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Abstract

We study the time-regularity of the paths of solutions to stochastic par-
tial differential equations (SPDE) driven by additive infinite-dimensional
fractional Brownian noise. Sharp sufficient conditions for almost-sure
Hölder continuity, and other, more irregular levels of uniform continu-
ity, are given when the space parameter is fixed. Additionally, a result is
included on time-continuity when the solution is understood as a spatially
Hölder-continuous-function-valued stochastic process. Tools used for the
study include the Brownian representation of fractional Brownian motion,
and sharp Gaussian regularity results.

Key words and phrases: Fractional Brownian motion, stochastic PDE,
path regularity, Gaussian theory, Banach-space-valued process.

1 Preliminaries

1.1 Introduction

In this article, we study the path regularity of solutions to stochastic partial
differential equations (SPDE) which are driven by fractional Brownian noise.
Before explaining the precise implications of our results, we begin this article
with a quick survey of the subject of path regularity for SPDEs with standard
Brownian noise. This theory has existed for many years. The now classical
analytic techniques, such as the factorization method made popular by Da Prato
and Zabczyk (see [3]), represent an important functional-analytic step in the
direction of understanding the local behavior of the solution of a SPDE; the basic
premise in this framework is that the equation’s solution is a stochastic process
of a one-dimensional time parameter, with values in an infinite-dimensional
Hilbert space of functions. Path regularity is then given in the time parameter
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only. Such a framework can be traced back further, to the original inception of
SPDEs, and questions of existence and uniqueness, such as in [12]. By using the
embedding of continuity-defined Banach spaces (e.g. Hölder spaces) inside the
natural Hilbert spaces where an SPDE’s solution lives, results of joint continuity
in time and space can be obtained. The book [3] can again be consulted on this
topic.

On the other hand, if a SPDE has a well-understood probability law, the
standard technique of using the Kolmogorov lemma (see [7, Theorem I.2.1]) can
be invoked to prove joint continuity of the solution in both time and space pa-
rameters. This technique was used repeatedly in the 1990s, for various problems
including stochastic versions of the Heat and Wave equations. We mention [6] as
an example, but a complete list would be quite lengthy. Around the year 2000,
the incorporation of fractional Brownian behavior in time for SPDEs’ potential,
which began with such articles as [4] or [5], still only addressed regularity issues
by Kolmogorov-type techniques.

Consider the basic example of an SPDE, the stochastic heat equation for all
x ∈ R and all t ≥ 0:

X (t, x) = X (0, x) +
∫ t

0

∆xX (s, x) ds + W (t, x) . (1)

When looking at linear equations, especially those with additive noise as above,
much more is known about the solutions, and in particular, since the great ma-
jority of SPDEs studied are driven by Gaussian noise, one would be well-advised
to try and use the Gaussian property of the solution, if any, to obtain sharper
characterizations of the solution’s regularity. This program was achieved for spa-
tial regularity of stochastic heat equations (on general compact Lie groups) in [8]
and [9]: necessary and sufficient conditions for Hölder-continuity of the solution
in the space parameter were given in terms of the regularity of the equation’s po-
tential, and in terms of the potential’s spatial covariance. These results proved
to be a sharpening of those obtained previously by the Kolmogorov lemma.

It was not until the work of [10] and [11] that one realized these types of
results could be made even more precise, leaving the scale of Hölder-regularity
behind, and working with SPDEs driven by infinite-dimensional fractional Brow-
nian motion (fBm) as opposed to simply infinite-dimensional Brownian motion
(BM). Precise information about fBm can be found below in the present sec-
tion. Loosely speaking, fBm has correlated increments, while standard BM has
independent increments. The correlations may be positive (the case H > 1/2,
in the notation below), in which case fBm is more regular than BM, or negative
(the case H < 1/2), in which case fBm is more irregular than BM. Infinite-
dimensional versions of these processes have spatial regularities that are deter-
mined by their spatial covariance functions, and are not necessarily related to the
time regularity distinctions just described. It was proved in [10] and [11] that the
space regularity of the solution of a stochastic heat equation with linear additive
infinite-dimensional fBm-noise W (such as 1) is exactly (up to non-random con-
stants) the same as the spatial regularity of the random field Y = (I −∆)−H

W .
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This random field Y can be understood, in some generalized-function sense, as
the fractional spatial antiderivative of order 2H of Y .

These works leave entirely open the question of time regularity for fBm-
driven SPDEs. This is the topic which we propose to study here. In this article,
we restrict our study to the case H > 1/2. The case of smaller H will be the
subject of a separate article, and will require different tools. One conclusion we
can draw, as a consequence of our Theorem 1, is that the solution X to (1) is
α-Hölder continuous in time as long as the order-2H-spatial antiderivative Y =
(I −∆)−H

W is 2α-Hölder continuous in space, where if 2α > 1, this regularity
is interpreted as Y having a derivative which is 2α−1-Hölder continuous in space.
Also note that these statements can only be made if α ≤ H. We obtain a time-
continuity that is twice as rough as the space continuity, since, as mentioned in
the previous paragraph, space continuity in this situation would be of the class
2α-Hölder.

