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Abstract This paper investigates several strategies for consistently estimating the so-called
Hurst parameter H responsible for the long-memory correlations in a linear class of ARCH
time series, known as LARCH(∞) models, as well as in the continuous-time Gaussian sto-
chastic process known as fractional Brownian motion (fBm). A LARCH model’s parameter
is estimated using a conditional maximum likelihood method, which is proved to have good
stability properties. A local Whittle estimator is also discussed. The article further proposes
a specially designed conditional maximum likelihood method for estimating the H which
is closer in spirit to one based on discrete observations of fBm. In keeping with the popular
financial interpretation of ARCH models, all estimators are based only on observation of the
“returns” of the model, not on their “volatilities”.

Keywords ARCH · Times series · Fractional Brownian motion · Maximum likelihood
estimator · Long memory · Whittle estimator · Moving average

Mathematics Subject Classification (2000) Primary 62M09 · Secondary 60G18,
62M10, 91B84

M. Levine · F. Viens (B)
Department of Statistics, Purdue University, 150 N. University Street,
West Lafayette, IN 47907-2067, USA
e-mail: viens@purdue.edu

M. Levine
e-mail: mlevins@stat.purdue.edu

S. Torres
Depto de Estadística – CIMFAV, Universidad de Valparaíso,
1091 Av. Gran Bretaña, Playa Ancha, Valparaiso, Chile
e-mail: soledad.torres@uv.cl

123



222 Stat Infer Stoch Process (2009) 12:221–250

1 Introduction

Long-memory behavior is one of the most important empirical properties exhibited by
financial time series, such as asset returns and exchange rates. It is well known that, for
the most part, the values of such a time series rt , t ∈ N are uncorrelated but not inde-
pendent, with most of dependency “hidden” within some nonlinear functions of rt , such as
r2

t or |rt |. Historically, this has been modeled by conditional variance (volatility) models,
such as the models traditionally included in the so-called (G)ARCH framework (see Go-
uriéroux 1997 and also Ghysels et al. 1996). However, typically, these models possess the
so-called short memory property, and more specifically, exponential decay in autocorrela-
tions of the respective nonlinear function of rt , such as r2

t . A symptomatic situation is found in
Dan Nelson’s well-known convergence results of ARCH/GARCH models to stochastic vol-
atility models (see Nelson 1990). The linear autoregressive conditional heteroscedasticity
model (LARCH), first introduced in Robinson (1991), has long been considered a very con-
venient vehicle for long-memory modeling. Its name is probably due to Giraitis et al. (2000).
This model can be described as

rt = σtεt ; σ 2
t =

⎛
⎝a +

∞∑
j=1

b jrt− j

⎞
⎠

2

, t ∈ Z (1)

where {εt : t ∈ Z} are iid random variables with zero mean and unit variance. We also assume
that a �= 0 to avoid special cases where the solution σt is a sequence of uncorrelated random
variables. In order to ensure weak stationarity of the LARCH process, one must require that

||b|| =
[∑∞

j=1 b2
j

]1/2
<1. It is also easy to observe that, under the same conditions, the

LARCH process rt , as well as σt , is also strongly stationary, meaning that the law of rt for
fixed t does not depend on t , and that the same holds for σt . This model lacks the interpre-
tation usually accorded to the volatility models, since σt is not necessarily positive; this is
arguably irrelevant when εt is symmetric, a case to which we will largely restrict ourselves
here. Another advantage of the LARCH model lies in the simple conditions under which the
process rt itself and its powers r j

t , j ≥ 2, can be understood using combinatorial diagrams;
for more details, see Giraitis et al. (2000). This, and the lack of a complete understanding of
the long-memory modeling potential of the standard (nonlinear) ARCH framework, has lead
a number of authors into adopting LARCH as their primary long-memory modeling vehicle.

Giraitis et al. (2000) also prove that, with proper normalization, the LARCH model con-
verges in law to the fractional Brownian motion process, that is, a zero-mean Gaussian process
B H (t) with the covariance function

EB H (s)B H (t) = (1/2)
(
|s|2H − |t |2H − |t − s|2H

)

where the Hurst parameter H describes the strength of dependence between the increments
of the process. Their proof is very sophisticated and involves some advanced combinatorial
techniques. In contrast to this, we begin our article by showing that this convergence in law
can be obtained using a much simpler technique that involves the so-called moving-average
representation of the fractional Brownian motion (fBm).

It is legitimate to ask whether estimating the memory parameter of a nonlinear time series
process that approximates the fBm process may give some information about the Hurst
parameter of the fBm process itself. Recent results in the literature, esp. Wang (2002), sug-
gest that there is no asymptotic statistical equivalence in the sense of Le Cam between the
long-memory LARCH(∞) process and any natural discretization of the limiting fBm process.
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Wang (2002) proved this non-equivalence for finite order processes of GARCH type. We will
attempt to give arguments showing that the same should hold for the infinite-range LARCH
model we use here.

On the other hand, it is easy to construct a coupled model where the noise terms defining
the LARCH process are also used to define an approximation of fBm on the same probability
space, with the same long memory parameter H , in which case one may simply choose a
method based on the LARCH observations to estimate this common parameter H . In addi-
tion, the convergence in distribution to fBm is a good indication of the robustness of long
memory in the LARCH(∞) model. Thus we will concentrate on constructing and analyzing
some estimators for its long-memory and scale parameters. We will use methods commonly
employed in theory of nonlinear time series. The first method we will propose is a simple
way to estimate H dynamically, via conditional MLE; we will also present a different, more
involved conditional MLE, which is better adapted to the case where the LARCH(∞) and
approximate fBm processes are coupled, with a common H . We will also investigate the
possibility of a local Whittle estimator for H . A more detailed summary of our work is given
further below in this introduction.

A strong motivation for our work herein lies in our hope that the continuous-time quan-
titative finance community may appreciate the use of LARCH models because it combines
tractable estimation with models for stock returns rt that are uncorrelated, but whose vol-
atilities σt are random and exhibit long-memory explicitly. This is in contrast to the often
criticized so-called geometric fBm (fractional Black-Scholes) model, where the log stock
returns are correlated directly according to an fBm, and the volatility parameter is constant,
in a naive generalization of the Black-Scholes model. Arguably, the advantage of such a
model resides only in its mathematical convenience in terms of its ease of manipulation in
continuous time, but it cannot be used for modeling option pricing, because of the possibili-
ties of arbitrage which exist in continuous time. It is known from Cheridito (2003) that these
arbitrage possibilities vanish when trading is forced to be done discretely in time, but then
the interest of using a continuous-time model also becomes less obvious.

Let us review various candidates for time series long-memory parameter estimation, from
a historical perspective. A first set of possibilities lies in the conditional maximum likelihood
methods. For linear processes, Cheung (1993) showed that, under correct model specifica-
tion, the various MLE methods perform better than semiparametric estimators; the picture
seems to be reversed when the model is misspecified. For more details, see Boes et al. (1989).
The exact MLE method was proposed in Sowell (1992) and the approximate one in Fox and
Taqqu (1986) (using the frequency domain approach). Wavelet-based MLE methods for the
long-memory parameter estimation were proposed in Jensen (1999) for a narrow class of
fractional white noise processes and in Jensen (2000) for ARFIMA (p, d, q) processes.

The other large group of methods utilizes the frequency domain ideas; in the parametric
case, such is, for example, the classical Whittle estimator. Its properties for Gaussian and
linear processes were investigated by Fox and Taqqu (1986), and also by Dahlhaus (1989) and
Giraitis and Surgailis (1990). The next logical step would be to relax parametric assumptions
on the behavior of the spectral density estimation and only assume that

f (λ) = |λ|−α0 g(λ), |λ| ≥ π

around the point λ = 0 where g(λ) → c and c and α0 are positive constants. Semipara-
metric estimation methods constitute another group. These methods require little a priori
information about the spectral density of the time series, except its behavior around the point
λ = 0. Among those methods, the log-periodogram method of Geweke and Porter-Hudak
(1983) and the local Whittle estimator of Künsch (1987) should be mentioned. They were
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explored in great detail by Robinson (1995a,b). Closely related are the broad-band estimators
of Moulines and Soulier (1999) and of Hurvich and Brodsky (2001), as well as the exact
local Whittle estimation method of Shimotsu and Phillips (2005).

There has been relatively little work done on the semiparametric estimation of the long-
memory parameter for nonlinear time series. Some results for the local Whittle estimator
were obtained in Hurvich et al. (2005) and in Arteche (2004). General conditions under
which the local Whittle estimator of the memory parameter of a stationary (not necessarily
linear) process is consistent are given in Dalla et al. (2004). They also show that these condi-
tions are satisfied for a fairly wide class of nonlinear models that includes signal plus noise
processes, nonlinear transforms of a Gaussian process and EGARCH (exponential GARCH)
models. Abadir et al. (2006) obtain asymptotic confidence intervals for the trend and memory
parameters in the case of long-memory processes with trends that are possibly nonstation-
ary, nonlinear and non-Gaussian. They call the estimator they use the Fully-Extended Local
Whittle Estimator (FELW) which is a modified, for the presence of a trend, version of the
estimator these authors developed in Abadir et al. (2005).

