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Abstract

We give a numerical method to calculate the optimal self-financing portfolio of
stock and risk-free asset to maximize the wealth’s expected future utility, in the
case of stochastic volatility and discrete observations: the portfolio stock allocation
is only allowed to change discretely in time at fixed time intervals. We use a
particle-filtering and Monte-Carlo-type algorithm, which we implement forward
in time in the case of power utility.
Keywords: portfolio optimization, stochastic volatility, particle filtering, Monte-
Carlo method, expected utility, diffusion processes, numerical implementation.

1 Introduction and summary

For many markets, the Black-Scholes (BS) model’s basic assumption, that a
stock’s volatility is constant, is far from being satisfied. Empirical evidence for
this inadequacy is known to include the so-called volatility smile for implied
volatilities, and other phenomena not visible within the BS model. Many natural
extensions posit the volatility itself is random; when it is a stochastic process, this
is the stochastic volatility (SV) model, which we use in this article. We propose a
systematic way to optimize a portfolio of continuous-time SV stock and risk-free
asset using a discrete-time strategy, thereby offering a way to minimize transaction
costs.

Section 2 presents a short overview of the optimal portfolio selection problem,
and its position in the literature, including some references on stochastic volatility,
and a short list of ways which have been suggested to tackle the issue of non-
constant volatility. Section 3 describes the SV model, along with tools needed to
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understand our portfolio optimization problem, including (i) optimal stochastic
volatility filtering under discrete observations, and its interacting particle method;
(ii) the solution, developed in Viens [12], of the discrete observation optimization
problem using a Bellman principle and stochastic dynamic programming. Because
the algorithm in Viens [12] is too complex to be implemented, we show, in
the special case of power utility in Section 4 how to reduce the complexity
tremendously by using a simple mathematical argument, and a reasonable
additional approximation. In section 5, results of our numerical implementation are
presented, showing that our method typically outperforms the standard Hamilton-
Jacobi-Bellman solution based on the BS model (the classical case of R. Merton,
see Bjork [1, Ch. 14]). Conclusions are drawn in Section 6.

2 Scientific context

In the SV class of models, volatility depend on a latent unobserved stochastic
process, which can be interpreted as a rate at which new economic information is
absorbed by the market. See Ghysels et al. [10] for a survey of SV, Fouque et al.
[6] for a detailed study of SV option pricing under fast mean reversion, and Cont
et al. [11] for a number of recent advances by various authors. The main question
in much of these works is that of SV estimation, a challenging statistical problem.
The methodology we have chosen is a Bayesian one, specifically that of optimal
non-linear stochastic filtering, where the discretely observed stock prices contain
the useful information: see Section 3. Other SV Bayesian techniques which do
not intersect ours have been proposed. In Frey and Runggaldier [7], an entirely
different type of filtering is performed using the information contained in random
observation times. Another different kind of “filtering” is the statistical estimation,
pioneered by D.B. Nelson (see Fornari and Mele [8]), of coefficients in time
series models of ARCH/GARCH type, which approximate SV models for high-
frequency observations. The “method of moments” can be considered as a further
distinct type of filtering: see Gallant et al. [9].

The portfolio optimization problem, in its basic form, is to maximize the
expected future wealth (as measured using a concave utility function) of a portfolio
of stock and risk-free account, using a self-financing dynamic strategy. In the
SV literature, little attention has been given to this question. The few solutions
rely on the assumption of high-frequency or continuous trading, e.g. Fouque
et al. [6, Chapter 10]. Only Viens [12] addresses the question with discrete-
time observation and trading, but gives no hope for a practical implementation,
because the algorithm is akin to a finite difference method for a PDE whose state
space has a desperately high dimension. Our paper is the first to give a solid
practical algorithm for portfolio utility optimization under continuous-time SV
with dynamic discrete time updating; we are also among the first (see also Florescu
and [5], and Desai et al. [4]) to show how optimal stochastic volatility filtering can
be useful numerically.
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3 Stochastic volatility, discrete observations, and optimization

In our partial information setting there is no means of obtaining an arbitrarily
accurate estimate of stochastic volatility. This section provides the estimator given
by the stochastic volatility filter and its particle method. We then show how
this “smart” (interacting) Monte-Carlo-type algorithm, combined with a further
Monte-Carlo algorithm for one-step portfolio maximization, approximates the
optimization problem.