In this article we also prove that our time continuity theorems are sharp,
in the sense that if Y is not 2β-Hölder continuous in space, then X will never
be β-Hölder continuous in time. Our statements are so sharp that precise (up
to non-random constants) moduli of continuity can be given for X depending
on X’s covariance (Theorem 5). In the example in the previous paragraph,
f (r) = rα

√
log 1/r would be an almost-sure modulus of continuity for X in

time. Going even further in the generality of our results, our theorem 5 is not
restricted to Hölder-regularity: it actually reaches all regularity scales. This
kind of precise and wide-ranging formulation is possibly only by using the full
strength of the Gaussian property, via the continuity characterization results of
[11].

Nevertheless, the results in our article are perhaps best appreciated when
their implications in the Hölder-scale are combined together with what was
obtained in [11] for SPDE spatial regularity. Specifically our conclusions are
the following.

• If X is the evolution solution of the Stochastic Heat Equation (1) driven by
an infinite-dimensional noise term that is the time differential of a random
field W which is fBm in time with Hurst parameter H (see below for
the definition of the evolution solution), and if W is the order-2H-spatial
derivative, in the sense of generalized function (Schwartz distributions), of
a random field Y which is 2α-Hölder-continuous in space for some α ≤ H,
then X is α-Hölder-continuous in time, and 2α-Hölder-continuous in space.

• Moreover this result is sharp in the sense that the conclusion fails if Y is
not 2α-Hölder-continuous in space.

• The joint space-time continuity of X under the above hypotheses can only
be guaranteed up to Hölder order α. In other words, we lose the knowledge
of having twice as much regularity in space as in time, if regularity is
considered jointly in space-time.

The last part of this article shows that the techniques of Da Prato and
Zabczyk can be employed in our situation in order to give continuity of the
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solution X when it is to be understood as a stochastic process with values in
the Banach space B of K-Hölder-continuous function, for any fixed K < H.
Our result (Theorem 7) shows that if Y is spatially 2α + K-Hölder, then X is,
as a B-valued function, Hölder-continuous of order β for any β < α. Note here
that 2α + K may be larger than 1, and in that case, we interpret the result as
saying that the derivative of Y is 2α + K − 1-Hölder continuous.

The paper is structured as follows: in the remainder of this section, we give
the basic mathematical setup and tools needed for our analysis, including the
one-dimensional and infinite dimensional fBm objects. Section 2 deals with
the regularity results in time for fixed space parameter. Section 3 presents the
time-regularity results when X lives in a Banach space of Hölder-continuous
functions.

1.2 The Wiener integral with respect to fractional Brow-
nian motion

Consider T = [0, τ ] a time interval with arbitrary fixed horizon τ and let
(BH

t )t∈T be the one-dimensional fractional Brownian motion with Hurst pa-
rameter H ∈ (0, 1). This means by definition that BH is a centered Gaussian
process with covariance

R(t, s) = E
(
BH

s BH
t

)
=

1
2

(
t2H + s2H − |t− s|2H

)
. (2)

It is a process starting from zero with stationary increments,

E
(
BH

t −BH
s

)2
= |t− s|2H , (3)

which is self-similar, that is, BH
αt has the same distribution as αHBH

t . Note
that B1/2 is standard Brownian motion. BH has the following Wiener integral
representation:

BH
t =

∫ t

0

KH(t, s)dWs

where W = {Wt : t ∈ T} is a Wiener process, and KH is the kernel given by

KH(t, s) = cH

(
t

s

)H− 1
2

(t− s)H− 1
2 + s

1
2−HG

(
t

s

)
, (4)

for s < t, cH being a constant and

G(z) = cH

(
1
2
−H

)∫ z−1

0

rH− 3
2

(
1− (1 + r)H− 1

2

)
dr.

From (4) we obtain

∂KH

∂t
(t, s) = cH

(
H − 1

2

)
(t− s)H− 3

2

(s

t

) 1
2−H

.
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Let EH be the linear space of step functions on T of the form

ϕ(t) =
n∑

i=1

ai1(ti,ti+1](t)

where 0 = t1 < t2 < · · · < tn < tn+1 = τ , n ∈ N, ai ∈ R and let H be the
closure of EH with respect to the scalar product〈

1[0,t], 1[0,s]

〉
H = R(t, s).

For ϕ ∈ EH we define its Wiener integral with respect to the fractional Brownian
motion as ∫

T

ϕsdBH(s) =
n∑

i=1

ai

(
BH

ti+1
−BH

ti

)
.

The mapping

ϕ =
n∑

i=1

ai1(ti,ti+1] →
∫

T

ϕsdBH(s)

is an isometry between EH and the linear space span{BH
t , t ∈ T} viewed as a

subspace of L2(Ω) and it can be extended to an isometry between H and the
first Wiener chaos of the fractional Brownian motion spanL2(Ω){BH

t , t ∈ T}.
The image of an element Φ ∈ H by this isometry is called the Wiener integral
of Φ with respect to BH .

