Lie group
for R. We can equip R with a Markov process b on [0,∞) whose infinitesimal generator, under
the probability measure Pb, is the Laplace(-Beltrami) operator or the discrete Laplacian. Thus
for instance, b is Brownian motion when R = Rd , or is the simple symmetric random walk when
R = Zd ; it is the image of Brownian motion by the imaginary exponential map when R = S1.
To simplify our exposition, we can and will typically assume, unless explicitly stated otherwise,
that R = R, but our constructions and proofs can be adapted to any of the above choices.

5.1. The random environment

Let W be a Gaussian field on R+ × R which is homogeneous in space and is Brownian in
time for fixed space parameter: the covariance of W is thus

E [W (t, x)W (s, y)] = min (s, t) Q (x − y) ,

for some homogeneous covariance function Q on R. We assume that Q is continuous and that its
Fourier transform is a measure with a density denoted by Q̂. Note that Q̂ is a positive function,
and |Q| is bounded by Q (0). The field W can be represented using a very specific isonormal
Gaussian process: there exists a white noise measure M on R+ × R such that

W (t, x) =
∫ t

0

∫
R

M (ds, dλ)
√

Q̂ (λ) eiλ·x ,

where the above integral is the Wiener integral of (s, λ) 7→ 1[0,t] (s)
√

Q̂ (λ) eiλ·x with respect
to M . This M is the Gaussian white noise measure generated by an isonormal Gaussian process
whose Hilbert space is H = L2(R+ × R, drdλ), i.e. the control measure of M is the Lebesgue
measure on R+ × R. Malliavin derivatives relative to M will take their parameters (s, λ) in
R+ × R, and inner products and norms are understood in H . There is a slight possibility of
notational confusion since now the underlying isonormal Gaussian process is called M , with the
letter W – the traditional name of the polymer potential field – being a linear transformation
of M .
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The relation between D and W is thus that Ds,λW (t, x) = eiλ·x
√

Q̂ (λ)1[0,t] (s). We will
make use of the following similarly important formulas: for any measurable function f :

Ds,λ

∫
R

∫ t

0
M (ds, dλ)

√
Q̂ (λ)eiλ· f (s)

=

√
Q̂ (λ)eiλ· f (s)1[0,t] (s) ; (22)∫ t

0

∫
R

ds Q̂ (λ) dλ eiλ· f (s)
=

∫ t

0
Q ( f (s)) ds. (23)

The last equality is obtained by Fubini’s theorem and the definition of the function Q̂ as the
Fourier transform of the univariate function Q. Quantitatively, formula (23) will be particularly
useful as a key to easy upper bounds by noting the fact that maxx∈R Q (x) = Q (0) is positive and
finite. On the other hand, if Q is positive and non-degenerate, lower bounds will easily follow.

In order to use the full strength of our estimates in Section 4, we will also allow Q to be
inhomogeneous, and in particular, unbounded. This is easily modeled by specifying that

W (t, x) =
∫ t

0

∫
R

M (ds, dλ) q (λ, x)

where
∫

R q (λ, x) q (λ, y) dλ = Q (x, y). Calculations similar to (22) and (23) then ensue.
We may also devise polymer models in non-Gaussian environments by considering W as a

mixture of Gaussian fields. This means that we consider Q to be random itself, with respect to
some separate probability space. We will place only weak restrictions on this randomness: under
a probability measure P , we assume Q̂ is a non-negative random field on R, integrable on R,
with Q (0) =

∫
R Q̂ (λ) dλ integrable with respect to P .

5.2. The polymer and its fluctuation exponent

Let the Hamiltonian of a path b in R under the random environment W be defined, up to time
t , as

H W
t (b) =

∫ t

0
W (ds, bs) =

∫
R

∫ t

0
M (ds, dλ)

√
Q̂ (λ)eiλ·bs .