3.1 The model and the problem

Under the market’s probability measure P, the stochastic volatility model for the
stock price X and the risk-free asset B is

dXt = Xtµdt + Xtσ(Yt)dWt, Bt = ert (1)

for all t ≥ 0, where W is a Brownian motion, eqn (1) is in the stochastic Itô sense
(see Bjork [1]), µ is the constant mean rate of return, and σ(Yt) is a deterministic
function of a stochastic process Yt that satisfies a diffusion equation driven by
another Brownian motion Z with corr(W, Z) = ρ where 0 ≤ |ρ| < 1, i.e.

dYt = α(Yt)dt + γ(Yt)dZt. (2)

The choice of the function σ is not fundamental: many choices will yield
models which are difficult to distinguish empirically. One commonly assumes
σ(x) = exp(x). The choice of the law of Y is crucial. A popular choice, esp.
in the case of highly traded assets and indexes (see Fouque et al. [6]), is a fast-
mean-reverting process such as the Ornstein-Uhlenbeck process with a large α,
i.e.

dYt = α(m − Yt)dt +
√

αdZt. (3)

For simplicity of notation, we assume now and throughout that our observation
times are the non-negative integer i = 0, 1, ...N , with N our time horizon.
For a fixed scenario x̄ = (x0, ..., xN ), let F x̄

i be the event F x̄
i :=

{X0 = x0, ..., Xi = xi} (information from observations up to time i). We will
often use the notation x̄i := (x0, ..., xi). The stochastic volatility filtering problem
is to estimate the conditional probability distribution px̄

i (dy) := P [Yi ∈ dy|F x̄
i ].

This is called the optimal stochastic filter because it minimizes its distance to
the actual value of Y in the sense of least squares, i.e. using L2 norms under
conditional expectation given the observations F x̄

i .
A portfolio is defined by (a, b) = (ai, bi)N

i=0,where ai represents the number of
units of stock X in our portfolio at time i, and bi the number of units of the risk-
free asset (one unit is worth one dollar at time 0). This portfolio’s wealth process
W , with constant stock holdings in each time interval to ensure that no transaction
costs are incurred, is thus for every s ∈ [i, i + 1]: Ws = Wai,bi

s = aiXs + biBs.
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Using the convenient substitution bi = (Wi − xiai)e−ri, the self-financing
condition now simply reads

Ws = aiXs + (Wi − Xiai)er(s−i) (4)

for all i = 0, 1, 2, · · · , N − 1, and for all s ∈ [i, i + 1]. Since in addition the
initial wealth W0 = w0 is known, we see that the system is defined solely using
the control variable ai and the state variable xi in each interval. Let U be an
increasing and concave function on R+, the utility function. In this paper we will
use the popular so called HARA case U (w) = wp/p for some p ∈ (0, 1). The
only condition we must impose on the set A0 of admissible sequences (ai)i is
that ai depend solely on what information is available, i.e. ai = ai (w0, x̄i). Our
task is to find a dynamic portfolio a∗ = (a∗

i )
n
i=1 that attains the supremum in the

P-expectation

V (0, x0, w0) = sup
a∈A0

E
[
U

(
Wa,b

N

)∣∣∣ X0 = x0,W0 = w0

]
. (5)

3.2 Filtering with stochastic volatility

Viens [12] can be consulted for a recursion formula for the filter pi(dy). However,
this formula cannot be evaluated explicitly. The interacting particle (or smart
Monte Carlo, or MCMC) algorithm established in Del Moral et al. [3], yields a
decent approximation (order n−1/3) of px̄

i (dy) as the empirical distribution of a
family of n particles (Y k

i )n
k=1:

p̂x̄
i (dy) :=

1
n

n∑
k=1

δY k
i
(dy). (6)