For every s < τ , consider the operator K∗ in L2(T )

(K∗
τ ϕ)(s) = K(τ , s)ϕ(s) +

∫ τ

s

(ϕ(r)− ϕ(s))
∂K

∂r
(r, s)dr.

When H > 1
2 , the operator K∗

τ has the simpler expression

(K∗
τ ϕ)(s) =

∫ τ

s

ϕ(r)
∂K

∂r
(r, s)dr.

For any t ∈ T we can define K∗
t similarly. The fact that K∗

τ is an isometry
between H and L2(T ) is proved in [2]. As a consequence, we have the following
relationship between the Wiener integral with respect to the fractional Brownian
motion and the Wiener integral with respect to the Wiener process W :∫

T

ϕ(s)dBH(s) =
∫

T

(K∗
τ ϕ)(s)dW (s)

which holds for every ϕ ∈ H if and only if K∗
τ ϕ ∈ L2(T ). For any s, t ∈ T ,

one can check that K∗
τ

(
ϕ1[0,t]

)
(s) = K∗

t (ϕ)(s)1[0,t](s). Then we can define the
stochastic integral

∫ t

0
ϕ(s)dBH(s) by

∫ τ

0
ϕ(s)1[0,t](s)dBH(s), and obtain∫ t

0

ϕ(s)dBH(s) =
∫ t

0

(K∗
t ϕ)(s)dW (s)
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for every t ∈ T and ϕ1[0,t] ∈ H if and only if K∗
t ϕ ∈ L2(T ).

We also recall that when H > 1
2

E
[∫ τ

0

f(u)dBH(u) ·
∫ τ

0

g(u)dBH(u)
]

= αH

∫
T 2

f(s)g(t)|t− s|2H−2dsdt (5)

where αH = H(2H − 1).

1.3 The stochastic heat equation with infinite-dimensional
fractional Brownian motion

We consider the stochastic heat equation on the unit circle S1 driven by an
infinite-dimensional fractional Brownian motion (fBm):

∂X

∂t
(t, x) = ∆xX(t, x) +

∂BH

∂t
(t, x) (6)

where x ∈ S1, t ∈ [0, 1], X(0, x) = 0, H ∈ (0, 1), ∆ is the standard Laplacian
on S1, BH is a Gaussian field on [0, 1]×S1 whose behavior in time is fBm with
Hurst parameter H, and whose behavior in space is homogeneous (i.e. for every
t, BH(t, ·) is Gaussian and its covariance depends only on differences between
points). Note that while the theorems proved in this article are relative to
H > 1/2, the existence of the solution to (6) can be established for all H ∈ (0, 1),
as proved in [10].

The set of functions

{cos nx, sinnx : n ∈ N} (7)

is not only an orthogonal basis for L2(S1, dx) where dx is the normalized
Lebesgue measure on [−π, π), but also is exactly the set of eigenfunctions of
∆. We assume, as was done in [10], that the random field BH is given by a
random Fourier series:

BH(t, x) =
√

q0β
H
0 (t) +

∞∑
n=1

√
qn

(
βH

n (t) cos nx + β̃
H

n (t) sin nx
)

(8)

where {βH
n }n and {β̃H

n }n are IID fBm’s with common H ∈ (0, 1), and {qn}∞n=0

is a sequence of non-negative terms. The reader can refer to [10] for a detailed
treatment of the Gaussian field BH .

As done in theory of stochastic PDEs, let us write (6) in its weaker evolution
form:

X(t, x) =
∫ t

0

Pt−s[B(ds, ·)](x) (9)

where t ∈ [0, 1], x ∈ S1 and (Pt)t≥0 is the semigroup of operators generated by
the Laplacian on S1 whose action on L2(S1) is characterized by

Pt[ein·](x) = exp(−n2t)einx,
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which can be translated into a characterization using the trigonometric functions
(7).

Existence and uniqueness of the solution X to (9) is given in [10]. Moreover,
the following random Fourier representation holds for X:

X (t, x) =
∞∑

n=0

√
qn cos (nx)

∫ t

0

e−n2(t−s)βH
n (ds)

+
∞∑

n=1

√
qn sin (nx)

∫ t

0

e−n2(t−s)β̃
H

n (ds) ,

(10)

under a necessary and sufficient condition for existence

∞∑
n=1

qn

n4H
< ∞. (11)

2 Pointwise regularity of the evolution solution

A detailed study of the spatial regularity of (10) is provided in [11] for fixed time
parameter. Throughout the entire remainder of the article, we fix H > 1/2.
While in the next section, we will study the Hölder continuity in time when
the solution is considered as a function-valued process, this section is devoted
to the regularity of (10) in the time variable when the space variable is fixed.
Therefore, in this chapter, x ∈ S1 is fixed. We begin with a precise calculation of
the solution’s canonical metric; then we apply some simple estimates to obtain
a result of Hölder-continuity; lastly, we show this result in the Hölder scale is
sharp by formulating a more general time-continuity theory, which also applies
to other scales.

