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PORTFOLIO OPTIMIZATION WITH CONSUMPTION IN A

FRACTIONAL BLACK-SCHOLES MARKET

YALÇIN SAROL, FREDERI G. VIENS, AND TAO ZHANG

Abstract. We consider the classical Merton problem of finding the optimal

consumption rate and the optimal portfolio in a Black-Scholes market driven

by fractional Brownian motion BH with Hurst parameter H > 1/2. The

integrals with respect to BH are in the Skorohod sense, not pathwise which

is known to lead to arbitrage. We explicitly find the optimal consumption

rate and the optimal portfolio in such a market for an agent with logarithmic

utility functions. A true self-financing portfolio is found to lead to a con-
sumption term that is always favorable to the investor. We also present a

numerical implementation by Monte Carlo simulations.

1. Introduction

Fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is the cen-
tered Gaussian process

{
BH (t, ω) : t ≥ 0, ω ∈ Ω

}
on a probability space (Ω,F ,P)

with the covariance structure

E
[
BH

s BH
t

]
=

1

2

(
t2H + s2H − |t − s|2H

)
(1.1)

for s, t ≥ 0. Alternatively, we can specify the fractional Brownian motion by
setting BH

0 = 0 and

E
[(

BH
s − BH

t

)2]
= |t − s|2H

. (1.2)

When H = 1/2 we obtain the standard Brownian motion (BM).
Originally, fBm was defined and studied by Kolmogorov within a Hilbert space

framework influenced by his interest in modeling turbulence. Kolmogorov used the
name “Wiener spiral” for this process. The name “fractional Brownian motion”
comes from the paper by Mandelbrot and Van Ness [13], where they introduced
fBm as a centered Gaussian process and gave the first representation of it as an
integral with respect to standard BM. The Hurst parameter H is named after the
hydrologist H. E. Hurst who noticed in the 1950’s that the levels of water in the
Aswan dam in Egypt followed a random motion with a self-similarity parameter.

The value of Hurst parameter H characterizes fBm in such a way that it ac-
counts not only for the sign of the increments’ correlation and their rate of long-
range decay, but also for the regularity of the sample paths. Indeed, for H > 1/2
the increments are positively correlated, and for H < 1/2 they are negatively
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correlated. Furthermore, for every β ∈ (0, H), the sample paths of fBm are al-
most surely Hölder continuous with index β. This result follows from (1.2) and
Kolmogorov’s lemma (see [16, Theorem I.2.1]).

fBm holds a significant property known as self-similarity, i.e., the processes
{
BH

ct

}
t≥0

and
{
cHBH

t

}
t≥0

are identical in distribution for any fixed c > 0. When H > 1/2, it implies the so-
called long-range dependence, which says specifically that the correlation between
BH

t+1 − BH
t and BH

t+n+1 − BH
t+n is of order n2H−2 when n is large. This behavior

also holds for H < 1/2, but since the function n2H−2 is non-summable iff H > 1/2,
consistent with the econometric nomenclature, only the case H > 1/2 merits the
appellation “long memory”. This is the only case we treat in this article.

For H 6= 1/2, fBm is not a semimartingale (see [12, Example 2 of Section
4.9.13]) and we cannot apply the stochastic calculus developed by Itô in order to
define stochastic integrals with respect to fBm. We refer the reader to [1], [2], [3],
[7], [15] and references therein for a survey of numerous articles contributing to
the development of the theory of integration with respect to fBm.

Self-similarity and long-range dependence of fBm with H > 1/2 make it a nat-
ural candidate as a model of noise in mathematical modeling of financial markets
(see, for example, [5], [9], [17] and references therein). One proposal that has been
made, which we take up here, is to model stock returns as increments of fBm.

It was discovered (see [17]) that if pathwise integration theory (see [6], [11])
is used, the corresponding markets may have arbitrage opportunities. Recently,
it was established in [4] that such arbitrages are perhaps not truly achievable
since they would require arbitrarily fast trading. On the other hand, the use of
Skorohod integration theory (see [1], [2], [3], [7]) in connection to finance was
proposed by Hu and Øksendal [9] as another way to have an arbitrage-free model.
Using this integration theory the markets appear to be arbitrage-free; however,
the definition of a self-financing portfolio in [9] is criticized for the clarity of its
economic interpretation. While this criticism remains a problem, in the situation
of portfolio optimization with consumption, it typically becomes a moot point since
the consumption can be adjusted to account for any deviation of the “Skorohod-
sense” notion of self-financement from an actual self-financing portfolio. In Section
5 of this part, in the context of logarithmic utility, we show precisely how such an
adjustment pans out, and in particular we prove that any discrepancy will always
be in favor of the investor.

Section 2 summarizes the basic results of the Skorohod integration theory used
in this article. Section 3 gives the details of the financial model we consider. It is
that which is used by Hu and Øksendal in [9], and is simply the fractional general-
ization of the geometric Brownian motion, as one can see immediately in formula
(3.3), where the model parameters r, a, σ still have the standard interpretation of
risk-free rate, mean rate of return of the stock, and volatility of the stock.

Hu, Øksendal and Sulem [10] solved a portfolio optimization problem with
consumption based on this model using power utility functions. They proved that
the martingale method for classical BM can be adapted to work for fBm as well. In
Section 4, we solve a portfolio optimization problem as in [10], using a logarithmic
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utility function instead, and derive the optimal consumption and portfolio via
the “martingale” method for fBm. Most significantly, we use Itô’s formula for
fBm to simplify our results further than had been previously thought possible,
by eliminating the need to refer to expressions involving Malliavin derivatives.
Our work, which also applies in the case studied in [10], is thus a significant
improvement on [10] from the computational viewpoint.

Specifically, to follow our optimal trading strategy, the practitioner will only
need to use our formulas for the optimal holdings α∗ and β∗ of risk-free account
and stock, and the optimal consumption c∗, as given in Theorem 4.2. With the
help of expressions (4.26) and (4.27) which are obtained by Itô’s formula, the
formulas for α∗, β∗, and c∗ involve only universal non-random functions (such
as ϕ in (2.1), K in (3.7), and ζ in (4.14)), the model parameters r, a, σ, other
functions based on the above (such as g1 in (4.18) and g2 in (4.20)), and stochastic

integrals of these functions with respect to BH
t or B̂H

t = BH
t + a−r

σ
t. Because the

stochastic integrals are with non-random integrands only, they can be calculated

as Stieltjes integrals, where the increments of BH , and thus of B̂H
t , are directly

observable from the fact that the stock price is explicitly given by the geometric
fractional Brownian motion model (3.3).

As a consequence of the explicitness of our expressions, we show that a numerical
implementation is straightforward. Section 7 presents the results of simulations for
such an implementation in the case of no consumption, including an explanation of
how to approximate the stochastic integrals needed in the numerical scheme. Our
method does better than one which would use Merton’s classical formulas for the
case H = 1/2; but as an added bonus, Section 5 shows that the investor recuperates
a positive consumption when using a truly self-financing portfolio. This result also
means that the optimal portfolio for truly self-financing conditions is not equal to
the one we express herein. To find the former, one may reinvest the positive
consumption obtained in Section 5 into stock and bond optimally. However, this
would not lead to a strategy that can be calculated explicitly as we do here.