We refer to Florescu and Viens [5] for a complete description of the algorithm,
and to Del Moral et al. [3] for a proof of the convergence result. Summarizing,
let us note that the particles evolve according to the iteration of a two-step
(selection/mutation) process. In the mutation process, they evolve independently
according to the Euler approximations of appropriate diffusions (dynamics given
by eqns (1) and (2)), with number of time steps m = n1/3 in each interval of length
1. The proof presented in Del Moral et al. [3] assumes that ρ = 0, and shows the
convergence in L1 of p̂x̄

i (f) to px̄
i (f) for deterministic bounded test functions f .

The extension to the case of ρ ∈ (−1, 1) is stated in Viens [12]. Our simulations
indicate that our particle filter is good at stabilizing quickly, following the actual
mean-reverting signal Y , and converges relatively fast to the optimal filter; in fact,
our empirical convergence speed seems to be on the order of m−3/2 = n−1/2,
which is considerably faster than the result in Del Moral et al. [3], and is consistent
with the comments in that reference indicating that ergodic signals should see
faster convergence.
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4 Numerically implementable approximation

We embed our portfolio optimization problem (5) at time 0 into a dynamic one as
follows: for all w, x, x̄, for all i = 1, 2, ..., N , for all s ∈ [i, i + 1], find

V (s, x, w) = V (s, x, w; x̄i) = sup
a∈A0

E[U(Wa
N)|Xs = x,Wa

s = w,F x̄
i ]. (7)

A discrete Bellman principle was established in Viens [12] for the dynamic
optimization problem (7), showing that the entire optimization can be solved by
a discrete iteration of continuous HJB equations in the individual successive time
intervals. Unfortunately, implementing this iteration backwards in time starting
from V (N, x̄N , w) = U (w) is essentially hopeless because it is akin to a finite-
difference method whose state variable x̄i has a time-dependent dimension which
is extremely high even for moderate i.

In order to circumvent this problem, we take advantage of the HARA case
U (w) = wp/p which features the possibility of preserving, approximately, the
power form of V in the parameter w. With such an approximation, we will see
that a time-forward algorithm can be developed in order to calculate the optimal
strategy a∗

i (w, x̄i) directly, without needing to know V (i, x̄i, w). If one then
wishes to find the initial maximum expected future utility, one then only needs
to use the optimal strategies a∗ computed for a number of scenarios, keeping track
of the corresponding wealth processes, so that V (0, w0, x0) can be obtained a
posteriori by any Monte-Carlo method in a low-complexity way directly from eqn
(5), replacing the supremum by the evaluation for a∗.

4.1 Mathematical analysis

The SV filtering algorithm results in a sequence indexed by time i of a set

of n pairs of particles
(
X̂k

i , Y k
i

)n

k=1
which approximate the distribution of(

Xi, p
X̄
i

)
given the observations x̄i. Assume that we have constructed, as in Viens

[12], an algorithm using these particles that outputs functions V̂ (i, x̄i, w) as an
approximation to V (i, x̄i, w). In accordance with the Monte-Carlo method of [12],
using eqn (4), and the notation

β̂k (x̄i) := X̂k
i+1 (x̄i) − xie

r, (8)

one can check we must have

V̂ (i, x̄i, w) = max
a∈R

1
n

n∑
k=1

V̂
(
i + 1, x̄i, X̂

k
i+1, aβ̂k (x̄i) + wer

)
. (9)

We now prove that V̂ (i + 1, x̄i+1, w) = (wp/p)K (i + 1, x̄i+1) for some
function K , using induction. For i = N , V̂ (N, x̄N , w) = wp/p obviously has the
correct form with KN ≡ 1. Plugging this form for V̂ (i + 1, ·) above, to evaluate
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V̂ (i, ·) by evaluating the extremum, we only need to consider the zeros of the
derivative with respect to a for the resulting function, namely those a = werλ
where λ solves

n∑
k=1

K(i + 1, x̄i, X̂
k
i+1)β̂k(x̄i)(λβ̂k(x̄i) + 1)p−1 = 0. (10)