Since W is a symmetric field, we have omitted the traditional negative sign in front of the
definition of H W

t . For fixed path b, this Hamiltonian H W
t (b) is a Gaussian random variable

w.r.t W .
The polymer P̃b based on b in the random Hamiltonian H W is defined as the law whose

Radon-Nykodym derivative with respect to Pb is Z t (b) /Eb [Z t (b)] where

Z t (b) := exp H W
t (b) .

We use the notation u for the partition function (normalizing constant) for this measure:

u (t) := Eb [Z t (b)] .

The process u (t) is of special importance: its behavior helps one understand the behavior of the
whole measure P̃b. When b0 = x instead of 0, the resulting u (t, x) is the solution of a stochastic
heat equation with multiplicative noise potential W , and the logarithm of this solution solves a
so-called stochastic Burgers equation.

It is known that t−1 log u (t) typically converges almost surely to a non-random constant λ
called the almost sure Lyapunov exponent of u (see [18] and references therein for instance; the
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case of random Q is treated in [7]; the case of inhomogeneous Q on compact space is discussed
in [5]). The speed of concentration of log u (t) around its mean has been the subject of some
debate recently. One may consult [1] for a discussion of the issue and its relation to the so-
called wandering exponent in non-compact space. The question is to evaluate the asymptotics of
log u (t)−E

[
log u (t)

]
for large t , or to show that it is roughly equivalent to tχ , where χ is called

the fluctuation exponent. The most widely used measure of this behavior is the asymptotics of
Var

[
log u (t)

]
. Here, we show that if the space is compact with positive correlations, or if W has

infinite spatial correlation range, then Var
[
log u (t)

]
behaves as t , i.e. the fluctuation exponent χ

is 1/2. This result is highly robust to the actual distribution of W , since it does not depend on the
law of Q under P beyond its first moment. We also provide a class of examples in which H W is
replaced by a non-linear functional of W , and yet the fluctuation exponent, as measured by the
power behavior of

√
Var

[
log u (t)

]
, is still 1/2.

We hope that our method will stimulate the study of this problem for other correlation
structures not covered by the theorem below, in particular in infinite space when the correlation
range of W is finite or decaying at a certain speed at infinity, or in the case of space-time white-
noise in discrete space, i.e. when the Brownian motions

{
W (·, x) : x ∈ Zd} form an IID family.

We conjecture that χ will depend on the decorrelation speed of W . It is at least believed by some
that in the case of space-time white noise, χ < 1/2.

The starting point for studying Var
[
log u (t)

]
is the estimation of the function g relative to

the random variable log u (t) = log Eb
[
exp H W

t (b)
]
. Here because the integral H W

t (b) =
∫ t

0 W

(ds, bs) has to be understood as
∫ t

0

∫
R M (ds, dλ)

√
Q̂ (λ)eiλ·bs , we must calculate the Malliavin

derivative with parameters r and λ. We will use the consequence of Mehler’s formula described
in Lemma 3.8 of Section 3.2. More specifically, we have the following.

Lemma 5.1. Assume Q is homogeneous. Let

X :=
log u (t)− E log u (t)

√
t

.

Then

Ds,λX =
1
√

t

1
u (t)

Eb

[√
Q̂ (λ)eiλ·bs eH W

t (b)
]

1[0,t] (s) ,

and

G :=
〈
DX,−DL−1 X

〉
H
=

1
2t

∫ π/2

−π/2
|sin θ | dθ E′Eb,b̄

×

[∫ t

0
ds Q

(
bs − b̄s

) exp H W
t (b)

u (t)

exp H RθW
t

(
b̄
)

Rθu (t)

]
, (24)

where Eb,b̄ is the expectation w.r.t. two independent copies b and b̄ of Brownian motion,
and RθW was defined in (9). When Q is inhomogeneous, the above formula still holds, with
Q
(
bs − b̄s

)
replaced by Q

(
bs, b̄s

)
.