In this article, we discuss two possible methods for estimation of the long-memory param-
eter of the LARCH model. One of them is based on the conditional maximum likelihood
approach and it has an additional benefit of robustness to violations of distributional assump-
tions. As pointed out earlier in the literature review, most of the work up until now was on
the MLE-based long-memory parameter estimation for linear processes, such as ARFIMA;
we contribute an estimation method that seems to be quite robust to the observation errors
based on empirical evidence and, under additional constraints on the structure of the random
errors, we give certain theoretical properties that also support our claim of robustness. In
addition, we show how our conditional MLE may be modified so that it may be considered
as an estimator of the Hurst parameter H of observations coming approximately from a fBm,
by relating such observations with the appropriately scaled accumulation of the centered
squared LARCH observations r2

t − Er2
t . In addition we explain precisely how to implement

this more involved conditional MLE in practice.
We also attempt to use the local Whittle method to estimate the H of the LARCH process.

Similarly to the MLE case, since σ 2
t is unobservable, we apply the method to squared asset

returns process r2
t . However, consistency of this method is not entirely clear. As is usual for

local Whittle method (see, for example, Dalla et al. 2004), it is necessary for the renormalized
periodograms η j of the process to satisfy the weak law of large numbers (WLLN); a possible
set of sufficient conditions is mentioned in the same paper. An alternative set of sufficient con-
ditions can be obtained from Lahiri (2003). We show that the latter is not satisfied in the case of
our LARCH model, and the former can only be satisfied if certain conjectures on the asymp-
totic behavior of the covariances of products of r2

t are satisfied, which is an open question at the
moment, and non-trivially so, since the behavior of such mixed moments for the LARCH pro-
cess would involve calculations that are higher in complexity than those already very delicate
combinatorial arguments in Giraitis et al. (2000). Therefore, while we do provide the details
of the local Whittle method in our context, we cannot guarantee that it provides a consistent
estimator for H based on time series observations, and a fortiori based on fBm observations.

We now present the structure of our paper, along with a detailed summary of our results. In
Sect. 2, we present the LARCH(∞) model, and show in Proposition 1 that n−H ∑nt

i=0 (σi − a)

converges in distribution to a constant multiple of fBm B H (t).

In Sect. 3, we introduce a possible conditional maximum likelihood estimator
(

â, Ĥ
)

i
for the pair of parameters (a, H ) in the LARCH(∞) model with i observations that can be
given by the solution of the system of two equations ∂ log L

∂a = 0 and ∂ log L
∂ H = 0; we discuss
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problems that arise concerning its consistency and show that its practical implementation
is still possible because all quantities in these equations are explicit, which allows us to
implement the resolution of this system, yielding a practical method for estimating a and H .
The numerical results based on simulated data show that the method performs very well in
practice.

In Sect. 4, we investigate the robustness of our conditional MLE. We calculate the total
error made in the calculation of the conditional MLE Ĥ if exogenous errors enter the observa-
tion (Proposition 2). This formula may be calculated explicitly in parallel to the calculation of
â and Ĥ , which is useful if some assumptions on the observation errors can be made and used
in a simulation. We also provide an upper bound for the total error (Proposition 3), which is
the basis for theoretical evidence that when the errors are IID centered and square integrable,
the total error converges to 0 faster than any power n−α with α < 1 − H (Remark 1).

In Sect. 5, we draw the connection between our conditional MLE and the estimation of H
from observations of an approximate fBm. In Subsect. 5.1, we prove that the following two
naive ways of proceeding do not work: working with fBm increment observations that are
analogous to the ri ’s themselves, and working with the fBm increment observations related
directly to the volatilities as in Proposition 1. In Subsect. 5.2, after showing convergence to
fBm of the partial sums of the centered squared observations r2

i − Er2
i (Proposition 4), we

calculate the system of equations needed to implement the conditional MLE based on these
observations (formulas (32) and (33)), and we discuss the practical implementation of this
estimator.

In Sect. 6, we first present a local Whittle estimator θ̂ for θ = 2 − 2H , based on volatility
observations, using the periodograms (36) for the discrete Fourier frequencies, defining θ̂ as
the minimizer of the quasi-likelihood-type objective function given in (37). Then, admitting
that volatilities are not directly observed, we explain what modifications need to be per-
formed in order to base the local Whittle estimator on squared returns instead; here we run
into difficulties in justifying that sufficient conditions for consistency of θ̂ are satisfied, and
show that this issue can only be resolved by establishing long-range dependence estimates
on the mixed moments of the returns.

The last section is an Appendix where a crucial technical estimate is proved.

2 The LARCH(∞) model

As in Giraitis et al. (2000), we consider the linear ARCH(∞) model (LARCH) given by

rt = σtεt (2)

and

σt = a +
∞∑
j=1

b jrt− j (3)

= a +
∞∑
j=1

b jσt− jεt− j . (4)

In a typical financial data interpretation, the process σt can be understood as volatility
process over an elementary time interval, while the process rt can then represent log returns
of a stock price over the same interval. In what follows, we will deviate from the standard
time series notation of using t ∈ Z for our model’s time parameter, using instead this letter
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t , and s as well, for continuous time, while the letters k and i represent discrete time. The
relation between i and k, as seen below, will typically be of the form k = tn or k = [tn],
where n−1 is thus our time step.

2.1 First convergence to fBm

In order to obtain a long-memory model, we can inspire ourselves from the so-called
moving-average representation of fBm: if B H is an fBm with Hurst parameter H , there
exists a standard Brownian motion W defined on all of R such that

B H (t) =
t∫

0

(t − r)H−1/2dW (r) +
0∫

−∞

(
(t + |r |)H−1/2 − |r |H−1/2

)
dW (r)

=
∞∫

−∞

(
(t − r)

H−1/2
+ − (−r)

H−1/2
+

)
dW (r). (5)

If one sums the increments σi − a to obtain the mean-zero process defined by v0 = 0 and

vk = vk−1 + σk − a =
k∑

i=1

(σi − a), (6)

one will be approximating a process whose integration over time must yield the kernel in (5),
suggesting that one should take

b j = cj H−3/2,

where c is a fixed constant. It is well known that if

‖b‖2 :=
∞∑
j=1

∣∣b j
∣∣2 < 1, (7)

then σ and r are weakly stationary processes, meaning they have constant means, here a and
0 respectively, and constant second moment, here the common value a2/

(
1 − ‖b‖2). One

may recognize that the long memory parameter used for instance in Giraitis et al. (2000) is
denoted by θ = 2 − 2H .

With this choice of b j we proceed to giving a simple proof of convergence of (the properly
normalized) vk to fBm. In what follows and the majority of the remainder of the paper, we
assume that the independent noise terms ε j are standard normal. This allows us to present
simpler proofs; we believe most results would hold for more general noise terms, but the
proofs would be more involved. We mentioned in the introduction that it is easy to construct
both the LARCH(∞) process and an approximate fBm on the same probability space via a
coupling. We now describe this coupling, and then state and prove the convergence result.

The easiest way to couple the ε j ’s and an approximate B H is to define the Brownian
motion W underlying B H in terms of the ε j ’s as the development above should suggest, as
a linear interpolation of the partial sums of the ε j ’s: with k = kt = [nt], the largest integer
smaller than nt , we let

W (n) (t) :=
k−1∑
j=0

ε j√
n

+ nt − k√
n

εk . (8)
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Donsker’s invariance principle (see Karatzas and Shreve 1991, Theorem 2.4.20) proves that,
as a random element in the space of continuous functions, W (n) converges in distribution to
a Brownian motion W , which is a key to the proof of the following.

Proposition 1 Let n be an integer. Assume that k = kt = [tn] and that W is the Brownian
motion given as the limit of the Gaussian stochastic process in (8). Define the process V on
[0, 1] that is continuous and piecewise linear, with values at multiples of 1/n equal to

V

(
k

n

)
= n−H vk,

where vk is the centered partial sum of the volatilities, as defined in (6). Then for every t ≥ 0,
V (k/n) converges in distribution to the fractional Brownian motion aB H (t) at time t, as n
tends to ∞, where B H is given in (5). Moreover, as a process, limn→∞ V (·) has a continuous
modification which coincides with aB H .

Proof We have

V

(
k

n

)
= n−H

k∑
i=1

(σi − a)

= n−H
k∑

i=1

∞∑
j=1

b jσi− jεt− j

= n−H
k∑

i=1

i−1∑
j=−∞

(i − j)H−3/2 σ jε j . (9)

Our goal is to obtain the moving average representation of fBm. In the last expression
above, we will use the sum over k to approximate a Riemann integral with respect to Lebes-
gue measure ds, for which we need the factor 1/n to represent ds, and a factor n−(H−3/2)

to account for (i/n − j/n)H−3/2. The sum over j , on the other hand, will approximate a
Wiener-Itô integral with respect to standard Brownian motion, for which ε j n−1/2 will rep-
resent the Brownian increment.

With F+
i defined as the sigma-field generated by

{
εi , εi+1,εi+2, . . .

