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Abstract

We extend the Skorohod integral, allowing integration with respect to Gaussian processes
that can be more irregular than any fractional Brownian motion. This is done by restricting the
class of test random variables used to define Skorohod integrability. A detailed analysis of the
size of this class is given; it is proved to be non-empty even for Gaussian processes which
are not continuous on any closed interval. Despite the extreme irregularity of these stochastic
integrators, the Skorohod integral is shown to be uniquely defined, and to be useful: an Ito
formula is established; it is employed to derive a Tanaka formula for a corresponding local
time; linear additive and multiplicative stochastic differential equations are solved; an analysis
of existence for the stochastic heat equation is given.
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1. Introduction

The purpose of this paper is to establish a stochastic calculus for processes that may
have longer-range negative interactions than evenfractional Brownian motion(fBm)
with small Hurst parameter H(see next section for definitions). This general class of
stochastic processes will encompass fBm withH < 1

2, and more generally any class
of Gaussian stochastic processes defined by any given scale of almost-sure uniform
continuity that is bounded below by the modulus of continuity of Brownian motion.
For processes that are not less regular than Brownian motion, a different construction
could be used, which we do not discuss here.
The topic of stochastic calculus, which originated more than 60 years ago, with

legendary associated names such as Levy, Ito, Stratonovich, saw a renewed interest in
the late 1980s, when, for example, a study of stochastic integration of non-adapted
processes with respect to Brownian motion first appeared in[15] in the context of two-
sided integration, and subsequently in [14] a general theory of anticipating stochas-
tic integration was developed using the connection to Skorohod integrals. Our work
inscribes itself in this context, which uses as its main tool theMalliavin calculus
(see for example Nualart’s book [13] on the topic).
The most recent trend in Malliavin calculus has been in the study of fBm, anticipating

stochastic integration being particularly well-suited for the study of this process whose
increments are not independent, but can still be represented using standard Brownian
motion. The theory of stochastic calculus for fBm is becoming relatively solid, whose
main results include Ito formulas (the chain rule for non-random functions of fBm)
which can be found for example in [1,2]. Other approaches to stochastic integration
w.r.t. fBm include the so-called Russo–Vallois integral, with recent stochastic calculus
results in [12,11]. However, both approaches have had difficulties in establishing the
Ito formula, which is the cornerstone of the stochastic calculus, particularly when the
fBm’s regularity, as measured by its Hurst parameterH, is in the rangeH ∈ (0; 14].
The Russo–Vallois integral has a limit ofH > 1

6, according to the recent results
of [11], despite some intriguing results for a special version of the Russo–Vallois
integral in [11] in which no restriction onH is needed. On the other hand, Cheridito
and Nualart propose in the preprint [6] a new, relaxed way of defining Skorohod
integration which results in an Ito formula with no restriction onH > 0. The idea is
to restrict the space of test random variable needed to define the notion of Skorohod
integrability. It is this idea which we adopt here. Our techniques and tools differ
significantly from the preprint [6] by their increased simplicity (freeing ourselves from
the use of fractional integrals and derivatives), and by their scope (going beyond the
Hölder regularity scale, including even unbounded integrators). Lastly we mention the
only other work which proposes an Ito formula for fBm withH � 1

4: that of [3], which is
in the context of white noise calculus, and also uses fractional integrals and derivatives
crucially.
We begin our study in Section 2 by proposing a basic and wide class of Gaussian

processes which contains processes very close to fBm, as well as processes which may
be much more irregular than fBm, including processes that are neither uniformly con-
tinuous nor bounded. Section 3 shows briefly how to define Wiener integration w.r.t.
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our processes, and gives a detailed account on how to approximate the filtrations gener-
ated by our processes. Before establishing the Malliavin calculus, Skorohod integration,
and the Ito formula for our processes in Section5, we take some time and effort in
Section 4 to evaluate the precise size of the Hilbert spaces on which our test random
variables will be constructed; this is particularly important since there is no a priori
guarantee that the spaces will not be empty, which would result in a failed definition
of the Skorohod integral. As applications of the Ito formula (Theorem 31), we estab-
lish a Tanaka formula and discuss related issues for the local time of our processes
in Section 6. Then, we solve some simple finite and infinite-dimensional stochastic
differential equations in Section 7. These last two sections of this article are meant as
an illustration of our theory of Skorohod integration: we do not seek the most general
results that may be readily available at this stage, as we hope to encourage further
research on the topic.
We are grateful to a wise question of Michael Röckner which lead us to include

Section 3.2 and the uniqueness result for the Skorohod integral.

2. Gaussian noise with arbitrary correlation

2.1. Definition

We begin by considering a class of Gaussian processes that may have arbitrary
correlation between increments. First, recall the scale of fBm is defined as the class of
centered Gaussian processesBH on R+ such that withH fixed in [0,1], BH (0) = 0
andE|BH (t) − BH (s)|2 = |t − s|2H . It is natural to generalize this class as follows.
Let � be a continuous increasing function onR+ or possibly only on a neighborhood
of 0 in R+, such that lim0 � = 0. The most naive idea is to attempt to defineB� to
be the Gaussian process such that

E|B�(t) − B�(s)|2 = �2(|t − s|),
B�(0) = 0.

However, the corresponding process may not exist because, depending on the exact
form of �, its covariance function may not be of positive type (symmetric and non-
negative definite). Therefore, for any fixed� as above, we will be satisfied with finding
a Gaussian processB such that the following hold:

(i) defining the canonical metric� of B on (R+)2 by

�2(s, t) := E|B(t) − B(s)|2

and denoting that two functionsf andg arecommensurable(f 
 g) if there exist
positive constantsc, C such thatcg(x)�f (x)�Cg(x) for all values of a common
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variablex, we have

�(s, t) 
 �(|t − s|);

(ii) B(0) = 0.
It is most comforting to assume thatB can also be taken to satisfy the following:

(iii) B is adapted to a Brownian filtration.
If �(r)?rH for all H > 0 then neighboring increments ofB are negatively

correlated, and the range of correlation is longer than for any fBm. Consider for
example the following choice of�: �2(r) 
 (log 1

r
)−1. It is worth noting that by

Gaussian regularity theory (see[18] for example), the corresponding processB is
not almost-surely uniformly continuous. We will analyze this and other examples
in more detail below.

Proposition 1. Let W be a standard Brownian motion onR+ with respect to the prob-
ability space(�, F, P ) and the filtration{Ft }t �0. Assume�2 is of classC2 everywhere
in R+ except at0 and thatd�2/dr is non-increasing. The following centered Gaussian
process satisfies conditions(i), (ii) and (iii) with respect to{Ft }t �0: for any t �0,

B(t) = B�(t) :=
∫ t

0
�(t − s) dW(s), (1)

where

�(r) :=
(

d(�2)
dr

)1/2
.

In fact the constants c and C in(i) can be taken as1 and
√
2 respectively.

Remark 2. TheC2 assumption on� is not restrictive in terms of the magnitude of the
almost-sure modulus of continuity ofB, and can be achieved without loss of generality
given the possibility of multiplying� by a factor that is bounded above and away from
zero.

Remark 3. The modulus of continuity� for a non-Lipshitz function�(r) satisfies
limr→0(d�/dr) = +∞. Thus, we can assume, again without loss of generality, that
d�/dr is decreasing. Moreover, since we are aiming to study processes that are less
regular than Brownian motion (for which�2(r) = r), we can assume without loss of
generality thatd�2/dr is non-increasing.

Proof of Proposition 1.Assumet > s. Then

E(B�(t) − B�(s))2=E

(∫ s

0
[�(t − r) − �(s − r)] dW(r) +

∫ t

s

�(t − r) dW(r)

)2
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=
∫ s

0
[�(t − r) − �(s − r)]2 dr +

∫ t

s

�2(t − r) dr

=
∫ s

0
[�(t − r) − �(s − r)]2 dr + �2(t − s) (2)

because
∫

�2 = �2. Thus it is sufficient to show that

∫ s

0
[�(t − r) − �(s − r)]2 dr ��2(t − s).

We calculate∫ s

0
[�(t − r) − �(s − r)]2 dr

= �2(t) − �2(t − s) + �2(s) − 2
∫ s

0

√
�2(t − r)�2(s − r) dr.

We assumed that�2 is non-increasing, so that∫ s

0
[�(t − r) − �(s − r)]2 dr

��2(t) − �2(t − s) + �2(s) − 2
∫ s

0
�2(t − r) dr

= �2(t) − �2(t − s) + �2(s) − 2(�2(t) − �2(t − s))

= �2(t − s) − (�2(t) − �2(s))

��2(t − s),

which finishes the proof. �
Stochastic integration with respect to the increments of a processB defined by

the previous proposition can be achieved by means of the Malliavin calculus, as we
will see below. The first step, however, is to understand the Wiener integral with
respect toB, and indeed much work can be achieved without stochastic calculus, using
only the Wiener integral, including linear additive stochastic evolution equations (see
Section7.2); the range of the Wiener integral (see Section 3.2) is even crucial in the
development of the stochastic calculus (see proof of Proposition 28). Before covering
these integrals, we conclude this section with some remarks on fBm.

2.2. Relation to fractional Brownian motion

The fractional Brownian motionBH , defined in the previous section, is a process
that also satisfies properties (i)–(iii). However, it does not quite satisfy a representation
formula (1). What we have shown above is that by letting�(r) = �H (r) = rH , we have
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constructed a processB�H whose covariance structure is commensurate with that of
fBm, which is to say that it shares the same regularity properties as fBm, and several
other crucial properties ((i)–(iii)); however,B�H is arguably easier to work with in
terms of stochastic calculus than fBm. This is an indication that for any other fixed
�, B� is a good choice for a process with covariance structure satisfying (i). A reader
who is familiar with the technicalities inherent in the use of fractional integrals and
derivatives needed to establish stochastic calculus for standard fBm, may appreciate the
ease with which we establish the Ito formula and other results in this article.
Our processB�H shares another important property with standard fBm: that ofself-

similarity, a.k.a. the power scaling property. We recall the relevant concept before
stating the result.

Definition 4. A stochastic processX defined onR+ is said to be self-similar with
parameterH if for any a > 0, the law of{X(at): t ∈ R+} and the law of{aH X(t): t ∈
R+} are identical.

Proposition 5. B�H is self-similar with parameter H.

Proof. By construction,B�H is a separable Gaussian process. Therefore, we only need
to check the self-similarity property on the first two moments of the finite-dimensional
distributions ofB�H . In other words, we need only to check that iff is a polynomial
of degree 2 on(R+)m and t1, . . . , tm are fixed times, we have

E[f (B�H (at1), . . . , B�H (atm))] = E[f (aH B�H (t1), . . . , aH B�H (tm))].

Since B�H is centered, it is thus sufficient to check this equality for monomials of
degree 2. Equivalently, we can calculate, for 0�s < t fixed, the following two second
moments:

�2t := E[B�H (t)2] and �(s, t)2 := E[(B�H (t) − B�H (s))2].

We get by definition of� that �2at =
∫ at

0 �2(at − s) ds = a2H t2H = a2H �2t , which is
the self-similarity property for this moment, while for the other term, the calculation
in the proof of the previous proposition yields immediately from (2):

�(as, at)2=
∫ as

0
[�(at − r) − �(as − r)]2 dr + �2(at − as)

=
∫ s

0
2H [(a(t − r ′))2H−1− (a(s − r ′))2H−1]2a dr ′ + (a(t − s))2H

=a2H
[∫ s

0
2H [(t − r ′)2H−1− (s − r ′)2H−1]2 dr ′ + (t − s)2H

]

=a2H �(s, t)2.