Our technique for deriving explicit formulas also works in the power utility case:
in Section 6 we present the result of using Itô’s formula to simplify the formulas
given by Hu, Øksendal, and Sulem [10]; again, our formulas would make it simple
to devise a numerical implementation.

2. Preliminaries

In order to present a self-contained account for the sake of readability, in this
section, we present the terminology and the results that we will use from other
references. Let Ω = C0([0, T ],R) be the space of real-valued continuous functions
on [0, T ] with the initial value zero and the topology of local uniform convergence.

There is a probability measure µH on (Ω,F (H)
T ), where F (H)

T is the Borel σ-algebra,

such that on the probability space (Ω,F (H)
T , µH) the coordinate process BH :

Ω → R, defined by BH
t (ω) = ω(t), for all ω ∈ Ω and t ∈ [0, T ], is an fBm. BH

constructed in this way is referred to as the canonical fBm. We will use this
canonical fBm and its associated probability space in our study.
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Duncan et al. [7] define the Skorohod integral with respect to fBm,
∫ T

0
f (t) dBH

t ,
for certain class of functions f , using Wick products. Alòs and Nualart [3] give an
equivalent definition using techniques of Malliavin calculus (see also [14]). Since
both of the constructions are quite lengthy, we will not say any further about this
matter and refer the reader to the references mentioned. Note that this integral
has zero mean.

Now, consider the filtration {F (H)
t }t∈[0,T ] of BH , i.e., F (H)

t is the σ-algebra

generated by the random variables BH
s , s ≤ t. Define

ϕ (s, t) = H (2H − 1) |s − t|2H−2
(2.1)

and define, for g measurable on [0, T ],

|g|2ϕ =

∫ T

0

∫ T

0

g (s) g (t) ϕ (s, t) dsdt, (2.2)

as a Riemann integral when it exists.
Define the space L̂2

ϕ ([0, T ]
n
) to be the set of symmetric functions f (x1, · · · , xn)

on [0, T ]
n

such that

‖f‖L̂2
ϕ([0,T ]n) :=

∫

[0,T ]n×[0,T ]n
|f (u1, · · · , un) f (v1, · · · , vn)|ϕ (u1, v1)

· · ·ϕ (un, vn) du1 · · · dundv1 · · · dvn < ∞.

For each F (H)
T -measurable random variable F in L2 (µH), there exists (see [7])

fn ∈ L̂2
ϕ ([0, T ]

n
), n = 0, 1, 2, . . . such that

F =

∞∑

n=0

∫

[0,T ]n
fnd

(
BH
)⊗n (

convergence in L2 (µH)
)
, (2.3)

where ∫

[0,T ]n
fnd

(
BH
)⊗n

= n!

∫

0≤s1<···<sn≤T

fn (s1, · · · , sn) dBH
s1
· · · dBH

sn

is the iterated Skorohod integral.
If there exists q ∈ N such that the formal expansion F of the form (2.3) satisfies

∞∑

n=0

n! ‖fn‖L̂2
ϕ([0,T ]n) e−2qn < ∞, (2.4)

Hu and Øksendal [9, Definition 4.9] defined the quasi-conditional expectation of F
by

ẼµH

[
F
∣∣∣F (H)

t

]
=

∞∑

n=0

∫

[0,t]n
fnd

(
BH
)⊗n

.

They show that

ẼµH

[
F
∣∣∣F (H)

t

]
= F a.s. ⇐⇒ F is F (H)

t -measurable,

but in general ẼµH

[
F
∣∣∣F (H)

t

]
6= EµH

[
F
∣∣∣F (H)

t

]
.
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Definition 2.1. A (t, ω)-measurable, F (H)
t -adapted process M = {M(t, ω) :

t ∈ [0, T ], ω ∈ Ω} is said to be a quasi-martingale if M(t) has an expansion
of the form (2.3) which satisfies (2.4) for all t and furthermore, for all t ≥ s,

ẼµH

[
M (t)

∣∣∣F (H)
s

]
= M (s) a.s.

Lemma 2.2 (Lemma 1.1 in [10]). Let f be a Skorohod integrable function. Then

M(t) :=

∫ t

0

f (s) dBH
s , t ≥ 0

is a quasi-martingale. In particular, EµH
[M (t)] = EµH

[M (0)] = 0 for all t ≥ 0.

This result enables us to employ many of the useful martingale methods valid
for Brownian motion when we replace conditional expectation by quasi-conditional
expectation. Since we will use it in our calculations, let us mention the following
example (see [10, Example 1.1]): let f ∈ L̂2

ϕ ([0, T ]), then

M (t) := exp

{∫ t

0

f (s) dBH
s − 1

2

∣∣f · 1[0,t]

∣∣2
ϕ

}

is a quasi-martingale. We will use the following fractional version of Girsanov
theorem.

Theorem 2.3 (Theorem 3.18 in [9]). Fix T > 0 and let u : [0, T ] → R be a
continuous deterministic function. Suppose K : [0, T ] → R is a deterministic
function satisfying the equation

∫ T

0

K (s) ϕ (s, t) ds = u(t), 0 ≤ t ≤ T

and extend K to R by defining K (s) = 0 outside [0, T ]. Define the probability

measure µ̂H on F (H)
T by

dµ̂H

dµH

= exp

(
−
∫ T

0

K (s) dBH
s − 1

2
|K|2ϕ

)
.

Then B̂H
t := BH

t +
∫ t

0
u (s) ds is an fBm with the same Hurst parameter H with

respect to the measure µ̂H .

3. Standard Framework of Black-Scholes Market Driven by fBm

We consider in our model that there are two investment vehicles described as
following:

(i) A bank or risk-free account, where the price A (t) at time t, 0 ≤ t ≤ T , is
given by,

dA (t) = rA (t) dt,

A (0) = 1
(3.1)

for a constant r > 0; since r is a nonrandom constant, A (t) = ert can
also be called the bond.
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(ii) A stock, where the price S (t) at time t, 0 ≤ t ≤ T , is given by,

dS (t) = aS (t) dt + σS (t) dBH
t ,

S (0) = s0 > 0,
(3.2)

where a > r > 0 and σ 6= 0 are constants. Here dBH is understood in the
Skorohod sense.

It is proved in [9] that the solution of (3.2) is

S (t) = s0 exp

{
at − 1

2
σ2t2H + σBH

t

}
. (3.3)

Suppose that an investor’s portfolio is given by θ (t) = (α (t) , β (t)), where α (t)
and β (t) are the number of bonds and stocks held at time t, respectively. We also
allow the investor to choose a consumption process c (t) ≥ 0. We assume that α, β

and c are {F (H)
t }-adapted processes, and that (t, ω) → α (t, ω) , β (t, ω) , c (t, ω) are

measurable with respect to B [0, T ] × F (H)
T , where B [0, T ] is the Borel σ-algebra

on [0, T ].
The wealth process is given by

Z (t) = α (t) A (t) + β (t) S (t) . (3.4)

We say that θ is (Skorohod) self-financing with respect to c, if

dZ (t) = α (t) dA (t) + β (t) dS (t) − c (t) dt. (3.5)

See Section 5 for the relation with the natural notion of self-financing. From (3.4)
we get

α (t) = A−1 (t) [Z (t) − β (t)S (t)] .