The derivative w.r.t. λ of the quantity above is always negative, which proves the
sole extremum λ = λ∗ does correspond to a maximum a∗ = a∗

i (w, x̄i) = werλ∗

in eqn (9). This allows us to conclude

V̂ (i, x̄i, w) =
wp

p
erp 1

n

n∑
k=1

K(i + 1, x̄i, X̂
k
i+1)(λ

∗β̂k(x̄i) + 1)p (11)

=:
wp

p
K(i, x̄i).

Since λ∗ solving eqn (10) depends only on x̄i and the particles, not on w, the
same holds for Ki in the last expression above, which also serves as a backward
induction formula to calculate Ki. Also note that since wi depends only on w0 and
x̄i, the same holds for a∗.

4.2 Simplification: our algorithm

In order to make the above solution forward in time, assume for the moment that
the quantity K(i + 1, x̄i+1, X̂

k
i+1) does not in fact depend on k. Then λ∗ is the

unique solution of

0 =
n∑

k=1

β̂k(x̄i)(λ∗β̂k(x̄i) + 1)p−1 (12)

computable forward in time with only the knowledge of β̂k(x̄i) which can be
calculated via their definition (8) at the same time as the filter. Equation (12) is
the only equation the portfolio manager needs to solve to find the approximate
optimal allocation a∗ = werλ∗.

This assumption on K̂ corresponds to approximating each X̂k
i+1 by their

empirical average X̌i+1 = 1
n

∑n
k=1 X̂k

i+1. The variance of the error of each such
approximation (which, by the propagation-of-chaos results in Del Moral [2] are
known to be approximately IID for reasonably large n) is on the order of the length
of the time interval ∆t used to simulate X̂k

i+1 starting from the observed xi. In
our presentation, ∆t = 1, but this is only for convenience. The accumulation of
these errors in eqn (11) yields a variance of order n−2n∆t = ∆t/n, showing that
unless ∆t is quite large, the error introduced by this new approximation will be
of a smaller order than the particle filtering error n−1/3. A proper mathematical
justification of this approximation would take us beyond the scope of this article.
We now give a detailed summary of our new forward-only algorithm. Since this
algorithm runs using a single sequence x̄ of observations, we have suppressed the
notation x̄ throughout.
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4.2.1 Preliminary steps
Decide on a number of particles n such that the error 1/

√
n is satisfactorily small.

Let m = n1/3, the number of Euler time steps per each time step [i, i + 1].
Let V̂ (N, w) = wp/p. Let Xk

0 = x0, Y k
0 = yk

0 , for all k = 1, · · · , n. A
preliminary filter can be run prior to starting the optimization (time 0), in order
to generate realistic initial particles yk

0 : it is a way to implement a “break-in”
period for the filter, one after which the filter’s stability property will eliminate
any misspecification of its initialization.

4.2.2 On-line time loop
For all i = 0 to N − 1, repeat
Particle Filtering: use the method of Del Moral et al. [3, Section 5] (see Florescu
and Viens [5]) to calculate the approximate filter p̂x̄

i from p̂x̄
i−1, as the empirical

measure of the n particles {Y k
i }n

k=1.
Euler/Monte-Carlo step for the optimization: For each k = 1, · · · , n, let X̂k

i+1 be

the endpoint X̂k
i (m) of the m-step Euler method to simulate (Xi+1, Yi+1) using

the (X, Y ) dynamics starting at time i from the starting point (xi, Y
k
i ), where Y k

i

is the k-th particle of the filter p̂x̄
i . Specifically, with (χi,k

m ) and (ζi,k
m ) independent

families of IID standard normals, for all j = 0, · · · , m − 1

X̂k
i (j + 1) = X̂k

i (j) + X̂k
i (j)µm−1 + X̂k

i (j)σ(Ŷ k
i (j))m−1/2χi,k

m ,

Ŷ k
i (j + 1) = Ŷ k

i (j) + α(Ŷ k
i (j))m−1 + γ(Ŷ k

i (j))m−1/2ζi,k
m .