2.1 The canonical metric of X

In this subsection we evaluate the so-called canonical metric of X in the time
parameter, namely, for this fixed x, for all t1, t2 ∈ [0, 1], the quantity

δ2(t1, t2) := E
{

(X(t2, x)−X(t1, x))2
}

. (12)

The significance of this pseudo-metric is as follows. If one can prove that
for some increasing function ` defined on a neighborhood of 0 in R+, such that
limr→0 ` (r) = 0, for all t1, t2 in the same neighborhood,

δ (t1, t2) ≤ ` (|t1 − t2|) , (13)

then, since X is a centered Gaussian process, the theory of Gaussian reg-
ularity (see for example [1] or [11]) implies that the function η defined by
η (r) = ` (r) log1/2 (1/r) is almost surely a uniform modulus of continuity for
the stochastic process X (·, x) defined on [0, 1] (we must necessarily have lim0 η
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for this statement to be non-vacuous). The work in [11] shows that a converse
to this result exists, and therefore it is desirable to have a lower bound on δ2 of
the same form as (13). Such bounds, and their implications, are found in the
following subsections. Here we simply calculate δ2.

Using the fact that {βH
n }n and {β̃H

n }n are IID fBm’s, we obtain

δ2(t1, t2) = q0 E
{∫ t2

0

βH
n (ds)−

∫ t1

0

βH
n (ds)

}2

+
∞∑

n=1

qn cos2 nx E
{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}2

+
∞∑

n=1

qn sin2 nx E
{∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
}2

.

Now using (3) and the fact that the expectations in the last two terms are the
same, we have

δ2(t1, t2) = q0 |t2 − t1|2H

+
∞∑

n=1

qnE
{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}2

.

It remains to estimate the expectation in the above term using (5) for calculating
expectations. Assume t1 < t2, then

1
αH

E
{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}2

=
1

αH
E

{∫ t1

0

(
e−n2(t2−s) − e−n2(t1−s)

)
βH

n (ds) +
∫ t2

t1

e−n2(t2−s)βH
n (ds)

}2

=
∫ t1

0

∫ t1

0

(
e−n2(t2−s) − e−n2(t1−s)

)(
e−n2(t2−s′) − e−n2(t1−s′)

)
|s− s′|2H−2dsds′

+
∫ t2

t1

∫ t2

t1

(
e−n2(t2−s)

) (
e−n2(t2−s′)

)
|s− s′|2H−2dsds′

+ 2
∫ t2

t1

∫ t1

0

(
e−n2(t2−s) − e−n2(t1−s)

) (
e−n2(t2−s′)

)
|s− s′|2H−2dsds′

=
(
e−n2t2 − e−n2t1

)2
∫ t1

0

∫ t1

0

en2sen2s′ |s− s′|2H−2ds′ds

+ e−2n2t2

∫ t2

t1

∫ t2

t1

en2sen2s′ |s− s′|2H−2ds′ds

+ 2
(
e−n2t2 − e−n2t1

)
e−n2t2

∫ t1

0

∫ t2

t1

en2sen2s′ |s− s′|2H−2ds′ds

=
(
e−n2t2 − e−n2t1

)2

I1 + e−2n2t2I2 + 2
(
e−n2t2 − e−n2t1

)
e−n2t2I3,
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where

(I1) =
∫ t1

0

∫ t1

0

en2sen2s′ |s− s′|2H−2ds′ds

(I2) =
∫ t2

t1

∫ t2

t1

en2sen2s′ |s− s′|2H−2ds′ds

(I3) =
∫ t1

0

∫ t2

t1

en2sen2s′ |s− s′|2H−2ds′ds.

Letting

(I4) =
∫ t2

0

∫ t2

0

en2sen2s′ |s− s′|2H−2ds′ds,

we observe that 2(I3) = (I4)− (I1)− (I2) holds by symmetry.
Now let us calculate (I1) using change of variables u = s− s′, v = n2u and

finally applying Fubini’s theorem:

(I1) = 2
∫ t1

0

∫ s

0

en2sen2s′ |s− s′|2H−2ds′ds

= 2
∫ t1

0

∫ s

0

en2sen2(s−u)u2H−2duds

= 2
∫ t1

0

∫ s

0

e2n2se−n2uu2H−2duds

=
2

n4H−2

∫ t1

0

∫ n2s

0

e2n2se−vv2H−2dvds

=
2

n4H−2

∫ n2t1

0

(∫ t1

v/n2
e2n2sds

)
e−vv2H−2dv

=
1

n4H

∫ n2t1

0

(
e2n2t1 − e2v

)
e−vv2H−2dv

=
e2n2t1

n4H

∫ n2t1

0

(
1− e2v−2n2t1

)
e−vv2H−2dv.