Substituting this into (3.5) and using (3.1), we obtain

d
(
e−rtZ (t)

)
+ e−rtc (t) dt = σe−rtβ (t) S (t)

(
a − r

σ
dt + dBH

t

)
. (3.6)

Let

K (s) =
(a − r)

(
Ts − s2

) 1
2
−H

1[0,T ] (s)

2σH · Γ (2H) · Γ (2 − 2H) · cos
(
π
(
H − 1

2

)) , (3.7)

and define a new measure µ̂H on F (H)
T by

dµ̂H

dµH

= exp

(
−
∫ T

0

K (s) dBH
s − 1

2
|K|2ϕ

)
=: η (T ) . (3.8)

Then by the fractional Girsanov formula (Theorem 2.3), the process

B̂H
t := BH

t +
a − r

σ
t (3.9)

is a fractional Brownian motion with the same Hurst parameter H with respect

to µ̂H . In terms of B̂H , we can write (3.6) as

e−rtZ (t) +

∫ t

0

e−ruc (u) du = Z (0) +

∫ t

0

σe−ruβ (u)S (u) dB̂H
u . (3.10)
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We also have

|K|2ϕ =

∫ T

0

∫ T

0

K (s) K (t) ϕ (s, t) dsdt =
a − r

σ

∫ T

0

K (s) ds. (3.11)

If Z (0) = z > 0, we denote the corresponding wealth process Z (t) in (3.10) by
Zc,θ

z (t).
We say that (c, θ) is admissible with respect to z and write (c, θ) ∈ A (z) if βS

is Skorohod integrable, α satisfies (3.4), θ is self-financing with respect to c and
Zc,θ

z (T ) ≥ 0. In this case, it follows from Lemma 2.2 that

M (t) :=

∫ t

0

σe−ruβ (u) S (u) dB̂H
u

is a quasi-martingale with respect to µ̂H . In particular, Eµ̂H
[M (T )] = 0. There-

fore, from (3.10) we obtain the budget constraint

Eµ̂H

[
e−rT Zc,θ

z (T ) +

∫ T

0

e−ruc (u) du

]
= z, (3.12)

which holds for all admissible (c, θ).
We finish this section with a result from [10] that will be used in Section 4.

Lemma 3.1 (Lemma 2.1 in [10]). Let c (t) ≥ 0 be a given consumption rate and

let F be a given F (H)
T -measurable random variable such that

G := e−rT F +

∫ T

0

e−ruc (u) du

satisfies Eµ̂H

[
G2
]

< ∞. Then the following two statements are equivalent:

(i) There exists a portfolio θ such that (c, θ) ∈ A(z) and Zc,θ
z (T ) = F a.s.

(ii) Eµ̂H
[G] = z.

4. Optimal Consumption and Portfolio

Let D1 > 0, δ ≥ 0 and T > 0 be given constants. Consider the following total
expected logarithmic utility obtained from the consumption rate c (t) ≥ 0 and the
terminal wealth F := Zc,θ

z (T ), where Z (0) = z > 0,

Jc,θ (z) = EµH

[∫ T

0

e−δt log c (t) dt + D1 log F

]
. (4.1)

We want to find (c∗, θ∗) ∈ A (z) and V (z) such that

V (z) = sup
(c,θ)∈A(z)

Jc,θ (z) = Jc∗,θ∗

(z) . (4.2)
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By Lemma 3.1, this problem is equivalent to the following constrained opti-
mization problem

V (z) = sup
c,F≥0

{
EµH

[∫ T

0

e−δt log c (t) dt + D1 log F

]
; given that

EbµH

[∫ T

0

e−ruc (u) du + e−rT F

]
= z

}
,

(4.3)

where the supremum is taken over all c (t) ≥ 0 and F (H)
T -measurable F such that

∫ T

0

e−ruc (u) du + e−rT F ∈ L2 (µ̂H) .

Optimization problem (4.3) can be solved by applying Lagrange multiplier
method. Consider for each λ > 0 the following unconstrained optimization prob-
lem (with E = EµH

)

Vλ (z) = sup
c,F≥0

{
E

[∫ T

0

e−δt log c (t) dt + D1 log F

]

− λ

(
EbµH

[∫ T

0

e−ruc (u) du + e−rT F

]
− z

)}
.

(4.4)

We can rewrite this as

Vλ (z) = sup
c,F≥0

E
[ ∫ T

0

(
e−δt log c (t) − λη (T ) e−rtc (t)

)
dt

+ D1 log F − λη (T ) e−rT F
]

+ λz

= sup
c,F≥0

E
[ ∫ T

0

(
e−δt log c (t) − λρ (t) e−rtc (t)

)
dt

+ D1 log F − λη (T ) e−rT F
]

+ λz,

(4.5)

where η (T ) is given by (3.8) and

ρ (t) = E
[
η (T )

∣∣∣F (H)
t

]
. (4.6)

To get (4.5) we use the fact that

E[η (T ) c (t)] = E
[
E[η (T ) c (t)

∣∣∣F (H)
t ]

]
= E

[
c (t)E[η (T )

∣∣∣F (H)
t ]

]
= E [c (t) ρ (t)] .

The unconstrained problem (4.5) can be solved simply by maximizing the fol-
lowing functions for each t ∈ [0, T ] and ω ∈ Ω:

g (c) = e−δt log c − λρ (t) e−rtc,

h (F ) = D1 log F − λη (T ) e−rT F.

We have g′ (c) = 0 for

c =
e−δtert

λρ (t)
, (4.7)
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and by concavity this is the maximum point of g.
Similarly, we get the maximum point of h

F =
D1e

rT

λη (T )
. (4.8)

We now look for λ∗ such that the constraint in (4.3) holds, i.e.,

E

[(∫ T

0

e−ruc (u) du + e−rT F

)
η (T )

]
= z.

Substituting (4.7) and (4.8) into the above and solving for λ, we obtain

λ∗ =
1

Mz
, where M =

(
1 − e−δt

δ
+ D1

)−1

. (4.9)

Now substitute λ∗ into (4.7) and (4.8) to get

c∗ (t) := cλ∗ (t) = Mze−δtert 1

ρ (t)
(4.10)

and

F ∗ := Fλ∗ = D1MzerT 1

η (T )
. (4.11)

This is the optimal (c, F ) for the problem (4.2) and we conclude that the optimal
utility is given by

V (z) = E

[∫ T

0

e−δt log c∗ (t) dt + D1 log F ∗

]

=

∫ T

0

{log (Mz) + (r − δ) t} e−δtdt + D1 {log (D1Mz) + rT}

+

∫ T

0

e−δtE

[
log

1

ρ (t)

]
dt + D1E

[
log

1

η (T )

]
.