This finishes the proof of the proposition.�
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With so many shared properties between standard fBm and our processB�H , one
may ask what difference there is between the two processes. It is well-known (see for
example[16]) that fBm is the only stochastic process with finite variance that is self-
similar with parameterH and has stationary increments. ThereforeB�H cannot have
stationary increments. Of course, we can easily calculate by how much the increments
of B�H fail to be stationary. We record this in the following:

Remark 6. Standard fBmBH has stationary increments in the sense that for all
s, t, h ∈ R+,

E[(BH (t + h) − BH (t))2] = E[(BH (s + h) − BH (s))2].

The proof of Proposition1 (line (2)) shows that

1

2
E[(B�H (s + h) − B�H (s))2]�E[(B�H (t + h) − B�H (t))2]

�2E[(B�H (s + h) − B�H (s))2].

In other wordsB�H only fails to have stationary increments by factors no greater than 2.

3. Wiener integral with respect to B�

3.1. Definition

Let (B�(t))t∈[0,T ] be the centered Gaussian process defined by its Wiener integral
representation as in (1). We can formally take the differential of (1), to get

dB�(t) = dt

∫ t

0
�′(t − s) dW(s) + �(t − t) dW(t).

However, we are well aware of the fact that�(0) = +∞. Thus, we formally perform
the following transformation to properly define the Wiener integral: for a deterministic
function f

∫ t

0
f (t) dB�(t)=

∫ t

0
ds f (s)

∫ s

0
�′(s − r) dW(r) +

∫ t

0
f (s)�(s − s) dW(s)

=
∫ t

0
ds

∫ s

0
(f (s) − f (r))�′(s − r) dW(r)

+
∫ t

0
ds

∫ s

0
f (r)�′(s − r) dW(r) +

∫ t

0
f (s)�(s − s) dW(s)

=
∫ t

0
ds

∫ s

0
(f (s) − f (r))�′(s − r) dW(r)
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+
∫ t

0
f (r) dW(r)(�(t − r) − �(r − r)) +

∫ t

0
f (s)�(s − s) dW(s)

=
∫ t

0
ds

∫ s

0
(f (s) − f (r))�′(s − r) dW(r) +

∫ t

0
f (r) dW(r)�(t − r).

This justifies the following definition of the Wiener integral with respect toB�.

Definition 7. Let B� be defined as in (1). Let f be a deterministic measurable function
on R+. We define the operatorK∗ = K∗

� on f by

K∗
� f (r) :=

[
f (r)�(T − r) +

∫ T

r

(f (s) − f (r))�′(s − r) ds

]

if it exists. If K∗
� f (·) is in L2(dr) then we say thatf belongs to the spaceL2�([0, T ]),

and we denote

‖f ‖2� = ‖K∗
� f ‖2

L2([0,T ]) =
∫ T

0

∣∣∣∣f (r)�(T − r) +
∫ t

r

(f (s) − f (r))�′(s − r) ds

∣∣∣∣
2

dr.

This L2� is the so-calledcanonicalHilbert space ofB
� on [0, T ]. We will also denote

it by H. For anyf in H we define the stochastic integral off with respect toB� on
[0, T ] as the Gaussian random variable given by

∫ T

0
f (t) dB�(t) =

∫ T

0
dW(r) K∗

� f (r).

3.2. Sigma-fields

Let FT be the sigma field generated by our Brownian motionW up to timeT. Let
GT be the sigma field generated by all the Gaussian random variables

∫ T

0 f (t) dB�(t)

for f ∈ H. By the previous definition, we immediately haveGT ⊂ FT . The converse
inclusion does not seem to hold. To give an idea why, and in order to introduce the
result we can actually prove in this subsection, consider the following. If the opposite
inclusion did hold, we would have for eacht ∈ [0, T ] the existence of a functionf ∈ H
such thatK∗f = 1[0,t]. Assumet is fixed and strictly positive. Letg be a function in
L2([0, T ]). Consider the functionf in L2([0, T ]) defined byf (r) = g(r)1[0,t](r). For
r > t we clearly haveK∗f (r) = 0. For r � t , we have

K∗f (r)=g(r)�(T − r) +
∫ t

r

[g(s) − g(r)]�′(s − r) ds −
∫ T

t

g(r)�′(s − r) ds

=�(t − r)g(r) +
∫ t

r

[g(s) − g(r)]�′(s − r) ds.
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This shows thatK∗f does not depend onT. Note as a consequence that(Gt )t �T is a
filtration, the natural filtration ofB�.
It would remain to show thatg can be chosen so that the last expression above is

equal to 1 for allr � t . We can rewrite this equation asLg = g whereL is a linear
operator defined by

Lg = f0 + L0g,

where for all r � t ,

f0(r) = 1

�(t − r)
, L0g(r) = 1

�(t − r)

∫ t

r

[g(r) − g(s)]�′(s − r) ds.

Thus, we need to solve a fixed point equation. Unfortunately it does not seem possible
to show that the operatorL0 is stable over any Banach space of functions. Alternately,
one easily checks that for general� the Picard iteration based on the above fixed point
equation yields a diverging term after three iteration, even if the initial functionf0 is
in C∞

b , as is the case for the functionf0 above.
Abandoning this negative situation, we now establish positive results in the direction

of approximating the fieldGT generated byB�. These results will be crucial in the
sequel. For any functiong ∈ L2([0, T ]) we defineĝ(k) as its kth Fourier coefficient,
so that withek(x) = exp(2�T −1ik) the following equality holds inL2([0, T ]):

g(x) =
∑
k∈Z

ĝ(k)ek(x).

Lemma 8. Let � be as in Proposition1. For all x in a neighborhood of0, let E(x) =
x−1 ∫ x

0 �(s) ds. Let F E be the Banach space of functions defined by

F E =
{

g : g ∈ L2([0, T ]);
∑
k∈Z

|ĝ(k)|E(1/k) < ∞
}

.

For everyg ∈ F E , there exists a sequence(gn)n of functions inC∞
b such thatlimn gn =

g and limn K∗gn = K∗g where the limits hold inL2([0, T ]).

Proof. Without loss of generality we assumeT = 2� to simplify the notation. We
usegn(x) =∑

|k|�n ĝ(k)ek(x). TheL2-convergence limn gn = g follows by definition.
Moreover, we have

K∗(g − gn)(r) = G1(r) + G2(r),
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whereG1(r) = �(T − r)(g − gn)(r) and

G2(r) =
∑

|k|�n+1
eikr ĝ(k)

∫ T

r

(eik(s−r) − 1)�′(s − r) ds.

For the first term we have

∫ T

0
|G1(r)|2 dr �

∫ T

0
|�(T − r)|2

∑
|k|�n+1

|ĝ(k)eikr | dr = �2(T )
∑

|k|�n+1
|ĝ(k)|,

which converges to 0 by the definition ofF E since for smallx, E(x)��(x)�1. For
the second term, we bound|eikx − 1| above by 2 forx > 1/k and bykx for x�1/k,
yielding

∫ T

r

(eik(s−r) − 1)�′(s − r) ds�
∫ 1/k

0
ks|�′(s)| ds + 2

∫ T

1/k

|�′(s)| ds

=k

[
−1

k
�
(
1

k

)
+
∫ 1/k

0
�(s) ds

]
− 2�(T ) + 2�

(
1

k

)

�E(1/k) + �(1/k)�2E(1/k).

Therefore

∫ T

0
|G2(r)|2 dr �T


 ∑

|k|�n+1
|ĝ(k)|2E(1/k)



2

from which the lemma follows, again by definition ofF E . �
The proof of the next proposition requires the use of a sharp summability lemma

introduced in[18] in the context of Gaussian regularity theory.

Proposition 9. Let G∞ be the sigma field generated by the random variables
{∫ T

0 g(r) dB�(r) : g ∈ C∞
b }. ThenG∞ = GT .

Proof. It is sufficient to show that for any fixedg ∈ H the Gaussian variable∫ T

0 g(r) dB�(r) = ∫ T

0 K∗g(r) dW(r) is the limit in L2(�, FT , P ) of Gaussian vari-

ables of the form
∫ T

0 gn(r) dB�(r) for gn ∈ C∞
b . The Gaussian property implies that it

is sufficient to showK∗gn converges inL2([0, T ]) to K∗g. By the previous lemma, it
is sufficient to show thatg ∈ F E .
Since g ∈ L2([0, T ]) we can decomposeg into a Fourier series; we will do so

by extendingg into an even function on[−T , T ], so that its Fourier series contains
only cosine terms:g(r) = ∑∞

k=0 ak cos(2�kr/T ). Since F E is a vector space, by
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decomposingg into the sum of its Fourier terms forak �0 and the sum forak �0, we
can restrict ourselves toak �0. Moreover note that sinceg ∈ H, the function

r �→
∫ T

r

(g(s) − g(r))�′(s − r) ds (3)

is in L2([0, T ]). This means that for almost allr, the function g has to be
(Hölder-)continuous atr in order for the above integral to converge. We assume without
loss of generality thatr = 0 is such a point: otherwise the Fourier analysis in this
proof just needs to be shifted around anr �= 0. Hence, the formula

�2(r) := g(0) − g(r) =
∞∑

k=1
ak(1− cos(kr)) (4)

defines acanonical metric functionin the sense of[18]. Theorem 2 therein implies that
for any continuous decreasing functionh in a neighborhood of 0 such that

∫
0 h < ∞,

∞∑
k=1

akh(�2(1/k)) < ∞.

It now suffices to show that there exists a functionh as above such thath(�2(x))

�E(x) near 0. We rewrite the integral in (3) for r = 0

∞>

∣∣∣∣
∫ T

0
(g(s) − g(0))|�′(s)| ds

∣∣∣∣ =
∣∣∣∣
∫ T

0
�2(r)|�′(s)| ds

∣∣∣∣
=
∣∣∣∣lim0 �2� − �2(T )�(T ) +

∫ T

0
d(�2)(s)�(s)

∣∣∣∣ ,
where the last integral can be understood in the generalized Stieltjes sense. We leave
it to the reader to check that the last limit above is zero. Formula (4) defines�2 as a
continuous increasing function in a neighborhood[0, �] of 0. In particular, we get

∞ >

∫ �

0
d(�2)(s)�(s) =

∫ �2(�)

0
�((�2)−1(u)) du.

Therefore, we have found a decreasing continuous integrable functionh on (0, �] : h(u)

= �((�2)−1(u)), i.e. for all x near 0

h(�2(x)) = �(x).
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The last step in the proof is to show thatE(x)�2�(x). Since �2 is integrable at 0,
we can assume without loss of generality that�2(x)x is increasing near 0. This means
2�(x)�′(x)x + �2(x)�0, which implies for allx near 0

|�′(x)|
�(x)

� 1

2x
.

Thus, we have

∫ x

0
�(r) dr �2

∫ x

0
|�′(r)|r dr = −2�(x)x + 2

∫ x

0
�(r) dr

which implies

∫ x

0
�(r) dr �2�(x)x.

This is exactly the statement thatE(x)�2�(x), which finishes the proof. �

4. The canonical spacesH and H2

The above notion of Wiener integral, apart from being defined only for non-random
integrands, has the additional uninviting property that it is only defined for members
of H; we will see shortly that this canonical space is uncomfortably small, since it
may not even containC1/2 when � is very irregular. This implies that there should be
no hope of defining stochastic integrals of standard processes such as semimartingales,
or even standard Brownian motion, with respect toB�. However, when integrating a
random function, the notion of Skorohod integral can be extended to include such
processes, and many more, includingB� itself. In this section, we prepare the field by
defining a new space of test functions.