Similarly,

(I2) =
e2n2t2

n4H

∫ n2(t2−t1)

0

(
1− e2v−2n2(t2−t1)

)
e−vv2H−2dv

and

(I4) =
e2n2t2

n4H

∫ n2t2

0

(
1− e2v−2n2t2

)
e−vv2H−2dv.

Keeping in mind that 2(I3) = (I4) − (I1) − (I2) we are ready to write (12)
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explicitly:

δ2(t1, t2) = q0 |t2 − t1|2H +
∞∑

n=1

qncH

{(
e−n2t1 − e−n2t2

)(
e−n2t1

)
(I1)

+
(
e−n2t1

) (
e−n2t2

)
(I2)−

(
e−n2t1 − e−n2t2

)(
e−n2t2

)
(I4)

}
.

We can rewrite this using the following function:

F (z) :=
∫ z

0

(
1− e2v−2z

)
e−vv2H−2dv. (14)

We finally have

δ2(t1, t2) = q0 |t2 − t1|2H +
∞∑

n=1

qncH

n4H

{ (
1− e−n2(t2−t1)

)
F

(
n2t1

)
+

(
en2(t2−t1)

)
F

(
n2(t2 − t1)

)− (
en2(t2−t1) − 1

)
F

(
n2t2

)}
. (15)

2.2 Hölder-continuity of the trajectories

For the sake of our presentation’s clarity, this subsection deals only with the
Hölder continuity of (10) in the time variable. The basic estimates introduced
here will be used to formulate a more general theory in the next subsection. We
use the general notation f ³ g for two positive function whose ratio is bounded
above and from below by two positive constants.

Theorem 1 Let H > 1
2 and α ≤ H be such that

∞∑
n=1

qn

n4H−4α
< ∞.

Then for any x ∈ S1, X(·, x) has β-Hölder continuous trajectories ∀β ∈ (0, α).
More precisely, the function r 7→ rα log1/2 (1/r) is almost surely a uniform
modulus of continuity for X (·, x).

Corollary 2 If
∑

qn < ∞, or a fortiori if there exists a sequence an such that
limn→∞ an = +∞ and

∑
qnan < ∞, we can guarantee that X (·, x) admits the

function k (r) = rH log1/2 (1/r) as an almost sure uniform modulus of continu-
ity. But this regularity cannot be improved no matter how fast an tends to +∞.
Specifically, if q0 6= 0, no function k̃ such that k̃ (r) = o (k (r)) is a uniform
modulus of continuity for X (·, x).

In order to prove these result, we will use the following estimates.

Lemma 3 F is increasing and F (z) ≤ (
1− e−2z

)
Γ(2H − 1).

Proof. Trivial. ¤
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Lemma 4 For all z ∈ [0, 1], F (z) ³ z2H .

Proof. Since e−v ³ 1, by the change of variables v′ = v/z, with F defined in
(14), we have

F (z) =
∫ z

0

(
1− e2v−2z

)
e−vv2H−2dv

³
∫ z

0

(
1− e2v−2z

)
v2H−2dv

= z2H−1

∫ 1

0

(v′)2H−2
(
1− e−2z(1−v′)

)
dv′.

Now use the fact that for all u ∈ [0, 1], 1− e−2u ³ u,

F (z) ³ z2H−1

∫ 1

0

(v′)2H−2z (1− v′) dv′

³ z2H ,

finishing the proof of the lemma. ¤
Proof of Theorem 1. To obtain the result, we would like to control δ(t1, t2)

from above with order |t2 − t1|α for some α ≤ H. We need to separate the sum
in the following

δ2(t1, t2) = q0 |t2 − t1|2H +
∞∑

n=1

qncH

n4H

{(
1− e−n2(t2−t1)

)
F

(
n2t1

)
+

(
en2(t2−t1)

)
F

(
n2(t2 − t1)

)− (
en2(t2−t1) − 1

)
F

(
n2t2

) }
into two parts, as n2(t2 − t1) < 1 (head) and n2(t2 − t1) ≥ 1 (tail).

First, let us estimate the tail of the series. Since F is increasing, F
(
n2(t2 − t1)

) ≤
F

(
n2t2

)
; also using the estimate of Lemma 3, we arrive at (CH being a constant

depending only on H and possibly changing from line to line)∑
n2(t2−t1)≥1

qnCH

n4H

{(
1− e−n2(t2−t1)

)
Γ(2H − 1)

+
(
en2(t2−t1)

)
F

(
n2(t2 − t1)

)− (
en2(t2−t1) − 1

)
F

(
n2(t2 − t1)

)}
≤

∑
n2(t2−t1)≥1

qnCH

n4H

{(
1− e−n2(t2−t1)

)
Γ(2H − 1) + F

(
n2(t2 − t1)

)}
≤

∑
n2(t2−t1)≥1

qnCH

n4H
Γ(2H − 1)

{(
1− e−n2(t2−t1)

)
+

(
1− e−2n2(t2−t1)

)}
=

∑
n2(t2−t1)≥1

qnCH

n4H

{(
1− e−n2(t2−t1)