By the definition of η (T ) given in (3.8),

E

[
log

1

η (T )

]
= E

[∫ T

0

K (s) dBH
s +

1

2
|K|2ϕ

]

=
1

2
|K|2ϕ =

a − r

2σ

∫ T

0

K (t) dt =
(a − r)

2

2σ2
· ΛH · T 2−2H ,

where

ΛH =
Γ2
(

3
2 − H

)

2H · (2 − 2H) · Γ (2H) · Γ (2 − 2H) · cos
(
π
(
H − 1

2

)) . (4.12)

It was proved by Hu [8] that

ρ (t) = E
[
η (T )

∣∣∣F (H)
t

]
= exp

(
−
∫ t

0

ζt (s) dBH
s − 1

2
|ζt|2ϕ

)
, (4.13)
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where ζt is determined by the equation

(−∆)
−(H− 1

2 ) ζt (s) = − (−∆)
−(H− 1

2 ) K (s) , 0 ≤ s ≤ t,

ζt (s) = 0, s < 0 or s > t.

The following solution for ζt is also given in [8]:

ζt (s) = −κHs
1
2
−H d

ds

∫ t

s

w2H−1 (w − s)
1
2
−H

×
(

d

dw

∫ w

0

z
1
2
−H (w − z)

1
2
−H

g (z) dz

)
dw,

(4.14)

where g(z) = − (−∆)
−(H− 1

2 ) K (z) and

κH =
22H−2

√
π Γ

(
H − 1

2

)

Γ (1 − H) Γ2
(

3
2 − H

)
cos
(
π
(
H − 1

2

)) .

Hence,

E

[
log

1

ρ (t)

]
= E

[∫ t

0

ζt (s) dBH
s +

1

2
|ζt|2ϕ

]
=

1

2
|ζt|2ϕ .

Thus we obtain

V (z) = δ−2 (r − δ)
[
1 − e−δT (1 + δT )

]
+ δ−1

(
1 − e−δT

)
log (Mz)

+ D1 (log (D1Mz) + rT )

+
1

2

∫ T

0

e−δt |ζt|2ϕ dt +
D1 (a − r)

2

2σ2
ΛHT 2−2H ,

(4.15)

where the constants M and ΛH are given by (4.9) and (4.12), respectively. This
proves the following theorem.

Theorem 4.1. The value function of the optimal consumption and portfolio prob-
lem (4.1) is given by (4.15). The corresponding optimal consumption c∗ and the
optimal terminal wealth Zcλ∗ ,θ∗

z (T ) = F ∗ are given by (4.10) and (4.11), respec-
tively.

It remains to find the optimal portfolio θ∗ = (α∗, β∗) for problem (4.1). Let

G = e−rT F ∗ +
∫ T

0
e−rtc∗ (t) dt. In the proof of Lemma 3.1, it was shown that

G = z +
∫ T

0
Ẽbµ

[
D̂tG

∣∣∣F (H)
t

]
dB̂H

t , where D̂ denotes the Malliavin derivative with

respect to µ̂H (D̂ is not to be confused with the utility legacy scale constant D1),
and

β∗ (t) =
ert

σS (t)
Ẽbµ

[
D̂tG

∣∣∣F (H)
t

]

=
ert

σS (t)

(
Ẽbµ

[
D̂t

(
e−rT F ∗

) ∣∣∣F (H)
t

]
+ Ẽbµ

[
D̂t

(∫ T

0

e−ruc∗ (u) du
) ∣∣∣F (H)

t

]
)

=
ert

σS (t)

(
Y1 (t) + Y2 (t)

)
,

(4.16)
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when we set

Y1 (t) := Ẽbµ

[
D̂t

(
e−rT F ∗

) ∣∣∣F (H)
t

]
,

Y2 (t) := Ẽbµ

[
D̂t

(∫ T

0

e−ruc∗ (u) du

)∣∣∣F (H)
t

]
.

To compute Y1 (t) and Y2 (t), we first compute the following.

1

η (T )
= exp

{∫ T

0

K (s) dBH
s +

1

2
|K|2ϕ

}

= exp

{∫ T

0

K (s) dB̂H
s +

1

2
|K|2ϕ − a − r

σ

∫ T

0

K (s) ds

}
,

= exp

{∫ T

0

K (s) dB̂H
s − 1

2
|K|2ϕ

}
,

D̂t

(
1

η (T )

)
= D̂t

(
exp

{∫ T

0

K (s) dB̂H
s

})
exp

{
−1

2
|K|2ϕ

}

= K (t) exp

{∫ T

0

K (s) dB̂H
s

}
exp

{
−1

2
|K|2ϕ

}
,

1

ρ (u)
= exp

{∫ u

0

ζu (s) dBH
s +

1

2
|ζu|2ϕ

}

= exp

{∫ u

0

ζu (s) dB̂H
s − a − r

σ

∫ u

0

ζu (s) ds +
1

2
|ζu|2ϕ

}
,

When t ≤ u,

D̂t

(
1

ρ (u)

)
= D̂t

(
exp

{∫ u

0

ζu (s) dB̂H
s

})
exp

{
−a − r

σ

∫ u

0

ζu (s) ds +
1

2
|ζu|2ϕ

}

= ζu (t) exp

{∫ u

0

ζu (s) dB̂H
s

}
exp

{
−a − r

σ

∫ u

0

ζu (s) ds +
1

2
|ζu|2ϕ

}
,

and

D̂t

(
1

ρ (u)

)
= 0,

if t > u.
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Therefore,

Y1 (t) = Ẽbµ

[
D̂t

(
e−rT F ∗

) ∣∣∣F (H)
t

]

= Ẽbµ

[
D̂t

(
D1Mz

1

η (T )

) ∣∣∣F (H)
t

]

= D1MzK (t) exp

{
−1

2
|K|2ϕ

}
Ẽbµ

[
exp

{∫ T

0

K (s) dB̂H
s

}∣∣∣F (H)
t

]

= D1MzK (t) Ẽbµ

[
exp

{∫ T

0

K (s) dB̂H
s − 1

2
|K|2ϕ

}∣∣∣F (H)
t

]

= D1MzK (t) exp

{∫ t

0

K (s) dB̂H
s − 1

2

∣∣K · 1[0,t]

∣∣2
ϕ

}

= g1 (t)K (t) exp

{∫ t

0

K (s) dB̂H
s

}
, (4.17)

where

g1 (t) := D1Mz exp

{
−1

2

∣∣K · 1[0,t]

∣∣2
ϕ

}
. (4.18)

Similarly,

Y2 (t) = Ẽbµ

[
D̂t

(∫ T

0

e−ruc∗ (u) du

)∣∣∣F (H)
t

]

= Ẽbµ

[
D̂t

(∫ T

0

Mze−δu 1

ρ (u)
du

)∣∣∣F (H)
t

]

= Ẽbµ

[∫ T

0

Mze−δuD̂t

(
1

ρ (u)

)
du
∣∣∣F (H)

t

]

= Ẽbµ

[∫ T

t

Mze−δuζu (t) exp

{∫ u

0

ζu (s) dB̂H
s

−a − r

σ

∫ u

0

ζu (s) ds +
1

2
|ζu|2ϕ

}
du
∣∣∣F (H)

t

]

=

∫ T

t

Mze−δuζu (t) Ẽbµ

[
exp

{∫ u

0

ζu (s) dB̂H
s

−a − r

σ

∫ u

0

ζu (s) ds +
1

2
|ζu|2ϕ

} ∣∣∣F (H)
t

]
du

=

∫ T

t

Mze−δuζu (t) exp

{
|ζu|2ϕ − a − r

σ

∫ u

0

ζu (s) ds

}

× Ẽbµ

[
exp

{∫ u

0

ζu (s) dB̂H
s − 1

2
|ζu|2ϕ

} ∣∣∣F (H)
t

]
du
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=

∫ T

t

Mze−δuζu (t) exp

{
|ζu|2ϕ − a − r

σ

∫ u

0

ζu (s) ds

}

× exp

{∫ t

0

ζu (s) dB̂H
s − 1

2

∣∣ζu · 1[0,t]

∣∣2
ϕ

}
du

=

∫ T

t

g2 (u, t) ζu (t) exp

{∫ t

0

ζu (s) dB̂H
s

}
du, (4.19)

where

g2 (u, t) := Mze−δu exp

{
|ζu|2ϕ − a − r

σ

∫ u

0

ζu (s) ds − 1

2

∣∣ζu · 1[0,t]

∣∣2
ϕ

}
. (4.20)

We summarize our calculations in the following theorem.