}
, we transform

V (k/n) by adding and subtracting the term τ j = E
[
σ j |F+

j−J

]
where J is fixed:

V

(
k

n

)
=

k∑
i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2

σ jε j n
−1/2

=
k∑

i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2 (
σ j − τ j

)
ε j n

−1/2

+
k∑

i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2

τ jε j n
−1/2

= V1(k/n) + V2(k/n).
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Since k = [tn], we get that k/n converges to the fixed value t∈[0, 1]. The process V2 (k/n)

defined by

V2 (k/n) =
k∑

i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2

τ jε j n
−1/2 (10)

is an approximation of an iterated Riemann and Itô integral. Specifically, using the conver-
gence of the process W (n) defined in (8) in distribution to a Wiener process W , we have the
following lemma, proved in the appendix.

Lemma 1 V2 (k/n) converges in distribution to a
t∫

s=0
ds

s∫
−∞

(s − r)H−3/2 dW (r) .

This lemma allows us to say that V2 (k/n) converges in distribution to an fBm because
the process v defined by the limit in this lemma, i.e.

v (t) := a

t∫

s=0

ds

s∫

−∞
(s − r)H−3/2 dW (s) . (11)

is an fBm. Indeed, using the stochastic Fubini theorem, we can rewrite

v (t) := a

0∫

r=−∞
dW (r)

t∫

s=0

(s − r)H−3/2 ds

+ a

t∫

r=0

dW (r)

t∫

s=r

(s − r)H−3/2 ds

= a

H − 1/2

0∫

r=−∞

(
(t − r)H−1/2 − (−r)H−1/2

)
dW (r)

+ a

H − 1/2

t∫

r=0

(t − r)H−1/2 dW (r) ,

which, up to a factor, is the moving average representation (5) of fBm.
It remains to show that

V1 (k/n) =
k∑

i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2 (
σ j − τ j

)
ε j n

−1/2

can be made arbitrarily small. According to the ARCH(∞) specification in (4), the random
variable σ j (and therefore τ j ) is independent of ε j . Therefore if j �= j ′, E

[(
σ j − τ j

)
ε j
(
σ j ′ − τ j ′

)
ε j ′
] = 0, and

E
[
V1 (k/n)2] =

k∑
i=1

k∑
i ′=1

1

n2

i−1∑
j=−∞

i ′−1∑
j ′=−∞

(
i − j

n

)H−3/2 ( i ′ − j ′

n

)H−3/2

× E
[(

σ j − τ j
)
ε j
(
σ j ′ − τ j ′

)
ε j ′
] 1

n
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=
k∑

i=1

k∑
i ′=1

1

n2

min(i,i ′)−1∑
j=−∞

(
i − j

n

)H−3/2 ( i ′ − j

n

)H−3/2

E
[(

σ j − τ j
)2] 1

n
.

One of the underlying assumptions is that the solution to the ARCH(∞) specifications is a

stationary process σ , which implies that E
[(

σ j − τ j
)2] does not depend on j . Thus

E
[
V1 (k/n)2] = E

[
(σ0 − τ0)

2] k∑
i=1

k∑
i ′=1

1

n2

min(i,i ′)−1∑
j=−∞

(
i − j

n

)H−3/2 ( i ′ − j

n

)H−3/2 1

n
.

The limit of the above triple sum is the Riemann integral
∫ t

0

∫ t
0

(∫ min(s,s′)
−∞ (s − r)H−3/2

(
s′ − r

)H−3/2 dr
)

dsds′, which is equal to cH t2H for some constant cH depending only on

H . Now letting J be arbitrarily large, we have by dominated convergence that τ0 can be
made arbitrarily close to E

[
σ0|F{−∞,−1}

] = σ0 and therefore E
[
(σ0 − τ0)

2] can be made
arbitrarily small, so that V

( k
n

)
converges in distribution to the fractional Brownian motion

v(t) given in (11).
We have finished proving that with k = [tn], V (k/n) converges in distribution to aB H (t)

where this fBm is defined in (5), while the Brownian motion W therein is given as the limit
of the Gaussian process W (n) defined by (8), as stated in the proposition. To prove the last
statement of proposition, one may use computations similar to the ones above, but for two-
dimensional distributions, showing that such distributions for V (k/n) converge to those of
fBm, and then invoke Kolmogorov’s continuity criterion to conclude that the continuous limit
coincides with fBm at the process level; details are omitted. 	


2.2 On non-equivalence of experiments

In the remainder of the article, we consider the issue of finding a strongly consistent estimator
for the parameters of the discrete- and continuous-time models. Because our data typically
does represent time series, it is legitimate and necessary to assume that at time j , the only
available observations are those given up to that time. Section 3 shows the simplest way to do
this, based on dynamic observation of the process σ . Section 5.2 draws a connection between
the discrete time series and fBm by constructing a conditional maximum likelihood estimator
of the Hurst parameter H based on observations which can be considered as approximate
observations of fBm. Therein we also explains why the results of Sect. 5.2 are not contained
in Sect. 3: it is not possible to base a conditional MLE for H on approximate observations
of fBm by solely considering linear transformations of the process (σ, r).

A more difficult question is to assert whether discrete observations of a bonafide con-
tinuous time fBm can be brutally substituted for LARCH(∞) observations in a LARCH
conditional MLE scheme to determine H , when there is no way to observe a LARCH(∞)
process that is coupled to the fBm. This question is essentially that of equivalence of statis-
tical experiments in the sense of LeCam for the LARCH(∞) process and its fBm limit in
distribution. We finish this section by explaining why it is improbable (and difficult to check)
that this equivalence holds.

Consider a regular GARCH (1,1) process

xk = µk + σkεk (12)

σ 2
k = α0 + α1 y2

k−1 + β1σ
2
k−1.
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where k = 1, . . . , n and εk is a sequence of iid standard normal random variables. The drift
term µk is commonly parameterized as µk = c0 + c1σ

2
k in empirical finance applications.

Nelson (1990) showed that, asymptotically, this process weakly converges to the bivariate
diffusion process

dXt = (γ0 + γ1σ
2
t )dt + σt dW1,t (13)

dσ 2
t = (β0 + β1σ

2
t ) + β2σ

2
t dW2,t (14)

where Wi,t , i = 1, 2 are standard Wiener processes, W1,t is independent of W2,t and the
coefficients γ0, γ1, β0, β1 and β2 are the rescaled versions of c0, c1, α0, α1 and α2, respec-
tively. It is important to realize, however, that the weak convergence does not translate into
asymptotic statistical equivalence of (12) and its diffusion limit (13). Indeed, Wang (2002)
showed that, for a GARCH (1,1) model (12) and its diffusion limit the asymptotic equiva-
lence in the sense of Le Cam does not hold unless the volatility process σ 2

k is non-stochastic
which means that α1 ≡ 0. The non-stochastic case is of little practical relevance since it
means that the GARCH(1,1) model becomes, effectively, a Gaussian linear model. Wang
(2002) gives a nice heuristic explanation of this phenomenon by noticing the different noise
propagation mechanisms that the GARCH model and its diffusion limit follow. Remember
that the LARCH(∞) process is conceptually similar to ARCH processes: the only difference
lies in the definition of the conditional variance σ 2

t while the main process is still defined
as xt = σtεt . Because of that, it can be expected that the noise propagation systems of
the LARCH process and its fBm limit are going to be different and the asymptotic equiva-
lence does not hold as well except, possibly, some trivial special cases.

However, similar investigation in our case is intrinsically much more difficult. First,
the LARCH(∞) time series process we consider is of infinite order; in practice, whenever
the maximum likelihood approach is used to compute its parameters, the truncated version
of the full likelihood has to be used. In order to do this, the truncated version of the volatility
function σ̃t has to be considered instead of σt as defined in (3)-(4). This truncation only
assumes that the observation up to and including the moment t − 1 can be used to compute
σ̃t ; thus,

σ̃t = α0 +
∞∑
j=1

α j yt− j I (t − j ≥ 1) = α0 +
t−1∑
j=1

α j yt− j .

This is similar to the truncation done in order to compute maximum likelihood of GARCH(p,q)
model which is a special case of the general ARCH(∞) model; for details, see, for example,
Fan and Yao (2003). The truncated version of the loglikelihood function of LARCH(∞) is
then proportional to

J∑
j=ν(J )

(
σ̃ 2

t + y2
t

σ̃ 2
t

)
(15)

where ν(J ) → ∞ as J → ∞ at a rate slower than J ; for example, one can suggest
ν(J ) = o(J ). This truncated likelihood is the one that is used in practice to obtain estimates
of the LARCH(∞) coefficients. Therefore, it is the possible equivalence of this likelihood
(or lack thereof) with the conditional likelihood of the limiting fBm process that is of interest
and not of the full LARCH(∞) likelihood that cannot be expressed in a closed form.

Second, establishing asymptotic (non)equivalence of the LARCH(∞) model and its lim-
iting fBm process requires investigating the asymptotic behavior of the likelihood (15) and
the conditional likelihood of the respective scaled fBm aB H (t). Unfortunately, an fBm is
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not a martingale unlike a Brownian motion-driven process (13) and, therefore, it is not easy
to write down its conditional likelihood in an explicit form.