Proof. By formula (22) and the chain rule for Malliavin derivatives, we have for fixed b,

Ds,λ

(
eH W

t (b)
)
=

√
Q̂ (λ)eiλ·bs eH W

t (b)1[0,t] (s)
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and therefore by linearity of the expectation Eb, and the chain rule again, the first statement of
the lemma follows immediately.

Now we investigate DL−1 X . To use Lemma 3.8 relative to W , we note that the expression
for Rθ X is straightforward, since X is defined as a non-random non-linear functional of an
expression involving b and W with the latter appearing linearly via H W

t (b); in other words,
Rθ X is obtained by replacing H W

t (b) by H RθW
t (b), so we simply have

Rθ X =
log Eb

[
exp

(
H W

t (b) cos θ + H W ′
t (b) sin θ

)]
− E log u (t)

√
t

.

Thus by Lemma 3.8,

−Ds,λL−1 X =
∫ π/2

−π/2
dθ

sgn (θ)

2
√

t
EbE′

[√
Q̂ (λ)eiλ·bs sin (θ)

exp H RθW
t (b)

Rθu (t)

]
.

We may thus calculate explicitly the inner product G :=
〈
DX,−DL−1 X

〉
H , using Eq. (23),

obtaining the second announced result (24). The proof of the first statement is identical
in structure to the above arguments. The last statement is obtained again using identical
arguments. �

It is worth noting that a similar expression as for G :=
〈
DX,−DL−1 X

〉
H can be obtained for

‖DX‖2H . Using the same calculation technique as in the above proof, we have

‖DX‖2H = ‖DX‖2L2([0,t]×R) =
1
t

Eb,b̄

[
eH W

t (b)eH W
t (b̄)

u2 (t)

∫ t

0
ds Q

(
bs, b̄s

)]

=
1
t

Ẽb,b̄

[∫ t

0
ds Q

(
bs, b̄s

)]
, (25)

where the last expression involves the expectation w.r.t. the polymer measure P̃ itself, or rather
w.r.t. the product measure dP̃b,b̄ = eH W

t (b)eH W
t (b̄)u−2 (t) dPb×dPb̄ of two independent polymers(

b, b̄
)

in the same random environment W . This measure is called the two-replica polymer

measure, and the quantity Ẽb,b̄

[∫ t
0 ds Q

(
bs, b̄s

)]
is the so-called replica overlap for this polymer.

This notion should be familiar to those studying spin glasses such as the Sherrington–Kirkpatrick
model (see [20]). The strategy developed in this article suggests that the expression G :=〈
DX,−DL−1 X

〉
H may be better suited than the rescaled overlap ‖DX‖2H in seeking lower

bounds on log u’s concentration.

Notation 5.2. In order to simplify the notation in the next theorem, when Q is not homogeneous,
we denote Q (0) = maxx∈R Q (x, x). We then have, in all cases, Q (0) ≥ |Q (x, y)| for all
x, y ∈ R. Similarly we denote Qm = minx,y∈R Q (x, y). In the homogeneous case Qm thus co-
incides with minx∈R Q (x). When Q is random, assumptions about Q below are to be understood
as being required P -almost surely.

Definition 5.3. To make precise statements about the fluctuation exponent, it is convenient to
use the following definition:

χ := lim
t→∞

log Var
[
log u (t)

]
2 log t

.
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Theorem 5.4. 1. Assume Q (0) is finite. We have for all a, t > 0,

P
[∣∣log u (t)− E

[
log u (t)

]∣∣ > a
√

t
]
≤ 1 ∧

2Q (0)1/2

a
√

2π
exp

(
−

a2

2Q (0)

)
. (26)

If Q is random, one only needs to take an expectation EP of the above right-hand side.
2. Assume Q (0) is finite. Then for all t ,

Var
[
log u (t)

]
≤

(π
2

)2
EP [Q (0)] t. (27)

3. Assume Qm is positive. Then for all t ,

Var
[
log u (t)

]
≥ EP [Qm] t. (28)

4. Assume Qm is positive and Q (0) is finite. Then, in addition to (26), we have for any K ∈
(0, 1) and all a large,

P
[∣∣log u (t)− E

[
log u (t)

]∣∣ > a
√

t
]
≥ K

Q1/2
m

a
exp

(
−

a2

2Qm

)
(29)

Moreover, in this case, the conclusions (27) and (28) hold simultaneously, so that the fluctua-
tion exponent is χ = 1/2 as soon as Q (0) ∈ L1 [P ].