)(
1 + 1 + e−n2(t2−t1)

)}
≤

∑
n2(t2−t1)≥1

qnCH

n4H

(
1− e−n2(t2−t1)

)2

. (16)

11



The last estimate follows from the fact that (1− e−x) (2 + e−x) ³ (1− e−x)2

when x ≥ 1. Now since (t2 − t1) ∈ (0, 1), for any 0 < α ≤ H, (16) can be
rewritten as∑

n2(t2−t1)≥1

qnCH

n4H
(1− e−n2(t2−t1))2α(1− e−n2(t2−t1))2−2α

≤
∑

n2(t2−t1)≥1

qnCH

n4H
n4α|t2 − t1|2α ≤

CH

∑
n2(t2−t1)≥1

qn

n4H−4α

 |t2 − t1|2α.

Next, we look at the head of the series∑
n2(t2−t1)<1

qnCH

n4H

{ (
1− e−n2(t2−t1)

)
F

(
n2t1

)
+

(
en2(t2−t1)

)
F

(
n2(t2 − t1)

)− (
en2(t2−t1) − 1

)
F

(
n2t2

) }
.

For 0 < α ≤ H and x < 1, it is clear that ex ≤ e
x2H−2α . Now, using Lemma (4),

F being increasing and n2(t2 − t1) < 1, we have(
en2(t2−t1)

)
F

(
n2(t2 − t1)

) ≤ CH
1

n4H−4α(t2 − t1)2H−2α
n4H(t2 − t1)2H

≤ CHn4α(t2 − t1)2α

and (
1− e−n2(t2−t1)

)
F

(
n2t1

)− (
en2(t2−t1) − 1

)
F

(
n2t2

) ≤ 0.

Therefore, the head of the series will have the upper bound

CH

∑
n2(t2−t1)<1

qn

n4H−4α
|t2 − t1|2α.

Finally, since |t2 − t1| < 1, we have |t2 − t1|2H ≤ |t2 − t1|2α for any α ≤ H,
and hence,

δ2(t1, t2) ≤
(

q0 + CH

∞∑
n=1

qn

n4H−4α

)
|t2 − t1|2α.

The first result of the theorem follows by applying Kolmogorov’s Lemma. For
the second result, it is sufficient to use the general Gaussian regularity theory
(see [11] or [1]). For the corollary, it is sufficient to note that by (15), δ2 (t, s) ≥
q0CH |t− s|2H irrespective of the other values of the qn’s, and to apply the
“necessary condition” results in [11]. . ¤

2.3 General theory of time-regularity

In this section we solve two separate problems. For any given candidate η for the
time-modulus of continuity of X (·, x), we give a simple criterion ensuring that

12



η is an almost-sure modulus of continuity for X (·, x). Then for any sequence
{qn}n∈N

, we provide a formula for a sharp modulus of continuity for X (·, x).
These results imply that the condition on {qn}n∈N

in Theorem 1 is a sharp
criterion to ensure the theorem’s conclusion, meaning that any strictly weaker
condition on {qn}n∈N

will imply a strictly weaker conclusion.

Theorem 5 Assume that there exists an increasing positive function ` on a
neighborhood of 0 such that the following series converges:∑

n

qn

n4H` (n−2)
< ∞. (H`)

Then there exists a constant K depending on {qn}n∈N
and H such that for all s, t

sufficiently close, δ2 (s, t) ≤ K` (|t− s|). Consequently, the function η defined
by

η (r) = ` (r)1/2 log1/2 (1/r)

is an almost-sure uniform modulus of continuity for X (·, x), as long as lim0 η =
0, and as long as r2H ≤ ` (r) in a neighborhood of 0.

Proof.
Step 0: setup. Let h = |t− s|. We decompose the series giving δ2 into

two parts, omitting the term corresponding to q0, splitting the series in two
according to whether n2h ≤ c0 where c0 is a constant depending only on H
which will be chosen appropriately. Therefore with

A2 = en2hF
(
n2h

)
,

A4 =
(
en2h − 1

)
F

(
n2t

)
,

A1 =
(
1− e−n2h

)
F

(
n2s

)
,

we have
δ2 (s, t)− q0 |t− s|2H = G (h) + J (h)

where
G (h) =

∑
n2h≤c0

qn

n4H
(A2 −A4 + A1)

and
J (h) =

∑
n2h>c0

qn

n4H
(A2 −A4 + A1) .

Here we are using an abusive shorthand notation for J and G, which appears
to indicate that δ2 (s, t) only depends on h = |t− s|; of course, this is not true,
and it would be more correct to denote J by Js,t (h) since A1 and A4 depend
on s and t respectively. But the estimates we will find on G and J will only
depend on h, which is why the abusive notation J = J (h) is meaningful.
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Step 1: head of the series. We first observe that A1 ≤ A4 in all cases.
When n2h ≤ c0, if we can prove that A2 ≥ 2 (A4 −A1), this will ensure that
G (h) is commensurate with

G̃ (h) :=
∑

n2h≤c0

A2
qn

n4H
.