Theorem 4.2. The optimal portfolio θ∗ (t) = (α∗ (t) , β∗ (t)) for problem (4.1) is
given by

β∗ (t) =
ert

σS (t)
{Y1 (t) + Y2 (t)} , (4.21)

where Y1 (t) and Y2 (t) are given by (4.17) and (4.19), respectively; and

α∗ (t) = e−rt {Z∗ (t) − β∗ (t) S (t)} = e−rtZ∗ (t) − 1

σ
{Y1 (t) + Y2 (t)} (4.22)

where the optimal wealth process, Z∗ (t), can be obtained from

e−rtZ∗ (t) +

∫ t

0

e−rsc∗ (s) ds = z +

∫ t

0

σe−rsβ∗ (s) S (s) dB̂H
s (4.23)

and c∗ (s) is given by (4.10).

In order to determine α∗ (t) explicitly, our next goal is to calculate
∫ t

0

σe−rsβ∗ (s) S (s) dB̂H
s =

∫ t

0

{Y1 (s) + Y2 (s)} dB̂H
s (4.24)

which simplifies (4.23) in Theorem 4.2. This is contained in formulas (4.26) and
(4.27) below. We summarize the strategy for calculating the optimal consumption
and portfolio explicitly:

Compute Y1 and Y2. The quantities Y1 and Y2 are given in (4.17) and (4.19).
These formulas are evaluated using the non-random quantities g1 and g2 given in

(4.18) and (4.20). The Wiener stochastic integrals
∫ t

0
K (s) dB̂H

s and
∫ t

0
ζu (s) dB̂H

s

can be estimated simply using Riemann-sum approximations, based on the ob-

served increments of B̂H
t := BH

t +
(

a−r
σ

)
t, since the integrands K and ζ are

non-random. More information on computing such integrals is in Section 7.

Compute β∗. Since S (t) is also observable, the optimal number of stocks β∗

follows directly from (4.21)

Compute c∗. With formula (4.10), we see that the optimal consumption c∗ can
be calculated using non-random quantities, and the Wiener stochastic integral∫ t

0
ζu (s) dB̂H

s , which is approximated from the osbservations using Riemann sums.
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Compute the stochastic integrals of Y1 and Y2. The stochastic integral∫ t

0
Y1 (s) dB̂H

s is given in formula (4.26) using again Riemann integrals, the function

g1 in (4.18), and the stochastic integral
∫ s

0
K (s) dB̂H

s , discussed above. Similarly,

the stochastic integral
∫ t

0
Y1 (s) dB̂H

s in (4.27) requires only Riemann integrals, g2

from (4.20), and
∫ t

0
ζu (s) dB̂H

s as above.

Compute Z∗. From (4.23), (4.24), we have

e−rtZ∗ (t) = z −
∫ t

0

e−rsc∗ (s) ds +

∫ t

0

{Y1 (s) + Y2 (s)} dB̂H
s ,

where c∗ was found above, and the stochastic integral is the sum of the two integrals
computed in the last step above.

Compute α∗. Finally, the optimal number of risk-free units (bonds) α∗ is ob-
tained immediately from Z∗, Y1, and Y2 thanks to (4.22).

We now calculate the stochastic integrals of Z1 and Z2. We will use Itô’s for-

mula for fBm (see [7, Corollary 4.4] or [3, Theorem 8]) to calculate
∫ t

0
Y1 (v) dB̂H

v .

Let bt =
∫ t

0
asdB̂H

s , where a is deterministic and Skorohod integrable. Then, for a

C1,2 function f : [0, T ] × R → R we have

f (t, bt) =f (0, 0) +

∫ t

0

∂f

∂s
(s, bs) ds +

∫ t

0

∂f

∂x
(s, bs) asdB̂H

s

+

∫ t

0

∂2f

∂x2
(s, bs)

∫ s

0

avϕ (s, v) dvds.

(4.25)

Letting bt =
∫ t

0
K (s) dB̂H

s and f (t, x) = g1 (t) ex in (4.25) yields

g1 (t) ebt =g1 (0) +

∫ t

0

g′1 (s) ebsds +

∫ t

0

g1 (s) ebsK (s) dB̂H
s

+

∫ t

0

g1 (s) ebs

∫ s

0

K (v) ϕ (s, v) dvds

=g1 (0) +

∫ t

0

g′1 (s) ebsds +

∫ t

0

Y1 (s) dB̂H
s

+

∫ t

0

g1 (s) ebs

∫ s

0

K (v) ϕ (s, v) dvds,

and from that we obtain
∫ t

0

Y1 (s) dB̂H
s = − g1 (0) + g1 (t) exp

{∫ t

0

K (s) dB̂H
s

}

−
∫ t

0

g′1 (s) exp

{∫ s

0

K (u) dB̂H
u

}
ds

−
∫ t

0

g1 (s) exp

{∫ s

0

K (u) dB̂H
u

}∫ s

0

K (v)ϕ (s, v) dvds.

(4.26)
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Using Fubini’s theorem and the same argument as above, we calculate
∫ t

0

Y2 (s) dB̂H
s =

∫ t

0

∫ T

s

g2 (u, s) ζu (s) exp

{∫ s

0

ζu (v) dB̂H
v

}
dudB̂H

s

=

∫ t

0

∫ u

0

g2 (u, s) ζu (s) exp

{∫ s

0

ζu (v) dB̂H
v

}
dB̂H

s du

+

∫ T

t

∫ t

0

g2 (u, s) ζu(s) exp

{∫ s

0

ζu (v) dB̂H
v

}
dB̂H

s du

=

∫ t

0

(
−g2 (u, 0) + g2 (u, u) exp

{∫ u

0

ζu (v) dB̂H
v

}

−
∫ u

0

∂g2

∂s
(u, s) exp

{∫ s

0

ζu (v) dB̂H
v

}
ds

−
∫ u

0

g2 (u, s) exp

{∫ s

0

ζu (v) dB̂H
v

}∫ s

0

ζu (τ) ϕ (s, τ) dτds

)
du

+

∫ T

t

(
−g2 (u, 0) + g2 (u, t) exp

{∫ t

0

ζu (v) dB̂H
v

}

−
∫ t

0

∂g2

∂s
(u, s) exp

{∫ s

0

ζu (v) dB̂H
v

}
ds

−
∫ t

0

g2 (u, s) exp

{∫ s

0

ζu (v) dB̂H
v

}∫ s

0

ζu (τ) ϕ (s, τ) dτds

)
du.