The hypotheses in Points 3 and 4 of this theorem are satisfied if the state space R is replaced
by a compact set such as S1, or a finite set, and Q is positive everywhere: then indeed Qm > 0.
Although the hypothesis of uniform positivity of Q can be considered as restrictive for non-
compact state space, one notes that there is no restriction on how small Qm can be compared
to Q (0); in this sense, the slightest persistent correlation of the random environment at distinct
sites results in a fluctuation exponent χ = 1/2. In sharp contrast is the case of space-time white
noise in discrete space, which is not covered by our theorem, since then Q (x) = 0 except if
x = 0; the main open problem in discrete space is to prove that χ < 1/2 in this white noise case.

In relation to the overlap ‖DX‖2H , we see that under the assumptions of Point 4 above,
‖DX‖H is also bounded above and below by non-random multiples of t1/2. Hence, while our
proofs cannot use ‖DX‖2H directly to prove χ = 1/2, the situation in which we can prove
χ = 1/2 coincides with a case where the overlap has the same rough large-time behavior as
Var

[
log u (t)

]
. We believe this is in accordance with common intuition about related spin glass

models.
More generally, we consider it an important open problem to understand the precise deviations

of log u (t). The combination of the sub-Gaussian and super-Gaussian estimates (26) and (29)
are close to a central limit theorem statement, except for the fact that the rate is not sharply
pinpointed. Finding a sharper rate is an arduous task which will require a finer analysis of
the expression (24), and should depend heavily and non-trivially on the correlations of the
covariance function, just as the obtaining of a χ < 1/2 should depend on having correlations that
decay at infinity sufficiently fast. There, we believe that a fine analysis will reveal differences
between G and the overlap ‖DX‖2H , so that precise quantitative asymptotics of log u (t) can
only be understood by analyzing G, not merely ‖DX‖2H . For instance, it is trivial to prove that
E [G] ≤ E

[
‖DX‖2H

]
, and we conjecture that this inequality is asymptotically strict for large t ,

while the deviations of G and ‖DX‖2H themselves from their respective means are quite small,
so that their means’ behavior is determinant.

Answering these questions is beyond this article’s scope; we plan to pursue them actively in
the future.
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Proof of Theorem 5.4. Proof of Point 1. Since Q (x, y) ≤ Q (0) for all x, y, from Lemma 5.1,
we have

G ≤
Q (0)

2t

∫ π/2

−π/2
|sin θ | dθ t E′Eb,b̄

[
exp H W

t (b)

u (t)

exp H RθW
t

(
b̄
)

Rθu (t)

]
= Q (0) ,

where we used the trivial facts that Eb
[
exp H W

t (b)
]
= u (t) and Eb

[
exp H RθW

t (b)
]
= Rθu (t).

The upper bound result in Theorem 4.1, applied to the random variable X̃ = X/
√

Q (0), now
yields

P [X > z] = P
[

X̃ > zQ (0)−1/2
]
≤

(
1+

Q (0)
z2

)
Φ̄
(

z

Q (0)1/2

)
and the upper bound statement (26).

Proof of Points 2 and 3. Now we note that, since all terms in the integrals in Lemma 5.1 are
positive, our hypothesis that Q (x, y) ≥ Qm > 0 for all x, y implies

G ≥
Qm

2t

∫ π/2

−π/2
|sin θ | dθ t E′Eb,b̄

[
exp H W

t (b)

u (t)

exp H RθW
t

(
b̄
)

Rθu (t)

]

=
Qm

2

∫ π/2

−π/2
|sin θ | dθ E′

 Eb
[
exp H W

t (b)
]

u (t)

Eb

[
exp H RθW

t
(
b̄
)]

Rθu (t)

 = Qm .