One of the possible ways to construct an approximate conditional likelihood of the fBm
process B H (t) is to consider its discretization based on the moving average representation
of fBm; such representation has been described in detail in Szabados (2001). That discreti-
zation allows the fBm process to be represented as a linear combination of the random walks
constructed on the same probability space as the fBm process B H (t) with an infinite number
of terms. Based on the above representation, it is possible to construct a truncated version
of the conditional likelihood of the fBm process; however, this likelihood is very different
from the conditional likelihood of the discrete version of (13) that is used in the asymptotic
analysis of Wang (2002). In particular, its dependence on the Hurst parameter H is nonlinear
which is quite different from the case of the regular GARCH(p,q) model considered in Wang
(2002). Thus, the problem seems to be very complicated and is outside the scope of this
article. It will be investigated further within the framework of our continuing research. Note
that Sect. 5.1 also contains evidence pointing towards the lack of asymptotic equivalence
between the LARCH(∞) model and its fBm limiting process.

3 Conditional MLE in the ARCH(∞) model

In the discrete-time model, our observations are the log returns r j . It is easy to define the
conditional QMLE estimator of the parameter θ = (a, H) formally. The formal definition
is based on the assumption of the normal error distribution which is not always the case in
practice; therefore, the resulting estimator is presumed to be the “quasi” MLE. At time i ,
that is, given past the observations r j : j = 1, 2, . . . , i , this conditional QMLE is defined as

the value of the pair
(

â, Ĥ
)

which maximizes the conditional quasi log-likelihood function

log L(a, H) defined via

L(a, H) =
i∏

j=1

f
(
r j |r j−k : k = 1, 2, . . .

)

where f
(
r |r j−k : k = 1, 2, . . .

)
is the conditional density at point r of the random variable

r j given the prior random variables r j−1, . . . , r1, r0, r−1, . . . r−k, . . .. By the specifications

(2) and (3), it is clear that r j is conditionally normal N
(

0, σ 2
j

)
given r j−k : k = 1, 2, . . .,

since σ j is explicitly given as a function of these past observations. Hence

log L (a, H) = −1

2

⎛
⎝i log (2π) +

i∑
j=1

log σ 2
j +

i∑
j=1

r2
j

σ 2
j

⎞
⎠ (16)

where

σi = a +
∞∑
j=1

j H−3/2ri− j . (17)

We easily calculate

∂σi

∂a
= 1; ∂σi

∂ H
=

∞∑
j=1

j H−3/2ri− j log j, (18)
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so that

∂ log L

∂a
=

i∑
j=1

(
− 1

σ j
+ r2

j

σ 3
j

)
(19)

∂ log L

∂ H
=

i∑
j=1

(
− 1

σ j
+ r2

j

σ 3
j

) ∞∑
k=1

k H−3/2r j−k log k (20)

Therefore
(

â, Ĥ
)

=
(

â, Ĥ
)

i
is defined as the solution of the two equation system ∂ log L

∂a = 0

and ∂ log L
∂ H = 0 for fixed number of observations i , i.e. with the understanding that σ j is given

via formula (17) and each r j : j ≤ i is known.
The question of whether the LARCH(∞) QMLE estimator is consistent is very inter-

esting. While the simulations do not seem to be encountering any serious difficulties most
of the time, from the theoretical viewpoint the situation is much less clear. A common set
of regularity conditions used to verify consistency of QMLE estimators for sequences of
dependent variables is provided in Basawa et al. (1976). It is a time honored result, used
in the past, for example, to verify consistency of the ARCH (p) QMLE estimator in Weiss
(1986). Recall that the LARCH model as used here is parameterized using two parameters
(a, H); for convenience, let us use the notation θ = (a, H); then, θ0 = (a0, H0) is the pair
of true parameters. The likelihood that uses all observations up until the moment t is denoted
Lt while lt is the respective log-likelihood; the total number of observations is T . In order
for a consistent root of the score equation ∂LT (θ)

∂θ
to exist, we need

1.

1

T

T∑
t=1

∇lt (θ0)
p→ 0. (21)

This is an ergodic theorem-like statement with regard to the score function ∇lt (θ0) at
the true parameter value θ0.

2. There exists a nonrandom matrix M(θ0) > 0such that for all ε > 0

P

(
− 1

T

T∑
t=1

∇2lt (θ0) ≥ M(θ0)

)
> 1 − ε (22)

for any T > T1(ε). In other words, the Hessian matrix of the log-likelihood (conditional
Fisher information matrix) of the process considered needs to be bounded away from
zero at least in probability.

3. There exists η > 0 such that for any ε > 0

P

(
1

T

∣∣∣∣∣
T∑

t=1

(∇2lt (θ
∗
T ) − ∇2lt (θ0))

∣∣∣∣∣ > (1 + η)−1 M(θ0)

)
< ε (23)

which is true for any T > T2(ε) and any θ∗
T : ∣∣θ∗

T − θ0
∣∣ < δ1(ε) with δ1(ε) being

independent of T .

Verification of these conditions represents a serious problem in the case of LARCH(∞)

process. As an example, consider condition (22). Recall that the conditional standard devi-
ation of the LARCH(∞) process is defined as σt = a + ∑∞

j=1 b jrt− j where a �= 0.
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Giraitis et al. (2000) established the existence of the weakly stationary LARCH(∞)
process under the condition

∑∞
j=1 b2

j ≤ 1. Note, in particular, that such a solution exists even
if the coefficients b j are not all nonnegative; consequently, conditional standard deviation
is, effectively, a linear combination of zero-mean martingales with coefficients of arbitrary
sign. In general, such a combination σt need not be bounded away from zero. This means
that the E |∇2lt (θ0)| need not be finite and, therefore, the sum − 1

T

∑T
t=1 ∇2lt (θ0) from the

condition (22) does not satisfy conditions of the ergodic theorem. Because of this, it is hard
to see how the condition (22) can be enforced in the LARCH (∞) case. This opinion had
also been conveyed to us by Prof. L. Giraitis in personal communication; he also suggested
that there may exist a modification of the LARCH(∞) process for which these conditions
are true but that they are almost certainly cannot be validated in the “classical” version of the
LARCH (∞) process considered here.

This does not necessarily mean that the application of QMLE to the data generated by
the LARCH process is always bound to fail; indeed, we have implemented this estimator
on a standard personal computing platform (PC), and have observed that it performs very
well using simulated data, even though the LARCH model is capable of producing signif-
icant “outliers”, as can be seen from the simulated data in the Figs. 1 and 2 at the end of
this article. Despite the apparent algebraic complexity of the Eqs. 19 and 20 one needs to
solve to obtain (â, Ĥ ), the problem poses no difficulty for standard symbolic algebra pack-
ages. Using MATLAB’s simulations and algebra capabilities (Version 7.0 running on the
University of Valparaíso CIMFAV cluster) yielded the best computing times. However, the
consistency of the QMLE estimators does seem to be problematic in case of LARCH(∞).
The same problem also exists when only a short memory LARCH process considered; such
a process has finite number of terms p in the definition of the conditional standard deviation
σt . More formally, its conditional standard deviation is defined as σt = a +∑p

j=1 b jrt− j

for some integer p > 0. For such a process, Truquet (2008) attempts to bypass this difficulty
by maximizing a version of the smoothed quasimaximum likelihood function rather than a
regular quasimaximum likelihood function. We are not aware of any research in that direction
for LARCH(∞) type processes.

In our implementation, which performs an iteration of the algorithm from i = 0 to i = n,
we had to arbitrarily truncate the memory length so as to have a finite series in the model,
replacing such summation symbols as

∑∞
j=1 by

∑P
j=1 where P is thus the finite memory

length. Implementation with this P also implies that the only values of observations “in the
past” that are needed in first P iterations of the algorithm are i = −P,= P +1, . . . ,−2,−1.
In addition to this new parameter P , in the table below, one recognizes the sample size n,
the true values for a and H , and the conditional MLEs â and Ĥ . Values are given with 4
significant digits.

n P a H â Ĥ

1,000 50 0.1 0.5 0.09999 0.4960

1,000 100 1 0.7 0.9996 0.6998

1,000 500 0.8 0.8 0.7998 0.7999

1,000 500 0.9 0.6 0.8956 0.5966

1,000 500 0.2 0.9 0.1977 0.9005

1,000 1,000 0.8 0.7 0.8000 0.7000
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Fig. 1 Observation values for a typical LARCH time series
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Fig. 2 Variance estimation for the above time series

Heavy-handed truncation (P small) does not seem to effect the estimator at a very
significant level, although the second-to-last line shows that using a past memory P = n as
long as the data set (or equivalently considering half of the data set as past memory) achieves
the very highest precision. Convergence as n increases seems quite rapid: n = 1, 000 is a
reasonable number of data points for the precision attained above.
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4 Conditional MLE robustness

In this section we investigate what happens when there is additional exogenous uncertainty on
the observations r j . While a full stochastic-filtering-based treatment of how to extract infor-
mation dynamically about the true process (r j ) j given only a noisy observation sequence is
beyond the scope of this article, we may still assume that a small amount of error is present
in the reported values of r j , i.e. that we observe instead quantities q j = r j + h j , and ask
ourselves by how much our estimators â and H̃ will be effected by the errors h j . We will see
that this question is difficult to tract analytically, but that nevertheless there is strong math-
ematical and empirical evidence supporting the claim that our conditional MLE estimators
are robust with respect to observation errors.