(4.27)

It is clear that the only randomness in the formula for β∗ in Theorem 4.2
is given in terms of Wiener integrals with respect to fBm. However, that was
not the case for α∗. With these last two calculations based on the fractional
Itô formula, we are now able to express the randomness in α∗ in terms of only
Wiener integrals as well. This represents a practical advance over previous works
where solutions are presented in terms of general Skorohod integrals and/or using
Malliavin derivatives, (quasi-)conditional expectations, and the like, since there are
no numerical methods available for these general objects. The study presented here
simplifies the solution as much as possible for numerical implementation purposes.
In Section 7 we present the results of such an implementation.

5. Truly Self-Financing Portfolio; Positive Consumption

A common criticism of the framework used in Section 3, and used in our sources
[9], [10], is that the definition of self-financing using a Skorohod stochastic integral
does not correspond to the true notion of a self-financing portfolio. We discuss this
issue here. If our purpose was to provide a framework for pricing derivatives, we
would need indeed to construct a portfolio with the true self-financing property.
However, because we are only trying to find a strategy maximizing an expected
future utility using a certain class of admissible strategies, it is up to us to decide
what class of strategies we wish to use, and our Skorohod-self-financing ones are
certainly an option. One may then argue in disfavor of it by asking whether there
is any guarantee that it is indeed financially possible to follow such a strategy.
The purpose of this Section is to prove that it is, and that one always gets more
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than what one bargained for, because following it results in additional positive
consumption.

In particular, we now calculate the discrepancy between the two notions of
self-financing portfolios in the framework of our portfolio optimization, and we
conclude that this discrepancy is always in favor of the investor, in the sense of
the proposition below. To compare the two notions, recall first that the wealth Z
in (3.4) in a consumption-free “Skorohod-self-financing” portfolio defined by the
strategy (α (t) , β (t))t≥0 satisfies:

Z (t) = Z (0) +

∫ t

0

α (u) dA (u) +

∫ t

0

β (u) dS (u) , (5.1)

where, as for the second differential in the Skorohod-self-financing condition (3.5),
the second integral in (5.1) is in the Skorohod sense. However, since H > 1

2 , the
pathwise integral of β with respect to S can also be defined, and it is the one
which yields the true notion of self-financing, because it can be approximated by
Riemann-Stieltjes sums in a natural way. We omit the details. We simply say that
a portfolio trading strategy defined by (α (t) , β (t))t≥0 is “truly self-financing with

consumption process C (t)” if its wealth Z, still given by (3.4), satisfies

Z (t) = Z (0) +

∫ t

0

α (u) dA (u) +

∫ t

0

β (u) dP S (u) − C (t) , (5.2)

where the integral
∫ t

0
β (u) dP S (u) is in the pathwise sense. Note that here we

use the notation C for the cummulative consumption, and that C is related to the
usual notation c via dC (t) = c(t)dt. A number of articles on fractional Brownian
motion can be consulted for the definition of the pathwise integral; for instance,
we refer to [15], which also contains the following formula relating this integral to
the Skorohod integral:
∫ t

0

β (s) dP S (s) −
∫ t

0

β (s) dS (s) = αH

∫ t

0

∫ t

0

Ds [β (τ) S (τ)] |τ − s|2H−2
dτds,

(5.3)
where αH = H (2H − 1). As a consequence, we prove the following result.

Proposition 5.1. Assume that the trading strategy (α (t) , β (t))t≥0 is the optimal

portfolio θ∗ identified in Theorem 4.2, assuming no consumption (δ = +∞). Then
the wealth process Z given by Z (t) = α∗ (t) A (t)+β∗ (t)S (t) corresponds to a truly
self-financing portfolio, with initial wealth z, satisfying (5.2), with consumption
process C (t) given by

C (t) =
αHert

σ

∫ t

0

dτ

∫ τ

0

g1 (τ) K (τ) exp

{∫ τ

0

K (u) dB̂H
u

}
K (s) (τ − s)

2H−2
ds

where B̂ and K are given in (3.9) and (3.7), while, in accordance with (4.18)
below,

g1 (τ) = z exp

{
−αH

2

∫ τ

0

∫ τ

0

K (u) K (v) |u − v|2H−2
dudv

}
.

Most notably, C (t) is positive almost surely for all t.
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The precise formula for the term C (t) above is not as important as the fact
that it is always positive. In this sense, the optimal portfolio of Theorem 4.2 is a
truly self-financing strategy which both maximizes the expected future utility for
Skorohod-self-fnancing strategies, and provides the investor with free additional
consumption. The formula Z (t) = α∗ (t)A (t) + β∗ (t) S (t) is in fact sufficient to
allow the investor to keep track of her consumption. Indeed, Z (t) is obviously
directly calculable from the observed values of A (t) and S (t), and the computed
optimal values α∗ (t) and β∗ (t), both also based only on A and S (see Theorem
4.2, and relation (3.3)); then the formula

dC (t) = −dZ (t) + α∗ (t) dA (t) + β∗ (t) dP S (t) ,

where the latter differential is in the pathwise sense, can be calculated in an
adapted way for any fixed realization of the process S.

Proof. [of Proposition 5.1]
Applying (5.3) to (5.1) with (α, β) = (α∗, β∗) = θ∗ as in Theorem 4.2, since

in the notation of the statement and proof of that theorem (Section 4), β∗ (t) =
ert

σS(t) [Y1 (t) + Y2 (t)] , we find that (5.2) holds with

C (t) = αH

∫ t

0

∫ t

0

Ds [β∗ (τ) S (τ)] |τ − s|2H−2
dτds

=
αHert

σ

∫ t

0

∫ t

0

Ds [Y1 (τ) + Y2 (τ)] |τ − s|2H−2
dτds.

However, since we are in the case of no consumption for the Skorohod-self-financing
portfolio (δ = +∞), one sees that Y2 ≡ 0. Since

Y1 (t) = g1 (t)K (t) exp

{∫ t

0

K (s) dB̂H
s

}
,

we obtain

DsY1 (τ) = g1 (τ) K (τ) exp

{∫ τ

0

K (u) dB̂H
u

}
K (s)1{s≤τ}.

It then follows that

C (t) =
αHert

σ

∫ t

0

∫ t

0

DsY1 (τ) |τ − s|2H−2
dτds

=
αHert

σ

∫ t

0

dτ

∫ τ

0

g1 (τ) K (τ) exp

{∫ τ

0

K (u) dB̂H
u

}
K (s) (τ − s)

2H−2
ds.

Our expression for g1 follows immediately from (2.2) and (4.18) when one notices
that in the case δ = +∞, we obtain MD1 = 1. The positivity of C (t) is also
immediate, since the formula for C (t) contains the factor K twice, and K is
proportional to a positive function (with proportionality constant equal to a − r,
whose constant sign, which is typically positive, is nonetheless irrelevant). ¤
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6. The Case of Power Utility Functions

Hu, Øksendal and Sulem [10] solve the optimization problem in the framework
of Section 3 using power utility functions. In this section we improve their results
using our techniques from Section 4.