Definition 10. Let us fix the time interval[0, T ], with T < 1. We define the operator
K

∗,a
� to be the adjoint of the operatorK∗

� in L2([0, T ]). We denote byH the set

H = (K∗
� )−1(L2([0, T ])

and byH2 the set

H2 = (K∗
� )−1((K∗,a

� )−1(L2([0, T ])).

Note that this new definition ofH coincides withH = L2� , introduced previously as
the domain of the Wiener integral.
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Remark 11. The spaceH endowed with the inner product

〈f, g〉H = 〈K∗
� f, K∗

� g〉L2([0,T ])

is a Hilbert space.

Remark 12. Observe that if we denote byH′ = {f ∈ L2([0, T ]), K
∗,a
� f ∈ L2([0, T ])}

then by definition

〈Ka,∗
� f, g〉L2([0,T ]) = 〈f, K∗

� g〉L2([0,T ])

for every f ∈ H′ and g ∈ H.

Next, we study the richness of the spacesH, H′, andH2 by showing that these
spaces contain sets of functions with specific moduli of continuity.

Definition 13. Let � be a continuous increasing function on a neighborhood of 0 in
R+, with lim0+ � = 0. The spaceC� is defined as the space of all functions defined
on [0, T ] that admit� as a uniform modulus of continuity

C� = {f ∈ L2[0, T ] : sup
0� r<s �T

|f (s) − f (r)|/� (s − r) < ∞}.

Proposition 14. If � satisfies

∫
0
�(s)|�′(s)| ds < ∞ (C�)

thenH containsC�. Moreover condition(C�) is equivalent to the following:

(Dh) There exists a positive function h defined and decreasing on a neighborhood of
0 in R+ − {0} such that

∫
0 h < ∞ and for smallr > 0

�(r) =
∫ r

0

h(s)

�(s)
ds. (5)

Proof. For the first statement, for fixed�, we only need to show that iff ∈ C�, then
K∗

� f ∈ L2([0, T ]). We treat the two terms in the sum definingK∗
� f separately. First,

observe that iff ∈ C� then f is bounded, so that by definition of�,

∫ T

0
f 2(r)�2(T − r) dr �(‖f ‖∞)2

∫ T

0
�2(T − r) dr = (‖f ‖∞)2�2(T ) < ∞.
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For theL2[0, T ]-norm of the second term inK∗
� f , since there exists a constantCf

such that|f (s) − f (r)|�Cf �(s − r), we have

∫ T

0

[∫ T

r

(f (s) − f (r))�′(s − r) ds

]2
dr

�C2
f

∫ T

0

[∫ T

r

�(s − r)|�′(s − r)| ds

]2
dr

= C2
f

∫ T

0

[∫ T−r

0
�(s)|�′(s)| ds

]2
dr.

Note that if � is not defined up toT, we can simply extend� as an arbitrary con-
stant by adjusting the constantCf since f is bounded. Now�|�′| is integrable on all
of [0, T ], including at 0, because of hypothesis(C�) and the assumption that� is
differentiable except at 0 and� is continuous everywhere. This proves thatK∗

� f ∈
L2([0, T ]).
To prove the second statement, first note that we can assume that�′ is non-positive

(see Remark3). Now consider the following calculation, assuming(Dh):

∫ T

0
�(r)|�′(r)| dr=

∫ T

0

(∫ r

0

h(s)

�(s)
ds

)
(−�′(r)) dr

=
∫ T

0

(∫ T

s

−�′(r) dr

)
h(s)

�(s)
ds

=
∫ T

0
(�(s) − �(T ))

h(s)

�(s)
ds

�
∫ T

0
h(s) ds < ∞.

This proves(Dh) implies (C�). The proof of the converse implication is more technical.
However, the result is less important since, with the first implication, we can already
guarantee thatC� is contained inH as soon as� is of form (5). Thus we leave the
details of “(C�) implies (Dh)’’ to the reader. �

Proposition 15. Let � and C� be as in the previous definition and proposition. Then
C� is contained inH′ and the adjoint operatorK∗,a

� can be explicitly calculated for
any f ∈ C� according to

K∗,a
� f (x) = f (x)�(x) +

∫ x

0
[f (y) − f (x)]�′(x − y) dy =: Gf (x)
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Proof. We will show that forf, g ∈ C� we have

〈Gf, g〉L2([0,T ]) = 〈f, K∗
� g〉L2([0,T ]). (6)

First observe that the left-hand side of the equality is well defined, i.e. forf ∈ C�

we haveGf ∈ L2([0, T ]). Indeed, iff ∈ C� then f � is bounded hence inL2([0, T ]).
Moreover |[f (y) − f (x)]�′(y − x)| is bounded above by�(|y − x|)|�′(|y − x|)| which
implies as in the proof of the previous proposition that the second term in the definition
of Gf is in L2([0, T ]). Thus, we haveC� ⊂ H′. Now we only need to show equality
(6). We denote byP(T ) = 〈Gf, g〉L2([0,T ]) and byQ(T ) = 〈f, K∗

� g〉L2([0,T ]), then we
have

P(T ) =
∫ T

0

[
f (x)g(x)�(x) + g(x)

∫ x

0
(f (y) − f (x))�′(x − y) dy

]
dx

and

Q(T ) =
∫ T

0

[
f (x)g(x)�(T − x) + f (x)

∫ T

x

(g(y) − g(x))�′(y − x) dy

]
dx

and we observe thatP(0) = Q(0). Hence, it is enough to show thatP ′(T ) = Q′(T )

in order to conclude the proposition. But

P ′(T )= �
�T

∫ T

0

[
f (x)g(x)�(x) + g(x)

∫ x

0
(f (y) − f (x))�′(x − y) dy

]
dx

=f (T )g(T )�(T ) + g(T )

∫ T

0
f (y) − f (T ))�′(T − y) dy

while

Q′(T )= �
�T

∫ T

0
f (x)g(x)�(T − x) dx

+ �
�T

∫ T

0
f (x)

∫ T

x

(g(y) − g(x))�′(y − x) dy] dx

= �
�T

∫ T

0
f (T − x)g(T − x)�(x) dx + f (T ) · 0

+
∫ T

0
f (x)[g(T ) − g(x)]�′(T − x) dx

=f (0)g(0)�(T ) +
∫ T

0
(fg)′(T − x)�(x) dx
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+
∫ T

0
[f (x)g(T ) − f (x)g(x)]�′(T − x) dx

=f (0)g(0)�(T ) +
∫ T

0
(fg)′(x)�(T − x) dx

+
∫ T

0
f (x)g(T ) − f (x)g(x)]�′(T − x) dx,

where the last equality was obtained by the change of variableT − x → x. Therefore,
by denotingk(x) = f (x)g(x), it is clear thatk ∈ C�, so we may write

P ′(T ) − Q′(T )=k(T )�(T ) +
∫ T

0
[g(T )f (x) − g(T )f (T )]�′(T − x) dx − k(0)�(T )

−
∫ T

0
f (x)g(T ) − f (x)g(x)]�′(T − x) dx

−
∫ T

0
(fg)′(x)�(T − x) dx

=(k(T ) − k(0))�(T ) +
∫ T

0
[k(x) − k(T )]�′(T − x) dx

−
∫ T

0
k′(x)�(T − x) dx

=(k(T ) − k(0))�(T ) +
∫ T

0
[(k(T ) − k(x))�(T − x)]′ dx

=(k(T ) − k(0))�(T ) + [k(T ) − k(x)]�(T − x)|T0
=(k(T ) − k(0))�(T ) − (k(T ) − k(0))�(T ) = 0.

The last equality follows from the fact that lim0 �� = 0. To prove this last statement,
note that by statement(Dh) in the previous proposition, we have the existence of a
positive decreasing integrable functionh defined on a neighborhood of 0 inR+ − {0}
such that

�(r) =
∫ r

0
h(s)/�(s) ds.

Therefore, since� is also decreasing, we get

�(r)�(r) =
∫ r

0
�(r)h(s)/�(s) ds�

∫ r

0
h(s) ds.
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Sinceh is integrable at 0, the functionr �→ ∫ r

0 h(s) ds tends to 0 whenr tends to 0,
which proves the claim that lim0 �� = 0, and finishes the proof of the
proposition. �
For the next proposition on the size ofH2, we need the following additional as-

sumption on�.

(A) Assume that near 0,� is thrice continuously differentiable,�′ is non-decreasing, and
�′′ is non-increasing. This can be assumed without loss of generality. Also recall
that �(k) has the sign of(−1)k. Additionally, assume that�′′′�′(�′′)−2 is bounded
near 0.

(A ′) Assume that there exist an� > 0 such that near 0,r−� = o(�(r)).

Condition (A) will be satisfied in all the examples we will encounter below; it does
not reduce the generality of the scale of processes that we may consider. Condition (A′)
reduces the scale only very slightly: it is satisfied for the full irregular fBm scale for
which �(r) 
 rH−1/2 with H < 1

2, but it is not satisfied for�(r) 
 r−1/2f (r) where f
is negligible in front of any power. Given the fact that standard Skorohod integration is
known to allow a stochastic calculus as soon asH > 1

4, we are only really concerned
with the caseH � 1

4, and in this sense Condition (A
′) is certainly not a restriction.

Proposition 16. Assume Conditions(A) and (A ′). Let 	 and C	 be as the� and C�

in Definition 13. Assume moreover that	 satisfies the following condition:

(Eh) There exists a positive function h defined, decreasing, and differentiable on a
neighborhood of0 in R+ − {0} such that

∫
0 h < ∞ and for smallr > 0,

	(r) = − 1

�′′(r)

d(h/�)
dr

(r).

ThenH2 containsC	.

Proof. Step0 (Setup): Observe that for anyf ∈ H2, we have

K∗,a
� K∗

� f (x) = K∗
� f (x)�(x) +

∫ x

0
(K∗

� f (x) − K∗
� f (y))�′(x − y) dy.

In order to show thatK∗,a
� K∗

� f (x) ∈ L2([0, T ]) it is enough to show that

∫ x

0
(K∗

� f (x) − K∗
� f (y))�′(x − y) dy ∈ L2([0, T ]). (7)

Indeed,

‖K∗
� f �‖L2([0,T ]) �‖K∗

� f ‖L2([0,T ])‖�‖L2([0,T ]) = ‖K∗
� f ‖L2([0,T ])�(T ) < ∞.
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From the proof of the previous proposition, we know that (7) holds as soon asK∗
� f

is included inC� where� satisfies Condition(C�) or (D�). Again, this clearly reduces
to requiring that the functionJ defined by

J (r) :=
∫ T

r

(f (s) − f (r))�′(s − r) ds

belongs toC�. We must consider, for a fixed pair(x, y), with sayx < y, the quantity
L(x, y) = J (x) − J (y). We rewriteL = L1+ L2+ L3 where

L1(x, y) =
∫ y

x

�′(s − x)(f (s) − f (x)) ds,

L2(x, y) =
∫ T

y

(�′(s − x) − �′(s − y))(f (s) − f (y)) ds,

L3(x, y) = (f (y) − f (x))(�(T − x) − �(y − x)).