We simply propose to estimate the magnitude of the error committed on Ĥ when replacing
all the r j ’s by all the q j ’s. It is thus best to consider that â and Ĥ are functions of the k = nt
variables r̄k := (r1, . . . , rk).Because there is no analytical way of solving the system of two
equations yielding (â, Ĥ ), we must invoke the mean-value theorem assisted by the implicit
function theorem in order to evaluate the error

ek = Ĥ(r̄k) − Ĥ(q̄k).

The implicit function theorem tells us that when a system of equations F(X, Y, r̄k) = 0,
G(X, Y, r̄k) = 0 has a unique solution (X, Y ), the latter can be considered as a function of
the equation’s parameters (here the r j ’s), whose derivatives with respect to these parameters
can be calculated as

∂ X

∂r j
= ∂ F

∂r j

/∂ F

∂ X
+ ∂G

∂r j

/∂G

∂ X
;

∂Y

∂r j
= ∂ F

∂r j

/∂ F

∂Y
+ ∂G

∂r j

/∂G

∂Y
.

Here we will use X = â, Y = Ĥ , typically omitting the hats as is the practice in implicit
function notation, and therefore the functions F and G are the expressions ∂ log L/∂a and
∂ log L/∂ H given in (19) and (20), that is:

F(a, H, r̄k) =
k∑

i=1

(
1

σi
+ r2

i

σ 3
i

)

G(a, H, r̄k) =
k∑

i=1

(
1

σi
+ r2

i

σ 3
i

) ∞∑
j=1

ri− j j H−3/2 log j

with the understanding that each σ j is a function of r j−1, r j−2, . . . , r1 given explicitly in
formula (3). Note here that all further “past” observations r j : j ≤ 0 are assumed to be
known, and are not considered as variables in the calculation.

Thus we can calculate

∂ F

∂a
=

k∑
i=1

∂ F

∂σi

∂σi

∂a
=

k∑
i=1

∂ F

∂σi

= −
k∑

i=1

(
1

σ 2
i

+ 3r2
i

σ 4
i

)
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with

σi = a +
0∑

j=−∞
r j (i − j)H−3/2 +

i−1∑
j=1

r j (i − j)H−3/2 ;

also since for all i ′ > i , we have

∂σi ′

∂ri
= (

i ′ − i
)H−3/2 log

(
i ′ − i

) =: �i ′−i ,

we get

∂ F

∂ri
= 2ri

σ 3
i

−
k∑

i ′=i+1

(
3r2

i ′

σ 4
i ′

+ 1

σ 2
i ′

)
�i ′−i .

Similarly, since

∂σi ′

∂ H
=

∞∑
j=1

ri− j j H−3/2 log j =
∞∑
j=1

ri− j� j ,

we have

∂ F

∂ H
= −

k∑
i=1

(
1

σ 2
i

+ 3r2
i

σ 4
i

) ∞∑
j=1

ri− j� j .

For the function G we get immediately

∂G

∂a
= −

k∑
i=1

(
1

σ 2
i

+ 3r2
i

σ 4
i

) ∞∑
j=1

ri− j� j .

A product rule yields

∂G

∂ri
= 2ri

σ 3
i

∞∑
j=1

ri− j� j −
k∑

i ′=i+1

(
3r2

i ′

σ 4
i ′

+ 1

σ 2
i ′

)
�i ′−i

∞∑
j=1

ri ′− j� j

+
k∑

i ′=i+1

(
1

σi ′
+ r2

i ′

σ 3
i ′

)
� j ,

and

∂G

∂ H
= −

k∑
i=1

(
1

σ 2
i

+ 3r2
i

σ 4
i

) ∞∑
j=1

ri− j� j

+
k∑

i=1

(
1

σi
+ r2

i

σ 3
i

) ∞∑
j=1

ri− j j H−3/2 log2 j.

With these formulas we can now express the “error” ek in our calculation of Ĥ based on
qi ’s rather than ri ’s, using the Mean Value Theorem:

ek = H (r̄k) − H (q̄k) =
k∑

i=1

(ri − qi )

(
∂ F

∂ri

/ ∂ F

∂ H
+ ∂G

∂ri

/ ∂G

∂ H

)
(r̃i ) (24)
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where for each i , the value r̃i is in the intervals (qi , ri ). In the above expression, the quantities
a and H also appear, as is logical to expect in a formula issued from the implicit function
theorem; these are to be replaced by the functions â and Ĥ evaluated at the common values
r̃i . Thus our calculations can be summarized in the following basic, and naive, statement.

Proposition 2 The error committed by using an erroneous observation q j = r j +h j instead
of r j in the estimation Ĥ is equal to the quantity in (24) above, where the notations used
therein are introduced in the previous paragraphs.

Nevertheless, it is perhaps more intelligent to investigate in what way the quantity in (24)
is related to basic convergence results such as Proposition 1. Because of the complexity of
evaluating the error ek , we have not been able to find a rigorous stochastic analytic argument
to provide a simple criterion for its “smallness”. Nevertheless we now present compelling
theoretical calculations showing under what circumstances a convergence of ek to 0 can be
expected.

For illustrative purposes, we begin with the slightly simpler question of sensitivity of â,
that is, using ∂ F /∂a instead of ∂ F /∂ H , omitting tildes and hats for simplicity of notation,
we can express

k∑
i=1

(ri − qi )
∂ F/∂ri

∂ F/∂a
=

k∑
i=1

(ri − qi )

∑k
i ′=i+1

(
3r2

i ′
σ 4

i ′
+ 1

σ 2
i ′

)
(i ′ − i)H−3/2 log(i ′ − i)

∑k
i=1

(
3r2

i
σ 4

i
+ 1

σ 2
i

)

−
k∑

i=1

(ri − qi )
2ri/σ

3
i

∑k
i=1

(
3r2

i
σ 4

i
+ 1

σ 2
i

)

:= f1 − f2. (25)

We estimate the coefficient of (ri − qi ) in f1:

0 ≤
∑k

i ′=i+1

(
3r2

i ′
σ 4

i ′
+ 1

σ 2
i ′

)
(i ′ − i)H−3/2 log(i ′ − i)

∑k
i=1

(
3r2

i
σ 4

i
+ 1

σ 2
i

)

≤ log k
k∑

i ′=i+1

(i ′ − i)H−3/2 1

1 +∑
i=1,...,k;i �=i ′

(
3r2

i
σ 4

i
+ 1

σ 2
i

)/(
3r2

i ′
σ 4

i ′
+ 1

σ 2
i ′

) .

The random variable
∑

i=1,...,k;i �=i ′

(
3r2

i
σ 4

i
+ 1

σ 2
i

)/(
3r2

i ′
σ 4

i ′
+ 1

σ 2
i ′

)
is the sum of k − 1 pos-

itive r.v.’s which are formed with mean- and variance-stationary r.v.’s; thus the sum can be
shown to be of order k. In order to attain uniformity in i ′ (for large i) in this statement, one
can again invoke stationarity, plus our hypothesis that all noise terms εk are Gaussian, to
conclude, after some effort, that the same statement holds almost surely if one is willing to
multiply by a power of

√
log k: this comes from taking a supremum in i ′ of a sequence of

r.v.’s which are bounded by a power of sub-Gaussian r.v.’s. Hence the coefficient of (ri − qi )

in f1, which is positive, is bounded by a term of order
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k−1 log1+p/2 k
k∑

i ′=i+1

(i ′ − i)H−3/2,

and with the notation dk := ∑k
i=1 i H−3/2, which is of order k H−1/2, we get for some constant

c, p and for large n,

| f1| ≤ k−1 log1+p/2 k
k∑

i=1

|ri − qi |
k∑

i ′=i+1

(i ′ − i)H−3/2

= ct−1 log1+p/2 n

n

k∑
i=1

|ri − qi | (k − i)H−1/2. (26)

The term f2 is much smaller than f1, as the inequality 2ri/σ
3
i ≤ r2

i /σ 4
i + 1/σ 2

i clearly
shows. Dealing with ∂ F/∂ H instead of ∂ F/∂a is more problematic yet, because of the pres-
ence of the mean-zero factor

∑∞
j=1 ri− j j H−3/2 log j in the denominators of the terms f1

and f2. Nevertheless, since this term coincides with the expression for σi − a except for the
additional log j , its larger magnitude than the stationary σi −a helps us. Repeating the above
considerations for the expressions involving G instead of F involve similar expressions as
for F , with combinations of additional factors of the form � j and

∑∞
j=1 ri− j� j , and similar

conclusions hold, at further calculatory costs. These considerations yield the following more
explicit statement than Proposition 2.

Proposition 3 The error committed by using an erroneous observation q j = r j +h j instead
of r j in the estimation Ĥ is bounded by the quantity in (26) above.

The formula in (26) is problematic in the sense that for uniform observation errors, it
seems to diverge. Still, it stands to reason to abusively ignore the absolute values in the
expression (26), and take advantage of some possible structure for the observation errors.
Thus assume that these errors hi are centered IID with unit variance, and are independent of
the observations r j . We can hence write that the global error ek should be of the order

ek � log1+p/2 n

n1−H

k∑
i=1

hi√
n

(
k − i

n

)H−1/2

Standard approximation results in stochastic calculus show that for some Brownian motion

B, the series
∑k

i=1
hi√

n

( k−i
n

)H−1/2
converges to

∫ t
0 (t − s)H−1/2dB(s), implying that ek

converges rapidly to 0. More specifically we claim the following strong robustness.