Let D1, D2 > 0, T > 0and γ ∈ (−∞, 1) \ {0} be constants. The quantity

Jc,θ (z) = EµH

[∫ T

0

D1

γ
cγ (t) dt +

D2

γ

(
Zc,θ

z (T )
)γ
]

,

where (c, θ) ∈ A (z), can be regarded as the total expected (power) utility obtained
from the consumption rate c (t) ≥ 0 and the terminal wealth Zc,θ

z (T ). As before,
the problem is to find (c∗, θ∗) ∈ A (z) and V (z) such that

V (z) = sup
(c,θ)∈A(z)

Jc,θ (z) = Jc∗,θ∗

(z) , z > 0.

For the rest of this section, we present the solution to this optimization problem
by listing the formulas without proof, since the calculations are very similar to what
we have done in Section 4. Letting

N =
1

D1

∫ T

0

exp
{ rγt

1 − γ
+

γ

2 (1 − γ)
2 |ζt|2ϕ

}
dt

+
1

D2
exp

{ rγT

1 − γ
+

γ (a − r)
2
ΛHT 2−2H

2 (1 − γ)
2
σ2

}
,

the optimal consumption rate, optimal terminal wealth, value function of the
optimal consumption and portfolio problem, and the optimal portfolio θ∗ (t) =
(α∗ (t) , β∗ (t)) are given (respectively) by

c∗ (t) =
z

D1N
exp

{
rt

1 − γ

}
ρ (t)

1
γ−1 ,

F ∗ =
z

D2N
exp

{
rT

1 − γ

}
η (T )

1
γ−1 ,

V (z) =
zγ

γ

{
D1−γ

1 N−γ

∫ T

0

exp

{
rγt

1 − γ
+

2γ2 − γ

2 (1 − γ)
2 |ζt|2ϕ

}
dt

+D1−γ
2 N−γ exp

{
rγT

1 − γ
+

γ (a − r)
2
ΛHT 2−2H

2 (1 − γ)
2
σ2

}}
,

β∗ (t) =
ert

σS (t)
(Y1 (t) + Y2 (t)) ,

α∗ (t) = e−rtZ∗ (t) − 1

σ
(Y1 (t) + Y2 (t)) ,

where

Z∗ (t) = z −
∫ t

0

er(t−s)c∗ (s) ds + ert

∫ t

0

{Y1 (s) + Y2 (s)} dB̂H
s ,
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h1 (t) :=
z

D2N
exp

{
rγT

1 − γ
− 1

2(1 − γ)2
∣∣K · 1[0,t]

∣∣2
ϕ

+
2 − γ

2 (1 − γ)
2 |K|2ϕ − a − r

σ (1 − γ)

∫ t

0

K (s) ds

}
,

h2 (u, t) :=
z

D1N
exp

{
rγu

1 − γ
− 1

2 (1 − γ)
2

∣∣ζu · 1[0,t]

∣∣2
ϕ

+
2 − γ

2 (1 − γ)
2 |ζu|2ϕ − a − r

σ (1 − γ)

∫ u

0

ζu (s) ds

}
,

Y1 (t) =Ẽbµ

[
D̂t

(
e−rT F ∗

) ∣∣∣F (H)
t

]

=h1 (t)
K (t)

1 − γ
exp

{
1

1 − γ

∫ t

0

K (s) dB̂H
s

}
,

Y2 (t) =Ẽbµ

[
D̂t

(∫ T

0

e−ruc∗ (u) du

)∣∣∣F (H)
t

]

=

∫ T

t

h2 (u, t)
ζu (t)

1 − γ
exp

{
1

1 − γ

∫ t

0

ζu (s) dB̂H
s

}
du,

∫ t

0

Y1 (s) dB̂H
s = −h1 (0) + h1 (t) exp

{
1

1 − γ

∫ t

0

K (s) dB̂H
s

}

−
∫ t

0

h′
1 (s) exp

{
1

1 − γ

∫ s

0

K (u) dB̂H
u

}
ds

− 1

1 − γ

∫ t

0

h1(s) exp

{
1

1 − γ

∫ s

0

K(u)dB̂H
u

}∫ s

0

K(v)ϕ(s, v)dvds,

∫ t

0

Y2 (s) dB̂H
s =

∫ t

0

∫ T

s

h2 (u, s)
ζu (s)

1 − γ
exp

{
1

1 − γ

∫ s

0

ζu (v) dB̂H
v

}
dudB̂H

s

=

∫ t

0

(
−h2 (u, 0) + h2 (u, u) exp

{ 1

1 − γ

∫ u

0

ζu (s) dB̂H
s

}

−
∫ u

0

∂h2

∂s
(u, s) exp

{ 1

1 − γ

∫ s

0

ζu (v) dB̂H
v

}
ds

− 1

1 − γ

∫ u

0

h2 (u, s) exp
{ 1

1 − γ

∫ s

0

ζu (v) dB̂H
v

}∫ s

0

ζu (τ) ϕ (s, τ) dτds

)
du

+

∫ T

t

(
−h2 (u, 0) + h2 (u, t) exp

{ 1

1 − γ

∫ t

0

ζu (s) dB̂H
s

}

−
∫ t

0

∂h2

∂s
(u, s) exp

{ 1

1 − γ

∫ s

0

ζu (v) dB̂H
v

}
ds

− 1

1 − γ

∫ t

0

h2 (u, s) exp
{ 1

1 − γ

∫ s

0

ζu (v) dB̂H
v

}∫ v

0

ζu (τ) ϕ (s, τ) dτdv

)
du.
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7. Numerical Results

In this Section we implement our portfolio optimization problem. For the sake
of simplicity, we present the case of no consumption. We have the following sim-
plifications:

V (z) = log z + rT +
1

2

(
a − r

σ

)2

ΛHT 2−2H , (7.1)

where ΛH is given by (4.12), and Y2 (t) = 0.
We ran 2000 scenarios with the parameters T = 1, ∆t = 0.001, H = 0.65,

s0 = 100, a = 0.0375, r = 0.0350, σ = 0.25, α(0) = 1, β(0) = 1, D1 = 1. We
simulated fBm’s using the method of Wood and Chan [18], and calculated α∗, β∗

and the corresponding optimal wealth process Z∗. Figure 1 shows a sample path
of the stock price process, S, and Figure 2 shows the corresponding Z∗.
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Figure 1. A sample path of the stock price

process given by a geometric fBm (see (3.3))

with the parameters given in the text.
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Figure 2. Optimal wealth process (Z∗) cor-

responding to the geometric fBm of Figure 1

with the parameters given in the text.