Our assumption is that for some constantc, which we can take to bec = 1 to simplify
the notation, we have for allr, r ′ > 0,

|f (r) − f (r ′)|�c	(|r − r ′|) = c
1

�′′(|r − r ′|)
d(h/�)

dr
(|r − r ′|). (8)

We only need to show the threeLi ’s are bounded in absolute value by�(y − x).
Step1 (	 is acceptable): It would be well-advised to first check that the function

	 defined in Condition(Eh) is a bona-fide modulus of continuity function. Sinceh
is integrable at 0, we can assume that(−h′)(r)>(r2 log(r−1))−1 near 0. Then since
(−h/�)′ = (−h′)/�+h�′/�2�(−h′)/� we get(−h/�)′(r)>(�(r)r2 log(r−1))−1. By Con-
dition (A ′), we can assume without loss of generality that�(x)x� is decreasing near
0, so that�(x)�x�−1+ �′(x)x� < 0, so that we obtain|�′(r)| > ��(r)/r. We can apply
this argument to�′ instead of�, since Condition(A ′) certainly holds for�′. This yields
�′′(r)��2�(r)r−2. This proves that lim0 	 = 0. The continuity of	 is trivial given our
hypotheses. The positivity of	 near 0 can be obtained as follows. Note that we can
chooseh so thath(r)?r−� for any � < 1, while by the definition of� (since�2 has to
be integrable at 0), we must have�(r)>r−1/2; therefore asr tends to 0,h/� tends to
infinity faster thanr−�+1/2. Because of the flexibility of choice forh, this limit can be
attained in an increasing fashion, hence(h/�)′ < 0; the positivity of �′′, which is part
of our hypothesis, now guarantees that	 is positive. To guarantee that	 is increasing,
we can again invoke the flexibility on the choice ofh, combined with the fact that
	 = o(1).
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Step2 (Estimate forL2): Using the notation� = y − x, the fact that�′ is non-
decreasing, and the hypothesis (8) on f, we have

|L2(x, y)|�
∫ T−y

0
(�′(r + �) − �′(r))	(r) dr.

We can split up this estimate forL2 into two pieces

|L2(x, y)|�
∫ �

0
(�′(r + �) − �′(r))	(r) dr +

∫ T

�
(�′(r + �) − �′(r))	(r) dr

:=L21(�) + L22(�).

For the second piece we obtain, using the mean-value theorem and the hypothesis that
�′′ is positive and decreasing,

L22(�)�
∫ T

�
��′′(r)	(r) dr = −�

∫ T

�
(h/�)′(r) dr

=�[(h/�)(�) − (h/�)(T )]��(h/�)(�)��(�),

where the last inequality follows from the definition of�(�) = ∫ �
0 h/� and the fact that

h/� is decreasing. To estimate the first piece we need an integration by parts. We write
L21(�) = ∫ �

0 u dv where

u = (�′(r + �) − �′(r))

(
− 1

�′′(r)

)

dv = (h/�)′(r) dr

so that

−du

dr
= 1

�′′(r)
(�′′(r + �) − �′′(r)) − �′′′(r)

�′′(r)2
(�′(r + �) − �′(r)).

The first term in−du/dr is negative. The second term is positive and bounded above
by 2�′�′′′(�′′)−2, which is bounded by Assumption (A), say by a constantc. Therefore

−
∫ �

0
v du�c

∫ �

0

h

�
= c�(�)

and sinceu is negative,

[uv]�0� lim
r→0

h

�
(r)(�′(r + �) − �′(r))

1

�′′(r)
� lim

r→0

h

�
(r)

2|�′(r)|
�′′(r)

.
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We can show that this limit is 0. Indeed, we knowh>1/r. Moreover, using the
argument with
 in Step 1, we have|�′|/�′′ < r. The required limit is then obtained
since by assumption, 1/� tends to 0. Therefore, we have proved

L21(�)�c�(�),

which implies

|L2(x, y)|�(c + 1)�(y − x).

Step3 (Estimate forL3): By assumption (8), using again� = y − x, and also using
the estimate(�/�′′)(�) < �2 which was proved in Step 1, we have

|L3(x, y)|� −
(

h

�

)′
(�)

�(�)

�′′(�)
� − �2

(
h

�

)′
(�).

By definition �(�) = ∫ �
0 h/�. Therefore,h/� = �′ and (h/�)′ = �′′. First, we can see

that �′(�) < �(�)/� because� is increasing and concave and�(0) = 0, the concavity
coming from the fact that�′ = h/� can be chosen to be decreasing by an appropriate
choice of h since �>r−1/2 while h?r−1/2. Next, since�′ decreases from+∞, we
can also assume that−�′′ is decreasing; then by the mean value theorem, we have
�′(�/2) − �′(�)� − �′′(�)�/2 which yields−�′′(�)��′(�/2)2/r. Putting this together
with the estimate on�′ we get−�′′(�)�4�−2�(�/2). Since� is increasing, we finally
get

|L3(x, y)|� − �2�′′(�)�4�(�/2)�4�(�).

Step4 (Estimate forL1): By assumption (8), still using� = y − x,

|L1(x, y)|=
∣∣∣∣
∫ y

x

�′(s − x)(f (s) − f (x)) ds

∣∣∣∣
�
∫ �

0
�′(s)

(
h

�

)′
(s)

1

�′′(s)
ds

�c�(�),

where the last inequality is established by repeating the method of estimation of
∫ �
0 u dv

in Step 2.
This finishes the proof of the proposition. �
The previous proposition is crucial in showing thatH2 is non-empty (modulo constant

functions), which is asine qua noncondition for the validity of our stochastic calculus
below. It will also be of crucial importance when we investigate the uniqueness of the
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Skorohod integral below. The next corollary aids in showing how sharp the previous
proposition is, and the examples following show precisely how large we can expect
H2 to be in specific cases of interest.

Corollary 17. Let

	̃(r) = − 1

�′(r)

d(h̃/�′)
dr

(r),

where h̃ satisfies the same hypotheses as h except that
∫
0 h̃ = +∞. This h̃ can be

chosen so that̃	 is a bona-fide modulus of continuity, and H2 does not containC 	̃.

Proof. The proof of the corollary uses the estimates in the proof of the previous
propositions. We give only the main parts of the argument, leaving some of the details
to the reader, since the corollary is not used in the remainder of the paper. First, we
can invoke the same argument as in Step 1 of the proof of Proposition16 to justify
that with h̃(r) = r log−1(r−1) we do havẽ	 non-negative, increasing and continuous at
0 with 	̃(0) = 0. Recall then that the dominant term in the calculation of theH2-norm
of a function f is

∫ y

0
(K∗

� f (y) − K∗
� f (x))�′(y − x) dx. (9)

We will show that f can be chosen inC 	̃ so as to make the above term infinite for
all x close to a fixedy. We treat the casey = T ; smaller values ofy are treated
similarly, although the calculations are slightly more involved. The dominant term in
K∗

� f (y) − K∗
� f (x) is

∫ T

x

(f (s) − f (x))�′(s − x) ds −
∫ T

y

(f (s) − f (y))�′(s − y) ds

=
∫ y

x

(f (s) − f (x))�′(s − x) ds.

Since, the integral of the above expression, as a function ofx in the spaceL1([0, y],
�′(y − x) dx), is required, by definition ofH2, to be a member ofL2([0, T ], dy)
after x-integration, we deduce that the expression must be absolutely integrable except

possibly for a null set of values of(x, y). There exists a functionf in C 	̃ such that for
all 0�x�s�y, |f (x) − f (s)|� 	̃(s − x). Thus

∫ y

x

|f (s) − f (x)|�′(s − x) ds�
∫ y

x

(
h̃

�′

)′
(s − x) ds =

∫ y−x

0

(
h̃

�′

)′
= h̃(y − x)

�′(y − x)
,
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where the last step is because of the fact that in all cases which we study,�′(r)�1/r,
since we study only processesB� that are more irregular than Brownian motion. Inte-
grating this last expression against�′(y − x) dx in [0, y] yields infinity by definition of
h̃. Since this holds for allx andy the expression in (9) cannot be inL2([0, T ]). �

Definition 18. Let � > 0 be fixed. Let� be defined by

�2(r) = [log(1/r)]−�

so that

�2(r) = �r−1[log(1/r)]−�−1.

We call the corresponding processB�, as defined in Proposition1, the logarithmic
Brownian motion(logBm) with parameter�.
Note that since� has a singularity atr = 1, it is safe to define logBm only on

closed intervals in[0,1). For larger intervals, simple scaling can be used; for infinite
intervals, it is best to modify the behavior of� for large r.

From Proposition 1, we have that the canonical metric� of B� is commensurate with
�. It is then well-known that if�(r) := �(r) log1/2(r−1) is continuous, it is almost-surely
a uniform modulus of continuity forB�, i.e.B� ∈ C� a.s. In fact this property is sharp:
if B� ∈ C� then � is bounded below by a constant multiple of�(r) log−1/2(r−1); this
property was established for homogeneous Gaussian processes in [18]; here a slightly
modified argument, using the estimates in the proof of Proposition 1, can be invoked;
we leave this to the reader, since the result is only tangential to our main results. What
we can see immediately is thatB� is a.s. uniformly continuous if and only if� > 1.
It can also be established that if��1 thenB� is unbounded. It is often quoted in

the literature that a homogeneous Gaussian process is either a.s. uniformly continuous
or is a.s. unbounded, from which it is sometimes inferred that in the unbounded case,
the process is discontinuous. However, even though we know of no proof of this fact,
we believe that even if��1, the logBm is still pointwise continuous a.s., even if only
at countably many points; this certainly does not contradict its unboundedness. But
more importantly it would explain, heuristically, why we are able to define a stochastic
calculus and a non-trivial local time with respect to it. We now summarize the above
discussion, and give an indication of the sizes ofH andH2, by applying Propositions
14 and 16, withh(r) = r−1 log−�(1/r) for some� > 1.

• Fractional Brownian scale: The processB� has a canonical metric that is commen-
surate with that ofH-fBm if �(r) = rH , or more generally if�(r) 
 rH . In this
case, our Skorohod integral defined in Section5.2 has the same properties as that
defined in [6]. It is interesting to note that our results above prove thatH2 is indeed
non-empty in this case, although this question did not seem concerning in [6]. Ac-
cording to our results,H2 containsC1−2H ′

for any H ′ < H < 1
2. The largerH is,

the biggerH2 is. However, Corollary 17 shows thatH2 does not contain the space
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C 	̃ where 	̃(r) = r1−2H log−1(1/r). A slight historical digression on the Skorohod
integral for fBm forH ∈ (14; 12) might be relevant at this stage. However, we refer
to the last paragraph in Section5.2 below for such a development.

• Regular logBm: case� > 1. The logBm processB� is a.s. uniformly continuous with
modulus of continuity�(r) := log(1−�)/2(r). H contains the spaceC� for

�(r) = r1/2 log�−�(1/r)

for any � > 1, so in particular it contains a space bigger thanC1/2. H2 contains the
spaceC	 for

	(r) = r log�+1−�(1/r)

for any � > 1, which is non-empty if��� + 1.
• Irregular logBm: case� ∈ (0;1]. The logBm processB� is a.s. unbounded.H
contains the spaceC� for � as defined in the previous case for any� > 1, which
is never empty, but does not contains a space bigger thanC1/2. H2 contains the
spaceC	 for 	 as defined in the previous case for any� > 1, which is non-empty if
1 < ��� + 1; thereforeH2 is non-empty for any� > 0, and a stochastic calculus
w.r.t. B� will be defined below.

• Highly irregular processes: One could study examples such as�(r) 
 log−1
(log(1/r)), or even using multiple iterations of the logarithm. One can check that
H2 is non-empty in these cases, although the size ofH2 decreases “dangerously’’.
However, since the transition between the continuous and discontinuous processes
occurs within the logBm scale, we have not yet found any compelling reasons to
expand on these other examples.

5. Stochastic calculus

5.1. The derivative operator

We denote byS the set of smooth cylindrical random variables of the form

F = f (B�(
1), . . . , B�(
n)), n�1, f ∈ C∞(Rn), 
i ∈ H. (10)

We define the differential operatorD on S by

DF =
n∑

i=1

�f

dxi

(B�(
1), . . . , B�(
n))
i .
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Remark 19. DF is an element ofL2(�, GT , P ;H).