Remark 1 One can expect that, with IID centered observation errors hi , the resulting error
in the estimator Ĥ converges to 0 faster than any power n−α with α < 1 − H .

This remark is also supported by numerical evidence, since our explicit formula (24) for
ek allows us to compute the estimation error empirically.

5 Connection with Hurst parameter for fBm

The connection between LARCH models and fBm is known to be the convergence in distribu-
tion of normalized partial sums, for which we have given a simple proof in Sect. 2. We based
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this proof on a common standard Brownian motion W used to define both an approximating
sequence for the fBm B H —via Donsker’s invariance principle and fBm’s moving average
representation (5)—, and the time series model (σ j , r j ) from the specification (2, 3), where
W and the ε j ’s are related via the fact that W is the limit of the process W (n) defined in (8).

With this kind of coupling, where (r, σ ) and B H share the same long memory parameter,
we propose in this section a variant on the conditional MLE of Sect. 3, based on observations
of the LARCH process r which are close to the increments of fBm in discrete time. The
motivation for this variant also comes from avoiding using the LARCH process σ , since
the latter can be interpreted as the volatility of a financial time series, which is typically not
observed, while the former is interpreted as the sequence of log returns, which are observed.
This distinction is not as trivial as one may think, and indeed, the next subsection shows
that a naive use of the observations r in a linear way to imitate increments of fBm cannot
provide a conditional MLE for H , and a use of full information (r, σ ) cannot be used for
that purpose either. Our conditional MLE with approximate fBm observations based on r
must use a non-linear transformation of r , in order to escape from the fact that the ri are
uncorrelated. This entire section does not infirm the conditional MLE of Sect. 3, which is
also based on the ri ’s, but it gives a conditional MLE with a more natural connection to fBm.

5.1 Some negative results

5.1.1 Direct use of observations r j

To make our point that a simple-minded use of r j as representative of fBm observations is
bound to fail, consider the following decomposition of fBm, derived from the alternate form
(11) of the moving average representation: for k = kt = tn,

aB H (t) = a

t∫

s=0

ds

s∫

−∞
(s − r)H−3/2dW (s)

=
k∑

i=1

i−1∑
j ′=−∞

i/n∫

s=(i−1)/n

⎛
⎜⎝

j ′/n∫

r=( j ′−1)/n

(s − r)H−3/2dW (r)

⎞
⎟⎠ ds,

which is asymptotically equal to the same quantity with (s − r) replaced by
(
i − j ′

)
, i.e.

aB H (t) = ≈ a
k∑

i=1

i−1∑
j ′=−∞

j/n∫

r=( j−1)/n

⎛
⎜⎝

i/n∫

s=(i−1)/n

(i/n − j/n)H−3/2ds

⎞
⎟⎠ dW (r)

= n−H
k∑

i=1

i−1∑
j ′=−∞

a
√

n
{
W ( j ′/n) − W

(((
j ′ − 1

)
/n
))}

(i − j ′)H−3/2

This is to be compared with the decomposition

V

(
k

n

)
= n−H vk = n−H

k∑
i=1

i−1∑
j ′=−∞

r j ′
(
i − j ′

)H−3/2
,

because V (k/n) converges to B H (t), as we saw in line (9) of the proof of Proposition 1.
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Therefore, it is apparent that the analogue, in the continuous-time fBm model, of the
observations r j , are the IID terms a

√
n{W ( j/n) − W ((( j − 1)/n))} = aε j−1. But there

can be no hope, of course, of deriving any estimate of H from these IID noise terms. This
negative result is symptomatic of the fact that the observations r j are uncorrelated, and is
also a point supporting the conjecture that, just as in Wang (2002)’s GARCH process study
Wang (2002), the experiments of the LARCH(∞) and discretized fBm processes are not
statistically equivalent.

The returns r j are not, however, independent; this is the physical property which we exploit
in Sect. 5.2 below.

5.1.2 Volatility observation

To avoid the situation of the previous paragraph, one may naively be tempted to devise
a Hurst parameter estimation method based on Proposition 1, i.e. using the volatilities σ j

as observations in addition to the observation of the returns r j , since n−H ∑k
j=1(σ j − a)

converges to B H (t), and thus n−H (σ j − a) can be considered as approximate increments
of B H (t). Econometricians will not consider such modeling as viable, since volatilities are
never directly observed. But there is a more fundamental objection to this angle: the reader
will easily check that the equations yielding the conditional MLE for (a, H) at time i based
on the full past observations (r j , σ j ) j≤i−1 are

0 = −1

σi
+ r2

i

σ 3
i

,

0 =
(

−1

σi
+ r2

i

σ 3
i

) ∞∑
j=1

j H−3/2ri−k log k,

which is obviously degenerate, yielding infinitely many solutions â = ±ri −∑∞
j=1 j Ĥ−3/2

ri−k . We believe the phenomenon responsible for this degeneracy is the same issue at work
in the previous paragraph.

5.2 Hurst parameter estimation for fBm based on LARCH observations

5.2.1 Squared observations

The following proposition provides the simplest transformation of the r j ’s which yields a
non-degenerate connection to fBm. It has been established previously in Giraitis et al. (2000).
We have summarized and simplified the proof hereafter, because it contains a key calculation
which allows us to motivate our conditional MLE.

Proposition 4 Let n be a fixed integer, with k = kt = [tn] and define the process V2 on
[0, 1] that is continuous and piecewise linear, with values at multiples of 1/n defined by

V2

(
k

n

)
= n−H

k∑
i=1

(|ri |2 − E |ri |2
) = n−H

k∑
i=1

(
|ri |2 − a2

1 − ‖b‖2

)
.

Then V2 converges in distribution to the fractional Brownian motion 2a2
(
1 − ‖b‖2)−1

B H

as n tends to ∞ where B H is defined in (5).
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Proof We can write

|ri |2 = (|εi |2 − 1
) |σi |2 + |σi |2

= νi + |σi |2

where we thus have defined a sequence νi of uncorrelated identically distributed random
variables. The quantity which we want to show converges to fBm in distribution is

n−H
k∑

i=1

(|ri |2 − E |ri |2
) = n−H

k∑
i=1

(νi − Eνi ) + n−H
k∑

i=1

(|σi |2 − E |σi |2
)
.

The second term in the last expression above actually converges to 0 in L2 (�); indeed,
because of the uncorrelation of the terms νi , and their stationarity, we obtain immediately

E

⎡
⎣
(

n−H
k∑

i=1

(νi − Eνi )

)2⎤
⎦ = n−2H

k∑
i=1

E
[
(νi − Eνi )

2]

= n−2H+1E
[|ν0 − Eν0|2

]
.

It is thus sufficient to prove the convergence of n−H ∑k
i=1

(|σi |2 − E |σi |2
)

to 2a2

1−‖b‖2 B H (t)

in distribution.
It was established in Giraitis et al. (2000, Corollary 5.3) that for any integer �, we can

decompose (σi )
� into

(σi )
� = �a−1E

[
(σ0)

�
]
σi + yi�

where limn→∞ E
[∣∣∣n−H ∑k

i=1 (yi� − E [yi�])
∣∣∣2
]

= 0 and E [yi�] = − (� − 1) E
[
(σ0)

�
]
.

Therefore with � = 2, since E |σi |2 = a2/
(
1 − ‖b‖2), we have

n−H
k∑

i=1

(|σi |2 − E |σi |2
) = n−H

k∑
i=1

(yi� − E [yi�]) + 2a

1 − ‖b‖2 n−H
k∑

i=1

(σi − a) .

Proposition 1 guarantees that the last term above converges in distribution to 2a2

1−‖b‖2 times a

fractional Brownian motion, while the first term converges to 0 in L2 (�). 	


The above proof shows that each term n−H
(
|ri |2 − a2

1−‖b‖2

)
in the above proposition

is asymptotically close to a fractional Brownian increment 2 a2

1−‖b‖2

(
B H ((i + 1) /n) −

B H (i/n)
)
. Because of this, it is natural to propose a conditional MLE for estimating a

and H based on the observations

xi := n−H (|ri |2 − E |ri |2
)
.

We will not prove consistency, since it would be mathematically significantly more involved
than the proof of the robustness Proposition 3.

We now present the equations for this new conditional MLE. It presents an added difficulty
that the observations xi = n−H (|ri |2 − a2/

(
1 − ‖b‖2)) depend on a and H , and that the
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sign of ri remains undetermined, so that there is uncertainty in the expression of σi using
these observations xi . More specifically, we will be obliged to write

σi = a +
∞∑
j=1

Yi− j b j
∣∣ri− j

∣∣ = a +
∞∑
j=1

Yi− j b j

√
nH xi + a2/

(
1 − ‖b‖2) (27)

where Yi is an IID sequence of random variables (independent of the observations) which
equal +1 or −1 with equal probabilities, under their probability measure PY . The likelihood
function for ri given x0, x1, . . . , xi−1 can thus be represented as

L = EY [LY ] := EY

⎡
⎣exp −1

2

⎛
⎝log 2π + 2

i∑
j=1

log
∣∣σ j
∣∣+

i∑
j=1

r2
j

σ 2
j

⎞
⎠
⎤
⎦

where σ j is to be replaced by (27) and

r2
j = nH x j + a2

1 − ‖b‖2 . (28)

Note that ‖b‖2 depends on H , and that we have

d ‖b‖2

dH
= c2

∞∑
j=1

2 j2H−3 log j.