It is instructive to compare the explicit formula (7.1) for the value function to
the corresponding classical Black-Scholes-Merton situation with standard Brow-
nian motion, {Wt}t∈[0,T ]. In the latter case, the optimal wealth process is given

by

Z∗
BM (t) = z exp

{(
r +

1

2

(
a − r

σ

)2
)

t +
a − r

σ
Wt

}
(7.2)

and the value function is given by

VBM (z) = log z + rT +
1

2

(
a − r

σ

)2

T. (7.3)

An immediate comparison of (7.3) with (7.1) shows that the value function V for
the fBm model exceeds that of the standard Black-Scholes-Merton value function
VBM for all initial wealth if and only if

T ≤ Λ
1

2H−1

H . (7.4)
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This can be rephrased as saying that for short enough maturity, one is better off
in a fractional market, while we expect a standard Black-Scholes market to be
more profitable in the long run. On the other hand, this interpretation depends
highly on the value of H. It is elementary to check, using properties of the Gamma
function, that for H close to 1, the threshold in (7.4) is extremely large (tends to
infinity as H tends to 1), which means that for all practical purposes, a fBm-driven
market has a higher expected utility. When H is very close to 1

2 , where the two
value functions V and VBM tend to each other as they should, nevertheless the
fBm value function is still the largest one for “small and moderate” T , since the
right-hand side of (7.4) can be expanded as follows:

Λ
1

2H−1

H = exp

{
|Γ′ (1)| +

(
2 + 2 |Γ′ (1)|2 +

π2

4

)(
H − 1

2

)
+ O

((
H − 1

2

)2
)}

.

We now discuss a more difficult question with regards to comparing (7.3) and
(7.1), which is beyond the scope of this article, but for which we give some indica-
tion of what might occur nonetheless. It is the issue of robustness of fBm models
with respect to H. What happens if a statistical misspecification of H occurs? Of
particular importance is the case where one wrongly assumes that H = 1

2 and one
follows the classical Merton portfolio selection scheme, in a market where the true
H exceeds 1

2 . We conjecture that the resulting portfolio, which will necessarily be
suboptimal, will in fact always lead to a significantly smaller expected future util-
ity than the one leading to V , for any maturity. The comparison in the previous
paragraph is a strong indication that this difference should be exacerbated when
H is closer to 1. A more general question, still of the same nature, is to find the
inefficiency due to a small misspecification of H around any fixed true H > 1

2 .
If the convexity of the function ΛH , as studied in the previous paragraph, is any
indication, robustness of the optimization scheme should be higher for H closer to
1
2 .

Our numerical work can be used to investigate empirically the order of magni-
tude of the utility’s variance, but also gives a tool to predict the average future
wealth itself, without any utility function. The following output gives Monte Carlo
averages of Z∗ (T ) and log (Z∗ (T )) in the case of fBm and BM, as well as the value
functions of the optimal portfolio problem evaluated at the initial wealth for 2000
scenarios:

>>>>>>>> fBm case:

Monte Carlo average of terminal optimal wealth = 106.426

Standard error = 1.04225 (~0.98%)

Monte Carlo average of log-term. optimal wealth = 4.66741

Standard error = 0.00979 (~0.21%)

Value function at z0: V(101) = 4.65018602895

|(log-terminal wealth) - V(z0)| = 0.0172252

>>>>>>>> BM case:

Monte Carlo average of terminal optimal wealth = 104.610

Standard error = 1.05260 (~1.01%)
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Monte Carlo average of log-term. optimal wealth = 4.65017

Standard error = 0.01006 (~0.22%)

Value function at z0: V_BM(101) = 4.65017051684

|(log-terminal wealth) - V_BM(z0)| = 0.0002646

The last line in each case shows the error in the Monte Carlo simulation,
which should be proportional to the utility’s standard deviation sV , since we have
E [log (Z∗ (T ))] = V (z0), theoretically. Firstly, the agreement between our Monte
Carlo average and the theoretical value function indicates that our code runs cor-
rectly. More importantly, we see a significant increase in variance from the BM
case to the fBm case. Yet the empirical result in the fBm case indicates that sV is
of the order of 0.4%, which is certainly an acceptable level. The average terminal
wealth is not of any theoretical mathematical significance for logarithmic utility
maximization, but we have included these numerical values to indicate that, with
our choice of parameters, an fBm market can be expected to provide 2% more
than a standard BM market.

We finish with a note regarding the actual numerical evaluation of Wiener
stochastic integrals (i.e., with deterministic integrands) with respect to fBm. The
first observation is that, when integrands are deterministic, the various versions
(forward, Stratonovich, Skorohod, etc...) of stochastic integrals with respect to
fBm coincide. For our simulations, we only need to simulate the stochastic integral

∫ t

0

K (s) dB̂H
s , (7.5)

where K is the function given in (3.7). A standard reflex for stochastic integrals

is to use an Itô-type Riemann sum approximation, i.e.,
∑

i K(ti)(B̂
H
ti+1

− B̂H
ti

).

However, since K (0) = +∞, this would force us to drop the first term. It may
thus be more efficient to use a formula in which this singularity is not an issue.
The generalized Stratonovich integral of Russo and Vallois, also known as the
symmetric regularized stochastic integral, as presented for instance in Alòs and
Nualart’s paper [3], claims that for ε tending to 0,

1

2ε

∫ t

0

K (s)
(
B̂H

s+ε − B̂H
s−ε

)
ds (7.6)

tends to the stochastic integral (7.5) in L2 (Ω). Using ε = ti+1−ti

2 , and using a
further Riemann approximation for the Riemann integral in (7.6), we approximate
(7.5) by

∑

i

K
( ti+1 + ti

2

)
(B̂H

ti+1
− B̂H

ti
) =

∑

i

K
( ti+1 + ti

2

)(
BH

ti+1
− BH

ti
+

a − r

σ
(2ε)

)
.

A theorem justifying that this approximation actually works can also be found in
the paper [3], Proposition 3.
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2. Alòs, E., Mazet, O., and Nualart, D.: Stochastic calculus with respect to Gaussian processes,

Ann. Probab. 29 (2001), 766–801.
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9. Hu, Y. and Øksendal, B.: Fractional white noise calculus and applications to finance, Infin.

Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003) no. 1, 1–32.
10. Hu, Y., Øksendal, B., and Sulem, A.: Optimal consumption and portfolio in a Black-Scholes

market driven by fractional Brownian motion, Infin. Dimens. Anal. Quantum Probab. Relat.

Top. 6 (2003) no. 4, 519–536.
11. Lin, S. J.: Stochastic analysis of fractional Brownian motion, Stochastics Stochastics Rep.

55 (1995), 121–140.
12. Lipster, R. and Shiryayev, A. N.: Theory of Martingales, in: Mathematics and its Applica-

tions, (1989), Kluwer Academic Publishers.
13. Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian motions, frational noises and

applications, SIAM Rev. 10 (1968) no. 4, 422–437.

14. Nualart, D.: The Malliavin Calculus and Related Topics, Springer-Verlag, 1995.
15. Nualart, D.: Stochastic calculus with respect to the fractional Brownian motion and appli-

cations, Stochastic models (Mexico City, 2002), 3–39, Contemp. Math. 336, Amer. Math.
Soc., 2003.

16. Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, 3rd edition,
Springer-Verlag, 1999.

17. Rogers, L. C. G.: Arbitrage with fractional Brownian motion, Math. Finance 7 (1997),
95–105.

18. Wood, A. T. A. and Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d, J.

Comput. Graph. Statist. 3 (1994), no. 4, 409–432.
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