Remark 20. For all p�1, F → DF is closable from Lp(�, GT , P ) into
Lp(�, GT , P ;H). The domain ofD in Lp(�) is denoted byD1,p, meaning thatD1,p

is the closure of the smooth random variablesS with respect to the norm

‖F‖1,p = [E(|F |p) + E(‖DF‖p

L2(T )
)]
1
p .

Remark 21. For p = 2 the spaceD1,2 is the Hilbert space with the scalar product

〈F, G〉1,2 = E(FG) + E(〈DF, DG〉H).

The Hermite polynomials are given byH0(x) = 1 and

Hm(x) = (−1)m

m! e
x2
2

dm

dxm
(e−

x2
2 ), m�1.

Theorem 22. Let 
 ∈ H be an element of norm1. Then it holds that

m!Hm(B�(
)) =
∫
[0,T ]m


(t1)
(t2) · · ·
(tm)B�(dt1) · · ·B�(dtm).

This theorem is a direct application of the well-known result on multiple Wiener
integrals, which can be found in Nualart’s book[13], established for all isonormal
Gaussian processes, and hence for our particular class of processes and their associated
Hilbert spacesH. Moreover, the proof of the following chain rule can also be found
in [13]:

Proposition 23. Let 
 : Rm → R be a continuous differentiable function with bounded
partial derivatives, and fixp�1. Suppose thatF = (F 1, . . . , F m) is a random vector
whose components belong to the spaceD1,p. Then

D(
(F )) =
m∑

i=1

�

�xi

(F )DF i.

5.2. The divergence operator and its extension

Definition 24. The divergence operator� is defined to be the adjoint of the derivative
operatorD viewed as an operator fromL2(�, GT , P ) → L2(�, GT , P ;H). We will
use the standard notation�(u) = ∫

[0,T ] ut�B
�
t and we will refer to this random variable

as theSkorohod integralof u with respect toB�.
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Remark 25. � is an operator fromL2(�, GT , P ;H) into L2(�, GT , P ), and its do-
main denoted byDom � is the space of processesu ∈ L2(�, GT , P ;H) such that
F → E(〈DF, u〉H) is a bounded linear functional on(S, ‖ · ‖2). Since for suchu
the functionalF → E(〈DF, u〉H) is linear and bounded, we can write it as an inner
product, hence there is a unique element�(u) in L2(�, GT , P ) such that

E(〈DF, u〉H) = E(�(u)F )

for all F ∈ SH.

It is now understood that for fBmBH with parameterH � 1
4, BH is not in the

domainDom � of its own Skorohod integral; see[6]. The same argument used therein
can be applied to our processB� with �(r)�r1/4. An extension of the Skorohod integral
was developed in [6] for whichBH is integrable. We are about to see how to extend
the Skorohod integral and the Ito formula in general to allow for all our processes
B� to be integrable. Our proof of the Ito formula uses the same algebraic ideas based
on Gaussian chaos and Hermite polynomials as in [6]. However all our definitions
and proofs are simpler, since they do not require the use of fractional calculus, and
wider-ranging, since they are not restricted to the Hölder scale for fBm.

Definition 26. We denote bySH2 the set of smooth cylindrical random variables of
the form

F = f (B�(
1), . . . , B�(
n)), n�1, f ∈ C∞(Rn), 
n ∈ H2.

Definition 27. Let {ut , t ∈ [0, T ]} be such thatE
∫ T

0 u2t dt < ∞. We say thatu ∈
Dom∗ � if there exists�(u) ∈ L2(�, GT , P ) such that for allF ∈ SH2 we have

∫ T

0
E[ut [K∗,a

� K∗
� ](D, F )(t)] dt = E[�(u)F ]. (11)

The divergence operator defined foru ∈ Dom∗ � will also be called the Skorohod
integral of u with respect toB�.

This definition does not require that�(u) be uniquely defined by it. Propositions9
and 16 will now be used to settle the question of uniqueness.

Proposition 28. For each u inDom∗ �, the Skorohod integral�(u) is uniquely defined
in L2(�, GT , P ).

Proof. Assume u ∈ Dom∗ � and assume there exists a random variableV in
L2(�, GT , P ) such that for allF ∈ SH2, E(�(u)F ) and E(V F) are both equal to
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the left-hand side of (11). Thus, in particular, for all
 ∈ H2, and for alln ∈ N,

E[(�(u) − V )Hn(B�(
))] = 0.

The result of the proposition follows from the next lemma.�

Lemma 29. If G ∈ L2(�, GT , P ) is such that for allHn(B�(
)) where
 ∈ H2 and
n ∈ N, we haveE(GHn(B�(
))) = 0, thenG is 0 in L2(�, GT , P ).

Proof. The first half of this proof is essentially borrowed from[13]. Let m ∈ N.
Since the monomialx �→ xm can be written asxm =∑m

k=0 akHk(x) for some coeffi-
cientsak, we obtainE[(B�(
))mG] = 0, and since for anyt ∈ R, exp(tB�(
)) is in
L2(�, GT , P ), we also haveE[G exp(tB�(
))]. SinceH2 is a vector space, we can
translate this as

E

[
Gexp

(
n∑

i=1
tiB

�(
i )

)]
= 0

for any 
i ∈ H2, ti ∈ R, i = 1, . . . , n, n ∈ N. This means the Laplace transform of
the signed measure on the Borel sets ofRn

�(B) := E[G1B((B�(
i )
n
i=1))]

is zero. Therefore, the measure� is 0. Now let G′ be the sigma field generated by
{B�(
) : 
 ∈ H2}, so thatG′ ⊂ GT . We have proved that for allA ∈ G′,

E[G1A] = 0,

which meansG is zero inL2(�, G′, P ). Now recall from Proposition9 that the sigma
field generated by the random variables{B�(g) : g ∈ C∞

b } actually equalsGT . But by
Proposition 16,H2 contains the spaceC	, and thereforeH2 containsC∞

b . Combining
these two results proves thatG′ = GT , which finishes the proof of the lemma.�

Remark 30. The following properties now are easily seen.

(1) Dom � ⊂ Dom∗ �.
(2) If u ∈ Dom∗ � thenE(u) ∈ H.
(3) If u is deterministic thenu ∈ Dom∗ � iff u ∈ H iff u ∈ Dom �.
(4) � is a closed operator fromDom∗ � ⊂ L2(�, GT , P ;H) to L2(�, GT , P ). In other

words, if uk → u in L2(�, GT , P ;H) and uk ∈ Dom∗ � and �(uk) converges in
L2(�, GT , P ) to some random variableV , thenu ∈ Dom∗ � andV = �(u).
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Before presenting the Ito formula, we finish this subsection with some remarks and
questions on the relation with standard Skorohod integration. Before preprint[6] was
circulated, it was commonly thought that Skorohod integration for fBm had a lower
limit, and the thresholdH > 1

4 was often quoted as the most irregular level for
which a Skorohod integration could be defined. Skorohod integration in [6] is pushed
beyond this level by modifying the size of the space of test functions needed to as-
sert integrability. Our results here show that in the rangeH ∈ (14; 12), the size of
the space of test functions in [6] or in this article is significantly smaller than the
original test space for Skorohod integration; indeed (compare line (10) and Definition
(24)), the latter is based onH while the former is based onH2. In view of this, one
may ask to what extent our Skorohod integral, or that of [6], generalizes the standard
Skorohod integral forH ∈ (14,

1
2). Proposition 28 implies that the Skorohod integrals

actually coincide as members ofL2(�, GT , P ). The coincidence of the Ito formulas in
the standard case and in the case of [6] (Lemma 9 therein) is another aspect of the
same phenomenon, signifying that the Ito formula contains much information about
the process. It is not surprising, for example, that a study of local time is possible.
On the other hand, our Ito formula (Theorem 31 below) has exactly the same form
again, even though our processB�H is not identical to fBm (see Remark 6: it does
not even have the same covariance structure). Thus the Ito formula for determinis-
tic functions of B� is not a thorough test for comparing Skorohod integrals and/or
processes.

5.3. The Itô formula

Following the arguments of Cheridito and Nualart in [6], in this section we will
prove the basic result of stochastic calculus. Our proof does not require the use of
fractional derivatives—in fact we had to find a way to do without them, since we
do not work in the power scale. Some other aspects of the proof have presumably
well-known structures, and are similar to some arguments in [6], such as the proof of
the algebraic identities using Hermite polynomials (18)–(20). We have included brief
proofs of all such claims, for the sake of readability.

Theorem 31. Let f ∈ C∞(R) be a function such that for alln�0 there exist constants
Cn and Dn with Dn < 1

2 log
1
T
such that

|f (n)(y)�CneDny2, y ∈ R.

Then for all t �T the processf ′(B�
s )1(0,t](s) ∈ Dom∗ � and we have

�(f ′(B�
s )1(0,t]) = f (B

�
t ) − f (0) −

∫ t

0
f ′′(B�

s )�(s)�′(s) ds.
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Proof. The processf ′(B�
s )1(0,t](s) ∈ Dom∗ � and the formula in the above theorem

is true iff for all F ∈ SH2 we have

∫ T

0
E(f ′(B�

s )1(0,t](s)K∗,a
� K∗

� DsF) ds

= E

((
f (B

�
t ) − f (0) −

∫ t

0
f ′′(B�

s )�(s)�′(s) ds

)
F

)
. (12)

SinceHn(B�(
)), n�1, with Hn being thenth Hermitian polynomial, are dense in
SH2 it is enough to show (12) for F of this type.
However,DsHn(B�(
)) = Hn−1(B�(
))
(s); hence (12) is equivalent to

∫ T

0
E(f ′(B�

s )1[0,t](s)K∗,a
� K∗

� Hn−1(B�(
))
(s))) ds

= E

[(
f (B

�
t ) − f (0) −

∫ t

0
f ′′(B�

s )�(s)�′(s) ds

)
Hn(B�(
))

]
. (13)

SinceHn−1(B�(
)) does not depend ons we can rewrite (13) as

∫ T

0
E(f ′(B�

s )Hn−1(B�(
))(K∗,a
� K∗

� Hn−1
)(s)) ds

= E

[(
f (B

�
t ) − f (0) −

∫ t

0
f ′′(B�

s )�(s)�′(s) ds

)
Hn(B�(
))

]
. (14)

Let us computeE(f (n)(B
�
t )).