Applying Point 1 in Corollary 4.2 to the random variable X̃ = X/
√

Qm , the lower bound of (28)
in Point 3 follows. The upper bound (27) of Point 2 can be proved using the result (26) of Point 1,
although one obtains a slightly larger constant than the one announced. The constant (π/2)2

is obtained by using the bound ‖DX‖2H ≤ Q (0) which follows trivially from (25), and then
applying the classical result Var [X ] ≤ (π/2)2 E

[
‖DX‖2H

]
, found for instance in [21, Theorem

9.2.3].

Proof of Point 4. Since Q (0) is finite and Qm is positive, using X̃ = X/
√

Qm in Corollary 4.6,
we have that g (x) ≥ 1 and g (x) ≤ Q (0) /Qm , so that we may use any value c′ > 0 in
the assumption of that corollary, with thus K = 1 − 2c′ arbitrarily close to 1; the corollary’s
conclusion is the statement of Point 4. This finishes the proof of the theorem. �

5.3. Robustness of the fluctuation exponent: A non-Gaussian Hamiltonian

The statements of Point 4 of Theorem 5.4 show that if the random environment’s spatial
covariance is bounded above and below by positive constants, then the partition function’s
logarithm log u (t) is both sub-Gaussian and super-Gaussian, in terms of its tail behavior (tail
bounded respectively above and below by Gaussian tails). We now provide an example of a
polymer subject to a non-Gaussian Hamiltonian, based still on the same random environment,
whose logarithmic partition function may not be sub-Gaussian, yet still has a fluctuation exponent
equal to 1/2. It is legitimate to qualify the persistence of this value 1/2 in a non-Gaussian
example as a type of robustness.

Let

X W
t (b) :=

∫ t

0
W (ds, bs) .
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With F (t, x) = x + x |x | /(2t), we define our new Hamiltonian as

H W
t (b) := F

(
t, X W

t (b)
)
. (30)

Similarly to Lemma 5.1, the Chain Rule for Malliavin derivatives proves that

Ds,λX =
1
√

t

1
u (t)

Eb

[√
Q̂ (λ)eiλ·bs eH W

t (b)

(
1+

∣∣X W
t (b)

∣∣
t

)]
1[0,t] (s) , (31)

and

G :=
〈
DX,−DL−1 X

〉
H
=

1
2t

∫ π/2

−π/2
|sin θ | dθ E′Eb,b̄

×

[∫ t

0
ds Q

(
bs, b̄s

) exp H W
t (b)

u (t)

exp H RθW
t

(
b̄
)

Rθu (t)

×

(
1+

∣∣X W
t (b)

∣∣
t

)1+

∣∣∣X RθW
t

(
b̄
)∣∣∣

t

 . (32)

Theorem 5.5. Consider u (t) = Eb
[
exp H W

t (b)
]

where the new Hamiltonian H W
t is given in

(30). The random environment W is as it was defined in Section 5.1, and Q (0) and Qm are given
in Notation 5.2, and are non-random.

1. Assume Q (0) < 1/4. Then Var
[
log u (t)

]
≤ 64 (π/2)2 Q3 (0) t + O

(
t−1

)
.

2. Assume Qm is positive. Then Var
[
log u (t)

]
≥ Qm t .

If both assumptions of Points 1 and 2 hold, the fluctuation exponent of Definition 5.3 is
χ = 1/2, and the conclusion of Point 4 in Theorem 5.4 holds.

The theorem above also works when Q (0) and Qm are random. We leave it to the reader to
check that the conclusions of Points 1 and 2 above hold with expectations EP on the right-hand
sides, and with O

(
t−1

)
= t−1 EP

[
Q (0)

(
1+ log2 (1− 4Q (0))

)]
.