Let z = n2h. Assume c0 ≤ 1. Also, in order to be able to formulate sharp lower
bounds, we assume that s > 0. This means that z is bounded below.

Following Lemmas 4 and 3, for z ≤ c0, F (z) ³ z2H , and ez ³ 1+ z ³ 1, and
ez − 1 ³ z, where all the commensurability constants are universal or depend
only on H. Thus for some constants cH and CH

cHz2H ≤ A2 ≤ z2HCH .

Now without loss of generality we assume s < t and we let a = n2s; we calculate

A4 −A1 = (ez − 1) F (z + a)− (
1− e−z

)
F (a)

= F (a)
(
ez + e−z − 2

)
+ (ez − 1) (F (z + a)− F (a)) .

We use the fact that (ez + e−z − 2) ³ z2, also ez − 1 ³ z, F (a) ³ 1, and
F (z + a)− F (a) ³ F ′ (a) z. These imply

A4 −A1 ³ z2 + z2F ′ (a) ,

where the commensurability constant depend only on H and on a positive lower
bound on s. We can now check that

F ′ (a) = 2e−2a

∫ a

0

evv2H−2dv ≤ CHe−a

for some constant CH . This proves that

A4 −A1 ³ z2.

Since on the other hand, we already saw that

A2 ³ z2H ,

there exists a constant c0 depending only on H such that if z ≤ c0, A2 ≥
2 (A4 −A1) as announced – indeed, by hypothesis there exist c1 and c2 such
that A4 − A1 ≤ c1z

2 and A2 ≥ c2z
2H ; a trivial calculation shows that if z ≥

c0 := (c2/ (2c1))
1/(2−2H), then A2 ≥ 2 (A4 −A1). We see in particular that this

constant c0 does not depend on a lower bound on s. On the other hand, the
lower bound of the commensurability relation on A4 − A1 does, but this last
bound will not be used for the proof of the current theorem.

With the upper bound on A2 we now have proved that there exists constants
cH , CH , and c0 depending only on H (and cH depends on a positive lower bound
on s), such that

cHh2H
∑

n2h≤c0

qn ≤ G (h) ≤ CHh2H
∑

n2h≤c0

qn. (17)
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Step 2: control the estimate of Step 1 using Condition (H`) of
Theorem 5. By the result of Corollary 2, we know that we can assume that
` (r) ≥ r2H . Then without loss of generality, we can assume that n4H`

(
n−2

)
is

increasing. Thus using Condition (H`)

+∞ >
∑

n2h≤c0

qn

n4H` (n−2)
≥ (h/c0)

2H
`−1 (h/c0)

∑
n2h≤c0

qn.

Also since ` (r) ≥ r2H , we can assume without loss of generality that ` (h/c0) ≤
C` (h) for some constant C depending only on C. We have thus proved, for
some constant C depending on H and {qn}n∈N

:

G (h) ≤ C`(h).

Step 3: tail of the series. When n2h ≥ c0, we have 1 − e−n2h ³ 1. The
estimate (16) still holds if one replaces t2 by t, t1 by s and n2(t2 − t1) > 1 by
n2(t− s) > c0. Now using Condition (H`), we can write

J (h) ≤ CH

∑
n2h≥c0

qn

n4H

(
1− e−n2h

)2

³
∞∑

n2h≥c0

qn

n4H
(18)

≤ ` (h/c0)
∞∑

n2h≥c0

qn

n4H` (n−2)
³ ` (h) .

We have thus proved that for some constant C depending on H and {qn}n∈N:

J (h) ≤ C` (h) .

We leave it to the reader to show the following fact, which will not be needed
here, but will become convenient in the next theorem, that for some other
constant c,

J (h) ≥ c
∞∑

n2h≥c0

qn

n4H
(19)

Conclusion. The conclusions of Step 2 and Step 3 finishes the proof of the
estimate on δ2, while the other claim is again a direct consequence of regularity
theory of Gaussian processes (see [11]), with the caveat due to the fact, which
we have noticed before, that δ2 (s, t) ≥ q0h

2H . ¤
The proof of the above Theorem 5 has enabled us to identify two fundamental

quantities in the estimation of δ2. We summarize the results of lines (17), (18),
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and (19):

δ2 (s, t) = q0 |t− s|2H + G (h) + J (h) ,

G (h) ³ G0 (h) := h2H
∑

n2h≤c0

qn,

J (h) ³ J0 (h) :=
∞∑

n2h≥c0

qn

n4H
.

The lower bounds in the above statements hold only for s, t bounded away from
0. The next result follows immediately, its last statement being a consequence
of the necessary condition results of [11].

Corollary 6 Let G0 and J0 be the two functions defined above. Then the func-
tion η defined by

η (r) := (G0 (r) + J0 (r))1/2 log1/2 (1/r)

is an almost-sure uniform modulus of continuity for X (·, x) on any closed inter-
val in (0, 1], as long as lim0 η = 0 and G0 (r) + J0 (r) ≥ r2H near 0. Moreover
η is sharp in the sense that if ζ ¿ η, then ζ is not an almost-sure uniform
modulus of continuity for X (·, x).