The heat kernelp(�, y) := (2��)−1/2 exp(−1
2

y2

� ), � > 0, y ∈ R, satisfies
�p

��
= 1

2
�2p
�y2
. Then

d

dt
E(f (n)(B

�
t ))= d

dt

∫
R

p(�2(t), y)f (n)(y) dy

=
∫
R

�p

��
(�2(t), y)2�(t)�′(t)f (n)(y) dy

=
∫
R

�2p
�y2

(�2(t), y)f (n)(y)�(t)�′(t) dy

=
∫
R

�(t)�′(t)p(�2(t), y)f (n+2)(y) dy

=�(t)�′(t)E(f (n+2)(B�
t )). (15)
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The fourth equality is obtained using the properties off and integration by parts
applied twice. Indeed,

∫
R

�2p
�y2

(�2(t), y)f (n)(y) dy=
∫
R

p(�2(t), y)f (n+2)(y) dy

+ �p

�y
(�2(t), y)f (n)(y)

∣∣∣∣
∞

−∞

−p(�2(t), y)f (n+1)(y)|∞−∞. (16)

But �p

�y
(�2(t), y)f (n)(y)� − Cn

2�(t) e
y2(− 1

�(t)+Dn). SinceDn < − 1
�(t) for all t �T we con-

clude that the term�p

�y
(�2(t), y)f (n)(y)|∞−∞ = 0. Similarly p(�2(t), y)f (n+1)(y)|∞−∞ =

0. Hence the 4th equality.
Now, we proceed to verify equality (14). For n = 0, the left-hand side of equality

(14) is 0, and the right-hand side is

E((f (B
�
t ) − f (0) −

∫ t

0
f ′′(B�

s )�(s)�′(s) ds) · 1) = 0

by equality (15), so the equality is verified. Forn�1, for all s ∈ (0, t] we have

〈1(0,s], 
〉H=〈K∗
� 1(0,s], K∗

� 
〉L2([0,T ])
=〈1(0,s], K∗,a

� K∗
� 
〉L2([0,T ])

=
∫ s

0
K∗,a

� K∗
� 
(�) d�

and

d

ds
(E[f (n)(B

�
s )]〈1(0,s], 
〉nH)=�(s)�′(s)E[f (n+2)(B�

s )]〈1(0,s], 
〉nH
+nE[f (n)(B

�
s )]〈1(0,s], 
〉n−1K∗,a

� K∗
� 
(s).

Hence,

E[f (n)(B
�
t )]〈1(0,t], 
〉nH

=
∫ t

0
�(s)�′(s)E[f (n+2)(B�

s )]〈1(0,s], 
〉nH ds

+n

∫ t

0
E[f (n)(B

�
s )]〈1(0,s], 
〉n−1K∗,a

� K∗
� 
(s) ds. (17)
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Now, let us show that

E[f (n)(B
�
t )]〈1(0,t], 
〉nH = n!E[f (B

�
t )Hn(B�(
))] (18)

and

E[f (n)(B
�
t )]〈1(0,t], 
〉n−1H = (n − 1)!E[f ′(B�

t )Hn−1(B�(
))] (19)

and also

E[f (n+2)(B�
t )]〈1(0,t], 
〉nH = n!E[f ′′(B�

t )Hn(B�(
))]. (20)

We knowE〈u, DF 〉H = E[�(u)F ]. Also, by Theorem 1.1.2 in[13],

u = Hk−1(B�(
))
(t) = 1

(k − 1)!
∫
[0,T ]k−1


(t1) · · ·
(tk−1)
(t)B�(dt1) · · ·B�(dtk−1))

and

�(u)= 1

(k − 1)!
∫
[0,T ]k


(t1) · · ·
(tk−1)
(t)B�(dt1) · · ·B�(dtk−1B�(dt)))

= k!
(k − 1)! Hk(B

�(
)) = kHk(B
�(
))

and u ∈ Dom(�). Also observe that

E(f (B
�
t ))〈1[0,T ], 
〉H=E(f (B

�
t ))〈K∗

� 1[0,T ], K∗
� 
〉L2(),T )

=〈E(f (B
�
t ))1[0,T ], K∗,a

� K∗
� 
〉L2([0,T ])

=
∫ t

0
E(f (B

�
t ))1[0,T ]K∗,a

� K∗
� 
 = E(�(
)f (B

�
t )).

We prove the first equality by induction. The other two have a similar proof. For
n = 1 we have

E(f ′(B�
t ))〈1[0,T ], 
〉H = E(�(
)f (B

�
t )) = E[H1(B

�(
))f (B
�
t )).

Now assume the equality is true forn = k and prove it is true forn = k + 1.

(k + 1)!E[f (B
�
t )Hk+1(B�(
))] = k!E[f (B

�
t )�(Hk(B

�(
))
(t))]
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k!
∫ t

0
E(f (B

�
s ))Hk(B

�(
))K∗,a
� K∗

� 
(s) ds

=
∫ t

0
E(f (k)(B

�
s ))〈1[0,t], 
〉kHK∗,a

� K∗
� 
(s) ds

=
∫ t

0
E(f (k)(B

�
s ))K∗,a

� K∗
� 
(s) ds〈1[0,t], 
〉kH

= E(f (k+1)(B�
s ))〈1[0,t], 
〉k+1H ,

where the last equality is deduce by the induction step.
Using (18)–(20) into (17) we obtain

n!E[f (B
�
t )Hn(B�(
))]=

∫ t

0
�(s)�′(s)n!E[f ′′(B�

s )]Hn(B�(
)) ds

+n

∫ t

0
(n − 1)!E[f ′(B�

t )Hn−1(B�(
))]K∗,a
� K∗

� 
(s) ds,

which is equivalent to (14). �

6. Local time

6.1. Introduction

There are two distinct “natural’’ ways of defining the local time of a Gaussian process.
If one attempts to keep the highest possible analogy with the standard Brownian case,
one can define�t as the occupation measure�t (A) = ∫ t

0 1A(BH
s ) ds and use the

same notation abusively to define its density with respect to Lebesgue measure. This
was done for example originally in Berman’s paper [4]. On the other hand, and more
recently, several stochastic analysts working on fractional Brownian motion have chosen
to consider a different occupation measure because it yields a connection to stochastic
calculus via the Itô-Tanaka formula: see for example [8]; also see the summary on
local time for fBm-based processes in [19].
We use herein the same type of definition, since our motivations are of the same

nature. Specifically, we letLa
t be the density at pointa of the occupation measure

A �→
∫ t

0
1A(B

�
s )d(�2)(s) =

∫ t

0
1A(B

�
s )2�(s)�′(s) ds. (21)

This is the same definition as for fBm in articles such as[8], since there�2(s) = s2H .
In this section, we establish the existence of this occupation density. We will prove a



416 O. Mocioalca, F. Viens / Journal of Functional Analysis 222 (2005) 385–434

Tanaka formula and the following result

La
t =

∫ t

0
2�(s)�′(s)�a(ds).

While Lt can be interpreted as the density of an “occupation time measure’’, it is
important to note that the word “time’’ cannot have the same interpretation as for�t ;
indeed, forLt , time is heavily weighted at the origin. In a forthcoming publication,
we will show thatL has a version that is Hölder-continuous int uniformly in a on
any set bounded away from the linet = 0, but at t = 0, a singularity occurs; we will
show that the regularity ofLa at 0 is on the order of that ofB�, which means that if
B� is not uniformly continuous,La cannot be continuous on any interval containing 0.
Because of this difficulty, the existence and the above formula forLa are non-trivial
to prove. We found no easier path than to give first the chaos decomposition forL.

6.2. Chaos decomposition

The main tool for provingL exists is a chaos decomposition calculation. The main
arguments we follow can be considered classical, and are found for example in[8].
Let us denote byp�(x) = (2��)−1/2 exp(−x2/(2�)) the heat kernel. Note that we are
using the letter� for a small parameter and for the kernel�2 = (�2)′. Which meaning
is being used should be clear from the context.

Proposition 32. For eacha ∈ R and t ∈ [0, T ] the following convergence of random
variables:

lim
�→0

∫ t

0
p�(Bs − a) d�2(s) =

∞∑
n=0

∫ t

0
p�2(s)(a)Hn

(
a

�(s)

)
In(�(s − .)⊗n) d�2(s)

occurs inL2(�), with Hn the nth Hermite polynomial, and In(f⊗n) denotes the it-
erated Skorohod integral with respect toB� of the tensor product of n copies of the
deterministic function f.

Proof. Sincep�(Bs − a) ∈ D∞,2 = ∩NDN,2 by Theorem 1.1.2 in[13] we have

p�(Bs − a) =
∞∑

m=0
Im(fm)

and by the Stroock formula ([13, Exercise 1.2.6]) we have

fm = 1

m! E(Dm(p�(Bs − a))),
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whereDm is themth iteration of the derivation operatorD. But

Dn[p�(Bs − a)] = p
(n)
� (Bs − a)�(s − ·)⊗n

and

E(p�(Bs − a)) = p�2(s)+�(a).

Hence

E(p
(n)
� (Bs − a))=(−1)n �n

�an
E(p�(Bs − a))

=(−1)n �n

�an
p�2(s)+�(a)

=n!(�2(s) + �)−
n
2p�2(s)+�(a)Hn

(
a√

�2(s) + �

)
.

Therefore, we obtain

p�(Bs − a)=
∞∑

m=0

1

m! m!(�2(s) + �)−
m
2 p�2(s)+�(a)Hm

(
a√

�2(s) + �

)
Im(�(s − ·)⊗n)

=
∞∑

m=0
(�2(s) + �)−

m
2 p�2(s)+�(a)Hm

(
a√

�2(s) + �

)
Im(�(s − ·)⊗n)

or

∫ t

0
p�(Bs − a) d�2(s) =

∞∑
m=0

∫ t

0
�m,�Im(�(s − ·)⊗n) d�2(s),

where

�m,� = (�2(s) + �)−
m
2 p�2(s)�(a)Hm

(
a√

�2(s) + �

)
.

By some algebra manipulation it can be shown that|Hn(y)e−
y2

2 |�C/(2
n
2 [n
2]!). There-

fore, we obtain

|�m,�(s)|�(�2(s) + �)−
m+1
2

C

2
m
2 [m

2 ]!
��(s)−(m+1) C

2
m
2 [m

2 ]!
.
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Let

�m,� = E

[(∫ t

0
�m,�Im(�(s − ·)⊗n) d�2(s)

)2]
.

Next, we proceed to estimate�m,�.

�m,�=m!
∫ t

0

∫ t

0
E[�m,�(u)Im(�(u − ·)⊗n)�m,�(v)Im(�(v − ·)⊗n)] d�2(u) d�2(v)

=m!
∫ t

0

∫ t

0
E[Im(�(u − ·)⊗n)Im(�(v − ·)⊗n)]�m,�(u)�m,�(v) d�2(u) d�2(v)

=m!
∫ t

0

∫ u

0

[
1

2
(�2(u) + �2(v) − �2(u − v))

]n)
�m,�(u)�m,�(v) d�2(u) d�2(v).

Combining everything we get

�m,��
Cm!

2m([m
2 ]!)2

∫ t

0

∫ u

0

[
1

2
(�2(u) + �2(v) − �2(u − v))

]m

×�(u)−(m+1)�(v)−(m+1) d�2(u)d�2(v)

= Cm!
2m([m

2 ]!)2
∫ t

0

∫ u

0

[
1

2
(�2(u) + �2(v) − �2(u − v))

]n

×�(u)−(m)�(v)−m�′(u)�′(v) dv du

= Cm!
2m([m

2 ]!)2
∫ t

0

∫ u

0

[
�2(u) + �2(v) − �2(u − v)

2�(u)�(v)

]m

�′(u)�′(v) dv du.

Now, first observe that

(�2(u) + �2(v) − �2(u − v))

2�(u)�(v)
�1.

Indeed, since� is an increasing, concave function it verifies�(u − v)��(u) − �(v).
Then observe that

�2(u − v)��2(u) + �2(v) − 2�(u)�(v).
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By Stirling formula Cm!
2m([m

2 ]!)2
behaves as1√

n
therefore if we notice that for any positive

numbersa < 1 and 1< p < 2 one can show that there is a constantcp such that

∞∑
n=1

1√
n

an �cp

1

(1− ap)
1
p

we conclude that

∞∑
n=1

1√
n

∫ t

0

∫ u

0

[
�2(u) + �2(v) − �2(u − v)

2�(u)�(v)

]n

�′(u)�′(v) dv du

�cp

∫ t

0

∫ u

0

[
1−

[
�2(u) + �2(v) − �2(u − v)

2�(u)�(v)

]p
]− 1

p

�′(u)�′(v) dv du.