We have the following partial derivatives:

∂r2
j

∂a
= 2a

1 − ‖b‖2 ; ∂r2
j

∂ H
= H

n1−H
x j + a2

(
1 − ‖b‖2)2

d ‖b‖2

dH
(29)

and

∂σ j

∂a
= 1 + 1

1 − ‖b‖2

∞∑
j=1

Yi− j
b j

2
∣∣ri− j

∣∣ (30)

∂σ j

∂ H
= a(

1 − ‖b‖2)2
d ‖b‖2

dH

∞∑
j=1

Yi− j
b j

2
∣∣ri− j

∣∣ +
∞∑
j=1

Yi− j
∣∣ri− j

∣∣ b j log j. (31)

Therefore, the maximum likelihood estimator
(

â, Ĥ
)

is obtained as the solution of the

following integro-differential system

0 = EY

⎡
⎣LY

i∑
j=1

((
r2

j

σ 3
j

− 1

σ j

)
∂σ j

∂a
− 1

2

1

σ 2
j

∂r2
j

∂a

)⎤
⎦ , (32)

0 = EY

⎡
⎣LY

i∑
j=1

((
r2

j

σ 3
j

− 1

σ j

)
∂σ j

∂ H
− 1

2

1

σ 2
j

∂r2
j

∂ H

)⎤
⎦ (33)

given the above formulas for the various partial derivatives.

123



Stat Infer Stoch Process (2009) 12:221–250 243

5.2.2 Practical implementation

In practice, we use only a finite memory horizon P instead of ∞, as we did in the conditional
MLE of Sect. 3 (see the description of the table of results). Thence the formulas (29)–(31) for
the partial derivatives above have sums

∑P
j=1 instead of

∑∞
j=1, the expectation symbols EY

in (32) and (33) can be replaced by the summation symbols
∑2P −1

m=0 2−P , with the notation
Lm instead of LY , and the understanding that Y j must be replaced by m j where m j is the j th
term in the binary expansion of m. In order to evaluate the expressions in (32) and (33), it is

useful to divide LY by ELY (or divide Lm by
∑2P −1

m=0 2−P Lm), in order to deal with convex,
rather than possibly very large, coefficients.

Additional simplification can be obtained by noting that in practice, the first summand
in the expression for ∂r2

j /∂ H in (29) is of the order n−H . Since the mean value theorem
implies that its effect can be considered as replacing r j by r j + h j where the error term h j

is bounded above by n−1
(∣∣r j

∣∣+ a2(
1−‖b‖2)|r j |

)
, our robustness results in Sect. 4 show that

neglecting this term should not change the estimator’s consistency.
A further simplification is to replace the averaging over the Bernoulli random variables

Yi by a Monte-Carlo implementation of this average, using far fewer terms than a sum∑2P −1
m=0 2−P (· · · ). However, one can show that the distribution of â and Ĥ is invariant with

respect to the actual signs of the increments ε j . Therefore the above implementation can
be performed with a single random sequence Y j , i.e. without any averaging. This amounts
to choosing the signs of the r j ’s arbitrarily, according to a distribution consistent with the
model. Using Y j = m j , the j th term in the binary expansion of a pseudo-random number
m ∈ (0, 1) is of course an appropriate choice. The resulting scheme is then no more complex
than the original Conditional MLE of Sect. 3.

One may also consider schemes based on moments of order 2p for p any integer, not
just p = 1. Although we leave the derivation of the analogues of formulas (32) and (33) to
the reader in this case, such analogues are obtained in exactly the same way, and the same
simplifications apply. Indeed, a proof nearly identical to that of Proposition 4 shows that,
with g2p the 2pth moment of the noise terms εi , the sum of the observations

x (p)
i := n−H (|ri |2p − E |ri |p)

= n−H |ri |2p − n−H a−1g2pE |σ0|2p

converge to fractional Brownian motion multiplied by the scaling factor 2pg2pa−1E
[|σ0|2p

]
.

Such higher-order moments may result in faster convergence of the conditional MLE. It is
very important to realize that this method works only for even moments, under our assump-
tion of Gaussian noises ε j . Indeed, while the partial sum of the x (p)

i converges in distribution
for all integer orders q , it yields convergence to 0 when gq = 0.

6 A local Whittle-type estimator of the Hurst parameter

6.1 A local Whittle estimator

In this section, we revert to denoting discrete time by t instead of i or k, because the latter
two letters are used in standard roles for Whittle estimators. We also use another standard
notation θ := 2 − 2H . Recall that the LARCH model
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σt = a +
∞∑
j=1

b jrt− j ; rt = σtεt

with a �= 0 is weakly stationary iff (7) holds. Recall that we are interested in the long-memory
case, that is where the Hurst parameter 0.5 < H < 1. Defining b j = O( j H−3/2), with small
enough a, we ensure that (7) is true. It is also true (e.g. Corollary 2.1 in Giraitis et al. 2000)
that

γ (h) = Cov(σ0, σh) ∼ h2(H−1) = h−θ (34)

which means that the covariance and, by extension, a correlation function decreases very
slowly as h → ∞ since −1 < −θ = 2(H − 1) < 0. Suppose we want to have a consistent
estimator of the Hurst parameter H . It seems that a possible candidate that converges to
the true value H in probability is the localized version of the Whittle estimator described
as Theorem 2.1 in Dalla et al. (2004). First, imagine that the volatility process σt can be
observed directly. Using such an estimator means using the periodogram of the process σt

defined as

In(λ) = n−1

∣∣∣∣∣
n∑

t=1

σt e
−i tλ

∣∣∣∣∣
2

.

The periodogram In(λ) measures the contribution of the frequency λ to the overall
“energy” of the process σt . By definition, In(λ) = ∑∞

h=−∞ γ (h) exp(−ihλ). On the other

hand, we know that, for any frequency λ j = 2π j
n with j integer,

In(λ j ) =
∑
|h|<n

γ̂ (h)e−ihλ j .

Therefore, it is tempting to say that In(λ) can be used as an estimator of 2π f (λ). It is a well
known fact, however (see any time series textbook, e.g. Brockwell and Davis 2002) that the
periodogram per se is not a consistent estimator of the spectral density. If σt were a sequence
of iid Gaussian variables, we would have the joint distribution of {In(λ1), . . . , In(λm)} as

F(x1, . . . , xm) =
m∏

i=1

(
1 − exp

{ −xi

2π f (λi )

})
,

for any integer m. Consequently, periodograms would converge to a set of independent expo-
nential random variables with means 2π f (λi ), i = 1, . . . , m. In order to obtain a consistent
estimator of the spectral density f (λ), averaging over Fourier frequencies λ j would be done,
resulting in an estimator belonging to the class of discrete spectral density estimators. They
are defined as

f̂ (λ) = 1

2π

∑
| j |≤mn

Wn( j)In

(
g(n, λ) + 2π j

n

)
(35)

where mn → ∞, mn/n → 0 as n → ∞ and g(n, λ) is the multiple of 2π/n closest to λ. The
weights Wn( j) have to be even, non-negative, add up to 1 and be such that

∑
| j |≥mn

W 2
n ( j) →

0 as n → ∞. Again, for details see Brockwell and Davis (2002).
Thus, the periodogram has to be smoothed in order for it to be a consistent estimator of

the spectral density, and, by extensions, to provide a consistent estimator of the long-memory
parameter. Note that the “window” mn used in (35) provides for a local as opposed to the
generic Whittle method.
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Now define

λ j = 2π j

n
, j = 1, . . . , m,

i.e. the local Fourier frequencies, and

In(λ j ) = n−1

∣∣∣∣∣
n∑

t=1

σt e
i tλ j

∣∣∣∣∣
2

(36)

as the periodogram of the sequence σt , t = 1, . . . , n and m = mn is an integer bandwidth
parameter such that m → ∞ and m = o(n) as n → ∞. The local Whittle estimator of the
parameter

θ := 2 − 2H

can be defined as the minimizer

α ≡ θ̂n = argmin[−1,1]Un(α)

of the quasi-likelihood-type objective function

Un(α) = log

⎛
⎝ 1

m

m∑
j=1

λα
j In(λ j )

⎞
⎠− α

m

m∑
j=1

log λ j . (37)

6.2 Local Whittle estimator based on squared returns

Unfortunately, σt is the “volatility” process and, as such, should not be presumed observable.
Thus, the problem is to find a suitable substitute process that still allows us to extract enough
information to estimate the Hurst parameter H . The simplest choice appears to be the squared
returns r2

t .
To show that the Whittle local-likelihood based estimator of θ = 2 − 2H using squared

returns is consistent, we may verify assumptions A and B in the main result of Dalla et al.
(2004).