Maximization step: Evaluate the quantities β̂k := X̂k
i+1−xie

r and find the solution

λ = λ∗
i of

∑n
k=1 β̂k(λβ̂k + 1)p−1 = 0, using any numerical procedure known for

finding a root of nonlinear equation, such as simulated annealing.
Portfolio selection. The portfolio manager changes stock and risk-free account
allocations in a self-financing way to obtain a∗

i = wie
rλ∗

i where wi is the current
wealth before the allocation change.

4.2.3 Computation of initial maximal expected future utilities (optional)
In order to present possible objectives for the client, for each fixed initial wealth
of interest w0, the portfolio manager may run repeated simulations of Step 1 for
a large number of varying stock scenarios x̄, and then calculate the average of all
terminal wealth utilities (wN )p/p to yield a good approximation for V (0, x0, w0).

5 Numerical results

We have coded our algorithm, implementing both steps 1 and 2 above. Our
main code outputs the sequence of optimal strategy values a∗

i (w0, x̄i) and its
corresponding dynamic wealth sequence wi(w0, x̄i) for any given sequence of
observed stock prices x̄. In order to obtain the maximum expected future utility, as
described in step 2 above, we have implemented a further Monte-Carlo method by
simulating, independently of step 1, a large number of sequences of stock prices
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Figure 1: Optimal wealth W for eight typical scenarios. Params: m = 230,
N = 50, σ0 = 0.25, α = 5, µ = 0.05, r = 0.02, p = 0.04.

and volatilities following the true dynamics of (X, Y ) as in eqns (1), (2); each
of these gives rise to a sequence x̄ which is fed into the main code, resulting in
a wealth at each time i ≤ N . For i = N , these wealths are then injected into
U(w) and averaged yielding a Monte-Carlo approximation of V (0, w0). Using
this approximation, we have been able to observe that a misspecification of the
model, by which one assumes that volatility is constant (equal to the level of mean
reversion), yields a significant decrease in expected utility, as one would hope.
The wealth for a fixed scenario x̄ can also be plotted individually (fig. 1), and
compared to other strategies for the same scenario, such as pure stock, pure risk-
free account, Merton’s constant volatility scheme, and arbitrary randomly chosen
strategies (see fig. 2). In fact, our fig. 2, which is typical of many scenarios for
our choice of parameters, represents an average of dynamic utility over several
scenarios. The solid red line corresponds to our method, while the dashed red
line is Merton’s method. We have strived to show pictures of typical situations,
rather than repeating our algorithm until a favorable picture was obtained. This
can be seen from the fact that the all-in-bank method (blue) outperforms many
other strategies, because of poor stock performance. Nevertheless, our strategy is
nearly systematically outperforming the constant-volatility method. It also does
better than most random strategies. All-in-stock (brown) is clearly the loser in our
simulated bearish market. As a measure of prudence, we have made sure that,
when volatility is nearly constant (case of very small α), our method yields, as
it should, nearly the same portfolio as the Merton case (optimization for the BS
model): a∗ = σ−2(µ − r)/(1 − p), where σ = exp Y0 which we chose ≡ 0.25.
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Figure 2: Dynamic average utility over 240 scenarios. Parameters are the same as
in fig. 1.

6 Conclusions

Beyond solving the implementability issue for the algorithm of Viens [12] by way
of an explicit calculation and an approximation tailored to the HARA case, our
work has an important practical economic consequence. For investors who cannot
observe and trade SV stock at high-frequency because of prohibitive transaction
costs, rather than using an ad-hoc discrete adaptation of a continuously traded
strategy, our algorithm provides the optimal portfolio selection method based
solely, and dynamically, on moderate-frequency observations of a high-frequency
asset price modeled by a continuous-time SV diffusion.
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