Because�2(s) is an increasing, concave function we have�2(u − v)��2(u) − �2(v)

hence

∫ t

0

∫ u

0

[
1−

[
�2(u) + �2(v) − �2(u − v)

2�(u)�(v)

]p
]− 1

p

�′(u)�′(v) dv du

�
∫ t

0

∫ u

0

[
1−

[
2�2(v)

2�(u)�(v)

]p
]− 1

p

�′(u)�′(v) dv du

×
∫ t

0

∫ u

0

[
1−

[
�(v)

�(u)

]p]− 1
p

�′(u)�′(v) dv du.

With the change of variablez = �(v)
�(u)

we obtain

∫ t

0

∫ u

0

[
1−

[
�(v)

�(u)

]p]− 1
p

�′(u)�′(v) dv du = �2(t)
2

∫ 1

0

1

(1− zp)
1
p

dz = C < ∞

and the desired convergence holds.�

6.3. Existence

Proposition 33. The local timeLa
t exists as the density of the measure defined in(21).

It satisfies the following equality:

La
t = lim

�→0

∫ t

0
p�(Bs − a) d�2(s). (22)
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In particular, it has the following Wiener chaos expansion:

La
t =

∞∑
n=0

∫ t

0
p�2(s)(a)Hn

(
a

�(s)

)
In(�(s − ·)⊗n) d�2(s).

Proof. From the chaos decomposition proposition and its proof we deduce that∫ t

0 p�(Bs − y) d�2(s) converges uniformly iny as � goes to 0. We can write now,
for each continuous function with compact support

∫
R

(
lim
�→0

∫ t

0
p�(Bs − y)d�2(s)

)
g(y) dy

= lim
�→0

∫
R

(∫ t

0
p�(Bs − y)d�2(s)

)
g(y) dy

= lim
�→0

∫ t

0

(∫
R

p�(Bs − y)g(y)dy

)
d�2(s).

Since g is continuous with compact support it will have a maximum on[0, t] and
applying dominated convergence we obtain

lim
�→0

∫ t

0

(∫
R

p�(Bs − y)g(y) dy

)
d�2(s)

=
∫ t

0

(
lim
�→0

∫
R

p�(Bs − y)g(y) dy

)
d�2(s)

=
∫ t

0
g(Bs) d�2(s).

Therefore for each continuous functiong with compact support we have

∫
R

(
lim
�→0

∫ t

0
p�(Bs − y) d�2(s)

)
g(y) dy =

∫
R

g(y)L
y
t dy,

which implies (22). �

Lemma 34. Almost surely, for almost all a, we have

lim
t→0

�2(t)�a
t = 0. (23)

Additionally, for any measurable set A, almost surely we have

lim
t→0

∫
A

�2(t)�a
t da = 0. (24)
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Proof. First, we show limt→0 La
t = 0 for almost alla. Indeed, for any setA, since

La
t is an increasing function int we have

∫
A

lim
t→0

La
t da = lim

t→0

∫
A

La
t da = lim

t→0

∫ t

0
1A(Bs) d�2(s)� lim

t→0
�2(t) = 0.

Now, observe that

�a
t = lim

�→0

1

2�

∫ t

0
1[a−�,a+�](Bs) ds� lim

�→0

∫ t

0
p�(Bs − a) ds.

Then, we have

lim
t→0

�2(t)�a
t � lim

t→0
�2(t) lim

�→0

∫ t

0
p�(Bs − a) ds

= lim
t→0

lim
�→0

∫ t

0
�2(t)p�(Bs − a) ds

� lim
t→0

lim
�→0

∫ t

0
�2(s)p�(Bs − a) ds

= lim
t→0

lim
�→0

∫ t

0
p�(Bs − a) d�2(s)

= lim
t→0

La
t = 0.

In a similar fashion we can show that limt→0
∫
A

�2(t)�a
t da� lim t→0

∫
A

La
t da

= 0. �
The following proposition gives the relationship betweenLa

t and �a
t .

Proposition 35. The following equality holds almost surely for almost every a

La
t =

∫ t

0
�2(s)�a(ds). (25)

Proof. Let A be a measurable set. We have

∫
A

La
t da=

∫ t

0
�2(s)1A(Bs) ds =

[
�2(s)

∫ s

0
1A(Br) dr

]t

0

−
∫ t

0

d

ds
(�2(s))

∫ s

0
1A(Br) dr ds

=
[
�2(s)

∫
A

�y
s dy

]t

0
−
∫ t

0

d

ds
(�2(s))

∫
A

�y
s dy ds
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=
∫

A

�2(t)�y
t dy − lim

s→0

∫
A

�2(s)�y
s dy −

∫ t

0

d

ds
(�2(s))

∫
A

�y
s dy ds

=
∫

A

�2(t)�y
t dy −

∫
A

∫ t

0

d

ds
(�2(s))�y

s ds dy (26)

=
∫

Ã

[
�2(t)�y

t −
∫ t

0

d

ds
(�2(s))�y

s ds

]
dy

=
∫

A

[
[�2(s)�y

s ]t0 −
∫ t

0

d

ds
(�2(s))�y

s ds

]
dy

=
∫

A

∫ t

0
�2(s) d�y(s). (27)

Here the second and last equalities are obtained by integration by parts using the fact
that �2 is integrable at 0. Lines (26) and (27) are found by applying (24) and (23),
respectively, withÃ denotingA ∩ �̃ where �̃

c
is a set of Lebesgue measure 0 off of

which (23) holds. We proved that for any measurable setA we have

∫
A

La
t da =

∫
A

∫ t

0
�2(s) d�y(s).

From this we can deduce (25). �

6.4. Tanaka formula

Theorem 36. Let x�T and y ∈ R. Then1(y,∞)B
�(·)1(0,x](·) ∈ Dom∗ � and

∫ x

0
1(y,∞)(B

�(s)) dB�(s) := �(1(y,∞)(B
�)1(0,x](·)) = (B

�
x − y)+ − 1

2
L

y
x.

Proof. For � > 0, denote byp�(x) = (2��)−1/2 exp(−x2/2�) and by

f�(�) =
∫ �

−∞

∫ v

−∞
p�(z − y) dz dv, � ∈ R.

Observe now thatf�(�) → (� − y)+ and f ′
� (�) = ∫ �

−∞ p�(z − y) dz → 1
2 1{0}(�) +

1(y,∞)(�). Hencef�(B
�
x) → (B

�
x − y)+ in L2(�) and f ′

� (B
�
t )1(0,x](t) → 1(y,∞)(B

�
t )

1(0,x](t) in L2(� × R).
Moreover, since the functionsf� satisfy the conditions of Ito formula we deduce that

f ′
� (B

�
t )1(0,x](t) ∈ Dom∗ � and

�[f ′
� (B

�)1(0,x](·)] = f�(B
�
x) − f�(B

�
0) −

∫ x

0
f�

′′(B�
s )�(s)�′(s) ds. (28)
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Therefore if we show that

lim
�→0

�[f ′
� (B

�· )1(0,x](·)] = �(1(y,∞)(B
�· )1(0,x](·)) (29)

and that

lim
�→0

∫ x

0
f�

′′(B�
s )2�(s)�′(s) ds = L

y
x (30)

the theorem will be proved.
Convergence (29) follows from the fact that� is a closed operator onDom∗ �, i.e.

if un, u ∈ Dom∗ � ∩ L2(�, L2(R+)) are such that limn→∞ un = u in L2(�, L2(R+))

and if there isU ∈ L2(�) such that limn→∞ �(un) = U in L2(�) then u ∈ Dom∗ �
and �(u) = U . In our caseu� = f ′

� (B
�· )1(0,x](·) and using Cauchy convergence

in (28) we obtain the convergence of�(u�) hence (29). Convergence (30) follows
from (22). �

7. Finite and infinite-dimensional stochastic differential equations

A well-known difficulty with Skorohod stochastic integration w.r.t. fBm is that solving
even the simplest non-linear differential equation is yet an open problem. There are two
notable exceptions, however: the linear additive and the linear multiplicative equations,
yielding the so-called fractional Ornstein–Uhlenbeck and Geometric fractional Brownian
motion processes, respectively. In this section, we show that this can be done for
integration with respect to our processesB�. We keep our formulations to a minimal
level of complexity. Additional non-linear terms in the drift parts can be considered
using variants of the arguments given in some of the references cited in the introduction;
we will not investigate these details here.

7.1. Finite-dimensional equations

Proposition 37. Let � and B� be fixed as in Proposition1. Consider the stochastic
differential equation

X(t) = X0 +
∫ t

0
bX(s) ds +

∫ t

0
�X(s)�B�(s), t �0, (31)

whereX0, b, � are fixed non-random constants, and where
∫ t

0 �X(s)�B�(s) represents
the Skorohod integral�(1[0,t](·)�X) as in Definition27.
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This linear multiplicative stochastic differential equation(31) has a solution given
by the following geometric�-Brownian motion(G�Bm) :

X(t) = X0 exp

(
�B�(t) + bt − 1

2
�2�2(t)

)
. (32)

This solution is unique in the class of processes Z such thatZ(t) = g(t, B�(t)) where
g is a deterministic function inC1,2 satisfying the conditions of Theorem31 uniformly
in t.

Proof. Ito’s formula (Theorem31) can be extended to include functions that depend
also on time. This can be proven by approximation of such functions with respect to
the time parameter. We omit the details. We thus have for any functionf of class
C1,2 on R+ × R satisfying the hypotheses of Theorem 31 with respect to the second

parameter uniformly in the first parameter, that�f

�x
(·, B�(·))1[0,t] is in Dom∗ � and for

all t �0

f (t, B�(t))=f (0,0) +
∫ t

0

�f

�s
(s, B�(s)) ds

+
∫ t

0

�f

�x
(s, B�(s))�B�(s) +

∫ t

0

�2f
�x2

(s, B�(s))��′(s) ds. (33)

We apply this withf (t, x) = X0 exp(�x+bt−(1/2)�2�2(t)) which immediately yields
Eq. (31).
For the uniqueness, letY be another solution to (31). SinceY (t) = g(t, B�(t)) for

someg, we can use Ito’s formula to show that for any functionh such thath ◦ g is
of classC1,2 and satisfies the conditions of Theorem 31 uniformly int, the following
version of Ito holds forY :

h(Y (t)) = h(Y (0)) +
∫ t

0
h′(Y (s))�Y (s) + 1

2

∫ t

0
h′′(Y (s))d[Y, Y ]�(s),

where the notations�Y (s) and d[Y, Y ]�(s) are defined as follows:

�Y (s):=�g

�x
(s, B�(s))�B�(s) + �2g

�x2
(s, B�(s))��′(s) ds,

d[Y, Y ]�(s):=
∣∣∣∣�g

�x
(s, B�(s))

∣∣∣∣
2

2��′(s) ds.

With this Ito formula in hand, we can now consider the processesU = log X and
V = log Y . A trivial calculation then yields that bothU and V are solutions of the
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following equation inZ:

Z(t) = log X0 + �B�(t) + bt − �2
∫ t

0
��′(s) ds.

Obviously, this is a trivial equation since the right-hand side is explicit, which proves
uniqueness. �

Remark 38. We are not able to find a simple proof of uniqueness for the above
equation in a wider space, because of the restrictive range of our Ito formula, valid
only for deterministic functions ofB�. Extending the validity of the Ito formula will
be the subject of another article.