• Assumption A requires the process r2
t to be weakly stationary and to have the spectral

density of the form

f (λ) = |λ|−α0 L(λ) (38)

where L(λ) → b0 as |λ| → 0, 0 < b0 < ∞ and |α0| < 1. That r2
t is a weakly stationary

process is clear. Moreover, according to Theorem 2.2 in Giraitis et al. (2000), we have

Cov(r2
0 , r2

t ) ∼ c2
2t−θ

when t → ∞ where the constant c2
2 does not depend on t and 0 < θ < 1. This implies

that the spectral density function of the process r2
t is f (λ) ∼ λ−θ as λ → 0. So we do

indeed have condition (38) with α0 = θ = 2 − 2H . This means that the Assumption A
of Dalla et al. (2004) is fulfilled.

• Instead of the periodogram for σ in (36), we now have

In(λ j ) = 1

n

∣∣∣∣∣
n∑

t=1

r2
t e−iλ j t

∣∣∣∣∣
2

.
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where λ j = 2π j
n , j = 1, . . . , m. Then, Assumption B requires that renormalized period-

ograms of the process r2
t , i.e. η∗

j = In(λ j )

b0λ−θ
j

, satisfy the weak law of large number (WLLN).

We now discuss the issue of verifying this condition.

Dalla et al. (2004) suggest a simple sufficient condition that enables us to claim that the
Assumption B is true. Let us denote

�m = max
1≤k≤m

E

∣∣∣∣∣∣
k∑

j=1

(η∗
j − E η∗

j )

∣∣∣∣∣∣
Then, �m = o(m) implies Assumption B; for details, see Proposition 2.2 in Dalla et al.
(2004).

By definition,

In(λ j ) = 1

n

∣∣∣∣∣
n∑

t=1

r2
t e−i tλ j

∣∣∣∣∣
2

= 1

n

⎡
⎣

n∑
t=1

r4
t +

n∑
t �=s=1

r2
t r2

s cos(λ j |t − s|)
⎤
⎦

= 1

n

[
n∑

t=1

r4
t + 2

n∑
t=1

n−t∑
h=1

r2
t r2

t+h cos(λ j h)

]
(39)

Therefore,

η∗
j − Eη∗

j = 1

nb0λ
−α0
j

[
n∑

t=1

(r4
t − E r4

t ) + 2
n∑

t=1

n−t∑
h=1

(r2
t r2

t+h − E r2
t r2

t+h) cos(λ j h)

]

Note also that r2
t and r4

t are strictly stationary.
Let us first handle the first term in (39). It is easy to find out that

E

[
1

n

n∑
t=1

(r4
t − E r4

t )

]2

= 1

n2 E
n∑

i=1

(r4
t − E r4

t )2

+ 2

n2

n∑
t1,t2=1;t1<t2

E (r4
t1 − E r4

t1)(r
4
t2 − E r4

t2)

Giraitis et al. (2004) can be consulted for the fact that if µ2k := Eε2k
t < ∞ and∑2k

p=2 ||b||p
p|µp| < 1, then E r2k

t < ∞. With k = 4, we guarantee the existence of the

8th moment, and, therefore, 1
n2 E

∑n
t=1(r

4
t − E r4

t )2 = O(n−1). The remaining portion of
the first term in (39) is the expression

2

n2

n∑
t1,t2=1;t1<t2

E (r4
t1 − E r4

t1)(r
4
t2 − E r4

t2) = 2

n2

n∑
t=1

n−t∑
h=1

Cov(r4
t , r4

t+h)

which can be handled using the fact that for any positive integer j > 2, we have Cov (r j
0 , r j

h ) ∼
c2

j h
−θ (see Giraitis et al. 2000). Here c4 = 4c1

a E (r4
0 ) is the constant that does not depend on

the difference h = t1 − t2; c1 depends on a, b j , j = 1, 2, . . . and θ only. Thus, we have
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2

n2

n∑
t1,t2=1;t1<t2

E (r4
t1 − E r4

t1)(r
4
t2 − E r4

t2) = 2

n2

n∑
t=1

n−t∑
h=1

Cov (r4
t , r4

t+h)

∼ n−2
n∑

t=1

n−t∑
h=1

h−θ f = 2

n2

n∑
t=1

(n − t)1−θ ∼ n−θ

Consequently, E
[ 1

n

∑n
t=1(r

4
t − E r4

t )
]2 = o(1) and, by Jensen’s inequality,

1

n
E

n∑
t=1

|r4
t − E r4

t | ≤
√√√√ 1

n2 E
n∑

t=1

(r4
t − E r4

t )2 = o(1)

as n → ∞.
The second term

2

nb0λ
−α0
j

[
n∑

t=1

n−t∑
h=1

(r2
t r2

t+h − E r2
t r2

t+h) cos(λ j h)

]
(40)

is much harder to handle. It should involve the study of more complicated moments of r2
t

which seems to be undesirable. In particular, it should be necessary to establish a property of
mixed moments analogous to Cov (r j

0 , r j
h ) ∼ c2

j h
−θ ; in other words, to investigate asymp-

totic behavior (as t → ∞) of “mixed moments” of the form Cov (r j
0 r j

t , r j
h r j

t+l) for positive
integer j > 2 and integer h, l > 0. Indeed, one can prove by elementary calculations that any
failure to distinguish between the various covariances for different t, h, l, i.e. any attempt to
use only covariances of the form Cov (r j

0 , r j
h ), yields a second term whose variance diverges.

No elementary ways to solve this problem are clearly visible. The estimation of the “mixed
moments” is a worthy open problem in its own right.

Appendix: Proof of Lemma 1

Let τ(s) be the limit of τ j in L2(�), where j = [sn]. We show first that τ(s) exists and equals
the constant a. Indeed, as σ j is independent of all noise terms ε j ′ for j ′ ≥ j , we actually
have

τ j = E
[
σ j |F{ j−J, j−1}

]

where F{ j−J, j−1} is the sigma-field generated by ε j−J , ε j−J+1, . . . , ε j−1. Since J is fixed,
as n tends to infinity, this sigma field, which is a sub-sigma-field of FW

[ j/n−J/n; j/n], converges
to the trivial sigma-field by continuity of W . Since σ j is square-integrable, τ j is a non-random
function of the finite number of random variables generating F{ j−J, j−1}:

τ j = g∗ (ε j−J , ε j−J+1, . . . , ε j−1
)
,

g∗ is the function that minimizes E
[(

σ j − g
(
ε j−J , ε j−J+1, . . . , ε j−1

))2], and τ j converges

almost surely to a constant c. Since c thus minimizes E
[(

σ j − c
)2], c = E

(
σ j
) = a, and

therefore limn→∞ τ j = a almost surely and in L2 (�). By stationarity of σ , the convergence

of τ j to a in L2 (�) is uniform in j . We denote the common value of E
[(

τ j − a
)2] by h (n),

and thus we have just proved that limn→∞ h (n) = 0.
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Next we study V2(k/n): because ε j is independent of τ j and of the previous ε j ′ ’s for
j ′ < j , we get

E

⎡
⎢⎣
⎛
⎝V2 (k/n) − a

k∑
i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2

ε j n
−1/2

⎞
⎠

2
⎤
⎥⎦

= E

⎡
⎢⎣
⎛
⎝1

n

k−1∑
j=−∞

ε j n
−1/2 (τ j − a

) k∑
i= j+1

(
i − j

n

)H−3/2
⎞
⎠

2
⎤
⎥⎦

= h (n)

n3

k−1∑
j=−∞

⎛
⎝

k∑
i= j+1

(
i − j

n

)H−3/2
⎞
⎠

2

. (41)

The last sum above, together with the factor n−3, is the Riemann sum approximation of
the integral

t∫

0

⎛
⎝

t∫

s

(r − s)H−3/2dr

⎞
⎠

2

ds = (H − 1/2)−1(H + 1/2)−1t H+1/2.

Therefore, since we already proved that limn→∞ h(n) = 0, we have proved that the quantity
in (41) converges to 0 as n tends to +∞, which means that in the definition (10) of V2(k/n),
we may replace τ j by a as far as L2(�)-convergence goes.

Consequently, the lemma will be proved as soon as we can establish the following con-
vergence in distribution:

lim
n→∞

k∑
i=1

1

n

i−1∑
j=−∞

(
i − j

n

)H−3/2

ε j n
−1/2 =

t∫

s=0

ds

s∫

−∞
(s − r)H−3/2dW (r) (42)

This follows easily by first noting that the Wiener stochastic integral above can be approx-
imated in L2(�) by its Riemann sums over the partition { j/n : j = −∞, . . . , i − 1} of
[−∞, i = [ns]/n], in which the only relevant values of increments of W are for these parti-
tion points; then one replaces W by its approximation W (n), which is straightforward because
of the evaluation at partition points only, convergence in distribution being guaranteed by
the convergence of W (n) to W from Donsker’s invariance principle. The resulting Riemann
sums coincide exactly with the discrete term in (42). The only remaining discrepancy comes
from using i = [ns]/n instead of i = s above; this is resolved by using the Riemann-sum
approximation of the Riemann integral in (42), which is easily done at the start of the evalu-
ation described here, before discretizing the Wiener-Itô integral, by first performing a Fubini
on the integrals in (42), and then replacing the Riemann integral by its Riemann sum, which
causes an error in L2(�) proportional to the square of the Riemann sum error, and thus also
converges to 0. We omit all these cumbersome and elementary calculations.
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