We suspect that the logarithmic partition function log u (t) given by the non-Gaussian
Hamiltonian in (30) is eminently non-Gaussian itself; in fact, the form of its derivative in (31),
with the additional factors of the form (1+ X (b)) /t , can presumably be compared with X . We
conjecture, although we are unable to prove it, that the corresponding g (y) grows linearly in y.
This would show, via Corollary 4.5 Point 3, that log u (t) has exponential tails. Other examples
of non-Gaussian Hamiltonians can be given, using the formulation (30) with other functions F ,
such as F (t, x) = x + x |x |p /t (1+p)/2 for p > 0. It should be noted, however, that in our
Gaussian environment, any value p > 1 results in a partition function u (t) with infinite first
moment, in which case the arguments we have given above for proving that χ = 1/2 will not
work. This does not mean that the logarithmic partition function cannot be analyzed using finer
arguments; it can presumably be proved to be non-Gaussian with heavier-than-exponential tails
when p > 1.

Proof of Theorem 5.5. Since the additional terms in (32), compared to Lemma 5.1, are factors
greater than 1, the conclusion of Point 2 follows immediately using the proof of Points 2 and 3
of Theorem 5.4.
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To prove that Point 1 holds, we will use again the classical fact Var [X ] ≤ (π/2)2 E
[
‖DX‖2H

]
.

Here from (31) note first that∫
R

∣∣Ds,λX
∣∣2 dλ

=
1
t

1

u2 (t)
Eb Eb′

[∫
R

dλ
√

Q̂ (λ)eiλ·(bs−b′s )eH W
t (b)eH W

t (b
′)

(
1+

∣∣X W
t (b)

∣∣
t

)

×

(
1+

∣∣X W
t

(
b′
)∣∣

t

)]

=
1
t

1

u2 (t)
Eb Eb′

[
Q(bs − b′s)e

H W
t (b)eH W

t (b
′)

(
1+

∣∣X W
t (b)

∣∣
t

)(
1+

∣∣X W
t

(
b′
)∣∣

t

)]

≤
Q (0)

t

1

u2 (t)
Eb Eb′

[
eH W

t (b)eH W
t (b

′)

(
1+

∣∣X W
t (b)

∣∣
t

)(
1+

∣∣X W
t

(
b′
)∣∣

t

)]

=
Q (0)

t

(
1+ Eb

[
eH W

t (b)

u (t)

∣∣X W
t (b)

∣∣
t

])2

.

Therefore we have immediately

‖DX‖2H ≤ Q (0)

(
1+ Eb

[
eH W

t (b)

u (t)

∣∣X W
t (b)

∣∣
t

])2

.

Therefore, to get an upper bound on the variance of X uniformly in t we only need to show that
the quantity

B := E

(Eb

[
eH W

t (b)

u (t)

∣∣X W
t (b)

∣∣
t

])2


is bounded in t . We see that, using Jensen’s inequality w.r.t. the polymer measure dP̃b =

eH W
t (b)u (t)−1 dPb, and then w.r.t. the random medium’s expectation,

B =
1

t2 E

(Eb

[
eH W

t (b)

u (t)
log e

∣∣X W
t (b)

∣∣])2


≤
1

t2 E

(log Eb

[
eH W

t (b)+
∣∣X W

t (b)
∣∣

u (t)

])2


≤
1

t2 log2

(
e − 1+ E

[
Eb

[
eH W

t (b)+
∣∣X W

t (b)
∣∣

u (t)

]])
.
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Here we used the fact that Eb

[
eH W

t (b)+
∣∣X W

t (b)
∣∣]
/u (t) ≥ Eb

[
H W

t (b)
]
/u (t) = 1 and that x 7→

log2 (x + e − 1) is convex for x ≥ 1. Now we evaluate

E

[
Eb

[
eH W

t (b)+
∣∣X W

t (b)
∣∣

u (t)