We turn to some examples.

• Hölder scale.

– The situation of Theorem 1 can be precisely achieved as follows.
Assume 0 < α ≤ H and

qn = n4H−1−4α.

Then one can easily check that G0 (r) ³ r2α ³ J0 (r), so that by the
preceding corollary, the function

η (r) = rα log1/2 (1/r)

is almost surely a sharp uniform modulus of continuity for X (·, x).

– In this example, we may recall the results of [11], which state that
the regularity is twice as good in space: ζ (r) = r2α log1/2 (1/r) is an
almost-sure modulus of continuity of X (t, ·) for any fixed t.

• Logarithmic scale.

– Assume there exists β > 1 such that

qn =
n4H−1

log2β n
.
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Then one can check that J0 (r) ³ log−(2β−1) (1/r) while G0 (r) ≤
log−2β (1/r) (the “tail” term of the series defining δ2 is dominant).
Hence

η (r) = log−(β−1) (1/r)

is almost surely a sharp uniform modulus of continuity for X (·, x).

– On the other hand, the space-regularity of X (t, ·) given in [11] for
this class of examples is significantly higher, especially for β close to
1: we find that the following function is an almost-sure modulus of
continuity for X (t, ·)

ζ (r) = log−(β−1/2) (1/r) ;

it is interesting to see here that the increase in regularity between
time and space moduli of continuity is not proportional to the space
regularity; it is always equal to the constant factor log1/2 (1/r) for
all β.

3 Regularity of the solution as a function-valued
process

Let B be the Banach space of Hölder continuous functions on S1 with parameter
K < H, endowed with the norm

‖f‖ = sup
x∈S1

|f(x)|+ sup
x6=y

|f(x)− f(y)|
|x− y|K .

Now considering (10) as a B-valued process on [0, 1]:

[0, 1] 3 t → X(t, ·) ∈ B,

we will deduce the continuity of X in the norm of B,

‖X(t2, ·)−X(t1, ·)‖ = sup
x∈S1

|X(t2, x)−X(t1, x)|

+ sup
x6=y

|X(t2, x)−X(t1, x)−X(t2, y) + X(t1, y)|
|x− y|K .

To estimate the second supremum, let us write

X(t2, x)−X(t1, x)−X(t2, y) + X(t1, y)
= (X(t2, x)−X(t2, y))− (X(t1, x)−X(t1, y))

=
∞∑

n=1

√
qn (cos nx− cos ny)

{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}

+
∞∑

n=1

√
qn (sinnx− sin ny)

{∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
}

.
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Then, we can obtain the following estimation, uniformly in space:

|X(t2, x)−X(t1, x)−X(t2, y) + X(t1, y)|
|x− y|K

≤
∞∑

n=1

√
qn
|cos nx− cos ny|

|x− y|K
∣∣∣∣∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

∣∣∣∣
+

∞∑
n=1

√
qn
|sin nx− sinny|

|x− y|K
∣∣∣∣∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
∣∣∣∣

≤
∞∑

n=1

√
qnCnK

{∣∣∣∣∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

∣∣∣∣
+

∣∣∣∣∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
∣∣∣∣
}

where C > 0 depends only on K. We made use of the fact that for arbitrary
γ ∈ [0, 1] there exists cγ > 0 such that

|sin x− sin y| ≤ cγ |x− y|γ ,

for all x, y ≥ 0 (which holds for cosine as well).
For the first supremum, note that

X(t2, x)−X(t1, x) =
√

q0

(
βH

0 (t2)− βH
0 (t1)

)
+

∞∑
n=1

√
qn cos nx

{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}

+
∞∑

n=1

√
qn sinnx

{∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
}

.

Therefore,

‖X(t2, ·)−X(t1, ·)‖ ≤ √q0

∣∣∣βH
0 (t2)− βH

0 (t1)
∣∣∣

+
∞∑

n=1

√
qn(1 + CnK)

{ ∣∣∣∣∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

∣∣∣∣
+

∣∣∣∣∫ t2

0

e−n2(t2−s)β̃
H

n (ds)−
∫ t1

0

e−n2(t1−s)β̃
H

n (ds)
∣∣∣∣
}

and

E ‖X(t2, ·)−X(t1, ·)‖2 ≤ q0|t2 − t1|2H

+ 2
∞∑

n=1

qn

(
1 + CnK

)2 E
{∫ t2

0

e−n2(t2−s)βH
n (ds)−

∫ t1

0

e−n2(t1−s)βH
n (ds)

}2

.

Now using the estimates in the proof of Theorem 1, the next result follows
immediately.
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Theorem 7 Let H > 1
2 and L,K ≤ H be such that

∞∑
n=1

qn

n4H−4L−2K
< ∞.

Then X is a.s. β-Hölder continuous as a B-valued process ∀β ∈ (0, L).
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