]]
= EbE

eX W
t (b)+

∣∣X W
t (b)

∣∣2/(2t)+
∣∣X W

t (b)
∣∣

u (t)


≤ E1/2

[
u (t)−2

]
EbE1/2

[
e4
∣∣X W

t (b)
∣∣+∣∣X W

t (b)
∣∣2/t
]

≤ E1/2
[

Eb

[
e−2H W

t (b)
]]

EbE1/2
[

e4
∣∣X W

t (b)
∣∣+∣∣X W

t (b)
∣∣2/t
]
. (33)

The first term in the above product is actually less than the second. For the second, we
note that for any fixed b, the random variable X W

t (b) is Gaussian centered, with a variance

bounded above by Q (0) t . Therefore we have that E
[
e2
∣∣X W

t (b)
∣∣2/t
]

is bounded by the constant

E
[
e2Q(0)Z2

]
= (1− 4Q (0))−1/2 (here Z denotes a standard normal); that expectation is finite

because Q (0) < 1/4 by assumption. Similarly for fixed b, E
[
e8
∣∣X W

t (b)
∣∣]
= E

[
e8
√

Q(0)t |Z |
]
≤

2e32Q(0)t . We now apply these two estimates and Schwartz’s inequality to the last factor in (33),
to get:

E1/2
[

e4
∣∣X W

t (b)
∣∣+∣∣X W

t (b)
∣∣2/t
]
≤ 21/4E1/4

[
e8
∣∣X W

t (b)
∣∣]

E1/4
[

e2
∣∣X W

t (b)
∣∣2/t
]

≤ 21/4e8Q(0)t (1− 4Q (0))−1/8 .

Combining this with the inequality in (33) now yields

B ≤
1

t2 log2
(

e − 1+
21/4e8Q(0)t

(1− 4Q (0))1/8

)
≤

1

t2

(
8Q (0) t + 1+ 4−1 log 2− 8−1 log (1− 4Q (0))

)2

= 64Q2 (0)+ O
(

t−2
)
,

where O
(
t−2

)
is non-random (depends only on Q (0)), proving Point 1, and the theorem. �
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Appendix

To prove Lemma 3.5, we begin with an intermediate result in the nth Wiener chaos.
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Lemma A.1. Let n ∈ N and fn ∈ Hn be a symmetric function. Let Y ∈ D1,2. Then

E [In ( fn) Y ] =
1
n

E
[
〈D· (In ( fn)) ; D·Y 〉H

]
= E

[
〈In−1 ( fn (?, ·)) ; D·Y 〉H

]
,

where we used the notation In−1 ( fn (?, ·)) to denote the function r 7→ In−1 ( fn (?, r)) where
In−1 operates on the n − 1 variables “?” of fn (?, r).

Proof. This is an immediate consequence of formula (4) and the famous relation δD = −L
(where δ is the divergence operator (Skorohod integral), adjoint of D, see [13, Proposition 1.4.3]).

Here, however, we present a direct proof. Note that, because of the Wiener chaos expansion of
Y in Proposition 2.2, and the fact that all chaos terms of different orders are orthogonal, without
loss of generality, we can assume Y = In (gn) for some symmetric gn ∈ Hn ; then, using the
formula for the covariance of two nth-chaos r.v.’s in Proposition 2.2, we have

E
[
〈In−1 ( fn (?, ·)) ; D·Y 〉H

]
= E

[
〈In−1 ( fn (?, ·)) ; nIn−1 (gn (?, ·))〉H

]
= n

∫
T

E
[
In−1 ( fn (?, r)) In−1 (gn (?, r))

]
µ (dr)

= n
∫

T
(n − 1)! 〈 fn (?, r) , gn (?, r)〉L2(T n−1,µ⊗n−1) µ (dr)

= n! 〈 fn; gn〉L2(T n ,µ⊗n) = E [In ( fn) Y ]

which, together with formula (4), proves the lemma. �

Proof of Lemma 3.5. Since X ∈ D1,2 and is centered, it has a Wiener chaos expansion X =∑
∞

n=1 In ( fn). We calculate E [Xh (X)] via this expansion and the Malliavin calculus, invoking
Remark 2.3 and using Lemma A.1:

E [Xh (X)] =
∞∑

n=1

E [In ( fn) h (X)]

=

∞∑
n=1

1
n

E
[∫

T
Dr In ( fn) Dr h (X) µ (dr)

]

= E

[
h′ (X)

∫
T

Dr

(
∞∑

n=1

1
n

In ( fn)

)
Dr X µ (dr)

]
which by the definition of −L is precisely the statement (7). �

Proof of Lemma 3.8. The proof goes exactly as that of Lemma 1.5.1 in [13], with only
computational changes. We give it here for completeness. It is sufficient to assume that
X = p

(
(W (hi ))

n
i=1

)
where p is, for instance, a polynomial in n variables. Thus Rθ X =

p
((

W (hi ) cos θ +W ′ (hi ) sin θ
)n

i=1

)
, so that D′s (Rθ X) = (sin θ) Rθ (Ds X). Using the Mehler

formula (formula (1.54) in [13]) with t > 0 such that cos θ = e−t , and Tt = et L , we get
E′
[
D′s (Rθ X)

]
= (sin θ) Tt (Ds X), which we can rewrite as

E′
[
D′s (Rθ X)

]
=

∞∑
n=0

sin θ cosn θ Jn Ds X.
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Integrating this expression over θ ∈ [−π/2, π/2] yields

1
2

∫ π/2

−π/2
sgn (θ)E′

[
D′s (Rθ X)

]
dθ =

∞∑
n=0

(
1
2

∫ π/2

−π/2
|sin θ | cosn θdθ

)
Jn Ds X

=

∞∑
n=0

(∫ π/2

0
sin θ cosn θdθ

)
Jn Ds X =

∞∑
n=0

1
n + 1

Jn Ds X.

It is now an elementary property of multiplication operators to check that the last expression
above equals −Ds L−1 X (see the commutativity relationship (1.63) in [13]), finishing the proof
of the lemma. �

For completeness, we finish with a short proof of the upper bound in Theorem 1.3, which is
equivalent to Proposition 1.1.

Proof of Proposition 1.1. Assume X ∈ D1,2 is centered and W is the standard Wiener space.
By the Clark–Ocone representation formula

X =
∫ 1

0
E [Ds X |Fs] dW (s)

(see [13, Proposition 1.3.5]), we can define a continuous square-integrable martingale M with
M (1) = X , via the formula M (t) :=

∫ t
0 E [Ds X |Fs] dW (s). The quadratic variation of

M is equal to [M]t =
∫ t

0 |E [Ds X |Fs]|2 ds; therefore, by hypothesis, [M]t ≤ t . Using the
Doleans–Dadec exponential martingale E (λM) based on λM , defined by E (λM)t = exp(
λMt −

λ2

2 [M]t

)
we now have

E
[
exp λX

]
= E

[
E (λM)1 exp

(
λ2

2
[M]1

)]
≤ E

[
E (λM)1

]
eλ

2/2
= eλ

2/2.

The proposition follows using a standard optimization calculation and Chebyshev’s inequality.
[21, Theorem 9.1.1] can be invoked to prove the same estimate for a general isonormal Gaussian
process W , as done in [22]. �
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Functional Analysis 257 (2009) 593–609.

[12] I. Nourdin, F. Viens, Density estimates and concentration inequalities with Malliavin calculus, Preprint, 2008.
http://arxiv.org/PS cache/arxiv/pdf/0808/0808.2088v2.pdf.

[13] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Springer-Verlag, 2006.
[14] E. Nualart, Exponential divergence estimates and heat kernel tail, Comptes Rendus Mathématique Académie des
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