Proposition 39. Let � and B� be fixed as in Proposition1. Consider the stochastic
differential equation

X(t) = X0 +
∫ t

0
aX(s)ds + B�(t), t �0, (34)

whereX0 and a are fixed non-random constants.
This linear additive stochastic differential equation(31) has a solution given by the

following �-Ornstein–Uhlenbeck process(�OU):

X(t) = X0e
at +

∫ t

0
ea(t−s)�B�(s), (35)

where the last integral is in the Wiener sense(Section 3). The solution is unique, up
to indistinguishability, in the class of all separable processes inL2(�).

Proof. Although this proposition can be considered as a consequence of the results
presented in the next section, we include a quick proof for completeness. First note
that the Wiener integral in (35) is well-defined since the smooth function exp(−as)

is obviously inH which contains anyC�, � > 1
2. Assume thatX exists satisfying

(34). Then we defineY by Y (t) = exp(−at)X(t). ThenY is the sum of a differentiable
processae−at

∫ t

0 X(s) ds and of e−atB�(t) which is of the formg(t, B�(t)) whereg
is deterministic. By Ito’s formula (33) and Eq. (34) we see that

Y (t)=X0 −
∫ t

0
ae−asa

[∫ s

0
X(r) dr

]
ds − a

∫ t

0
e−asB�(s) ds

+
∫ t

0
e−as(aX(s) ds + �B�(s)).
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Now from (34) again, we may replacea[∫ s

0 X(r) dr] by X(s)−B�(s), yielding simply

Y (t) = X0 +
∫ t

0
e−as�B�(s),

which proves uniqueness. This same calculation also shows thatX given by (35) solves
(34). �

7.2. Stochastic heat equations

An equation is commonly called the stochastic heat equation onR if it is of the
form

u(t, x) = u0(x) +
∫ t

0
�xu(s, x) ds +

∫ t

0
�(u(s, x)) dW(s) (36)

for some Gaussian noise termW and some possibly non-linear function�. As an-
nounced above, because of the difficulties inherent in Skorohod integration, we restrict
ourselves to� = Id or � = 1. For the case� = Id, we present our results as
conjectures.
The additive stochastic heat equation

u(t, x) = u0(x) +
∫ t

0
�xu(s, x) ds + B�(t, x) (37)

can be interpreted in itsevolution form, as is often done, in the manner of Da Prato
and Zabczyk[9], as

u(t, x) = Ptu0(x) +
∫ t

0
Pt−sB

�(�s , ·)(x), (38)

whereB�(t, ·) is an infinite-dimensional version of ourB�(t). Obviously here, since
the right-hand side of the equation does not containu, this u given by (38) is the
unique (evolution) solution to (37), when it exists. It is well-known however thatu

may exist even if a strong-sense solution of (37) fails to exist, hence the use of the
terminologyevolution solution.
To be specific, let us assumeB� is a centered Gaussian random field onR+ × S1

whereS1 is the circle (parameterized by[0,2�)) with a given covariance structureQ
in space and the same behavior as our one-dimensionalB� defined in Proposition 1.
In other words it can be written as

B�(t, x) =
∫ t

0
�(t − s)W(ds, x),
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whereW has covarianceE[W(t, x)W(s, y)] = Q(x, y)min(s, t). The operatorP is the
semigroup generated by�. In other words, for any test functionf in L2(R)

Ptf (x) =
∫
R

(2�t)−1/2 exp
(
−(x − y)2/(2t)

)
f (y) dy.

The notation
∫ t

0 Pt−sB
�(�s , ·)(x) is best understood ifW (and consequentlyB�) can be

expanded in a basis of a convenient space of functions. We use the trigonometric basis
for L2(R), which are also the set of eigenfunctions of the Laplacian�. To make matters
as simple as possible, we assume thatu0 = 0 and thatW is spatially homogeneous. In
this case, we knowW can be expanded along the trigonometric basis, with identical
coefficients for like sine and cosine terms. Consequently, we have

B�(t, x) = √
q0B

�
0(t) +

∞∑
n=1

√
qnB̄

�
n(t) sin(nx) +

∞∑
n=1

√
qnB

�
n(t) cos(nx),

where (B
�
n)n and (B̄

�
n)n are independent families of independent copies of theB� in

Proposition1, and(qn)n is a sequence of non-negative numbers. Since sinnx and cosnx

share the eigenvalue−n2 with respect to�, they have the eigenvalue exp(−n2t) for
Pt . Consequently, we can rewrite (38) as

u(t, x)=√
q0

∫ t

0
e−(t−s)n2B

�
0(�s)

+
∞∑

n=1

√
qn cos(nx)

∫ t

0
B

�
n(�s)e−(t−s)n2

+
∞∑

n=1

√
qn sin(nx)

∫ t

0
B̄

�
n(�s)e−(t−s)n2.

This shows, in particular, that for fixedt , u(t, ·) is a homogeneous Gaussian pro-
cess. It is worth noting that the above solutionu may exist as a bona-fide Gaussian
process even ifB�(t, ·) is not a bona-fide process in the space variable. The random
elementB�(t, ·) may be generalized-function-valued (Schwartz-distribution-valued). For
a precise description of such an object, the reader is referred to Section 3, and in par-
ticular, Section 3.1 in [17]. However, it is enough to notice that if

∑
qn = ∞ then

B�(t, ·) is a random generalized function. The next theorem gives a precise result in this
direction.
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Theorem 40. Let � and � be as in Proposition1. Assume moreover that�′ satisfies

−�′(r) = |�′(r)| 
 r−3/2f (r),

wheref is an increasing differentiable function. Also define

F(x) =
∫ x

0

(
1

s

∫ s

0
�(r) dr

)2
ds.

Assume also thatf satisfies the following technical assumptions:

1. f ′/f is bounded by� on the interval[1/(4�),1];
2. for somea > 0, for all r �a, f ′(r)�f (r)/(2r);
3. with g(x) = (xf ′(x)f (x))1/2, g′(r)�g(r)/(2r).

Then the evolution solutionu(t, x) to Eq. (37) exists and is unique as a random
field in L2(� × [0, t] × S1) as soon as

∞∑
n=1

qn(F (n−2) + f 2(n−2)) < ∞. (39)

The second statement in the following corollary shows that the above theorem is
sharp, since it reproduces the sufficient condition of[17] which was also shown therein
to be necessary in the case of fBm itself. It also shows that in the two basic scales of
regularity, the functionsF and f 2 are commensurate.

Corollary 41. The functionsf andF can be estimated in the cases of logBm and fBm
scales. Specifically, we have that in the following two cases, the technical conditions
on � and � all hold, and the theorem translates as follows:

• logarithmic Brownian scale:If �′(r) 
 r−3/2 log−(�+1)/2(r) for some� > 0, so that
�(r) 
 log−�/2(r), then (39) can be replaced by

∞∑
n=1

qn log
−(�+1)(n) < ∞.

• fractional Brownian scale:If �′(r) 
 rH−3/2 for H ∈ (0, 12], so that�(r) 
 rH , then
(39) can be replaced by

∞∑
n=1

qnn−4H < ∞.
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Proof of Theorem 40.The proof’s structure is identical to the general theorem relative
to infinite-dimensional fBm in[17], proved in Section 3.3 therein. We give only the
main difference in the calculation. It is regarding, in the notation of [17], the bounding
of the termI2(�, t). In our context, one can check that the only relevant values of�
are � = n2, n ∈ N, and that we have

I2(�, t) =
∫ t

0
e−2�s

(∫ s

0
(e�r − 1)�′(r) dr

)2
ds.

We will assume in this proof thatt �1, and we will indeed replacet by this value
for all upper bounds below. More generally, to be able to consider arbitrary bounded
intervals [0, T ], cases such as logBm must be modified in consequence to ensure that
� is defined and bounded on such intervals, e.g. in the case of logBm by replacing
�(r) by �(r/2T ) say. The results in the theorem hold for the existence ofu for all
t ∈ [0,∞) as long as one begins with a locally bounded�. We omit the details.
We rewrite

I2(�, t)�I2(�,1)=
∫ 1/�

0
e−2�s

(∫ s

0
(e�r − 1)�′(r) dr

)2
ds

+
∫ 1

1/�
e−2�s

(∫ 1/�

0
(e�r − 1)�′(r) dr

)2
ds

+
∫ 1

1/�
e−2�s

(∫
1/�s

(e�r − 1)�′(r) dr

)2
ds

:=I2,0(�) + I2,1(�) + I2,2(�).

The first termI2,0(�) is controlled as follows. Up to universal constants, we bound
e�r − 1 above by�r, and e−2�s by 1, yielding

I2,0(�)�
∫ 1/�

0
�2
(∫ s

0
r|�′(r)| dr

)2
ds.

By integration by parts we get that

∫ s

0
r|�′(r)|dr =

∫ s

0
�(r) dr − s�(s) + lim

h→0
h�(h).

The limit above is 0 since�(r)>r−1/2. Since � is decreasing,
∫ s

0 �(r) dr exceeds
s�(s), and thus we decide to ignore the smaller of the two, yielding an upper bound.
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It follows that:

I2,0(�)�
∫ 1/�

0
�2
(∫ s

0
�(r) dr

)2
ds

�
∫ 1/�

0

(
1

s

∫ s

0
�(r) dr

)2
ds,

which is the required estimate.
For the second term, using the integration by parts calculation above,

I2,1(�)�
∫ 1

1/�
e−2s�

(∫ 1/�

0
�r|�′(r)| dr

)2
ds

�
∫ 1

1/�
e−2s�

(
�
∫ 1/�

0
�(r) dr

)2
ds

= 1

2�
(e−2− e−2�)

(
�
∫ 1/�

0
�(r) dr

)2

�
∫ 1/�

0

(
1

s

∫ s

0
�(r) dr

)2
ds,

where the last inequality comes from the fact that the functionh(s) = s−1
∫ s

0 �(r) dr is
decreasing on[0, 1� ]. This fact can be seen as follows:h′(s) = s−2(s�(s)−∫ s

0 �(r) dr) <

0 since� itself is decreasing.
The last term can be rewritten using a scalar change of variables, and then integration

by parts, as follows:

I2,2(�)��−3
∫ �

1
e−2s

(∫ s

1
er
∣∣∣�′ ( r

�

)∣∣∣ dr

)2
ds.

Now, we use the representation|�′(r)| 
 r−3/2f (r) with f differentiable and increasing,
and |�′| decreasing:

I2,2(�)�
∫ �

1
e−2s

(∫ s

1
err−3/2f

( r

�

)
dr

)2
ds.

We decompose the inside integral into three parts, and exploit the monotonicity of the
integrands in each corresponding interval:

∫ s

1
err−3/2f

( r

�

)
dr
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=
∫ s/4

1
err−3/2f

( r

�

)
dr +

∫ s/2

s/4
err−3/2f

( r

�

)
dr +

∫ s

s/2
err−3/2f

( r

�

)
dr

�es/2f
( s

4�

)
+ es/2

( s

4

)−3/2
f
( s

2�

)
+ e2

( s

2

)−3/2
f
( s

2�

)
= I2,2,0(s, �) + I2,2,1(s, �) + I2,2,2(s, �).

To deal withI2,2,0(s, �), we first integrating by parts, using the condition thatf ′/f is
bounded by� on the interval[1/(4�),1]:

I2,2,0(�):=
∫ �

1
I2,2,0(s, �)2e−2s ds =

∫ �

1
e−sf 2

( s

4�

)
ds

= e−1f 2
(
1

4�

)
− e−�f 2(1/4) + 1

4�

∫ �

1
e−s2f

( s

4�

)
f ′ ( s

4�

)
ds

�e−1f 2
(
1

4�

)
+ 1

2

∫ �

1
e−2f 2

( s

4�

)
ds

= e−1f 2
(
1

4�

)
+ 1

2
I2,2,0(�).

This implies that

I2,2,0(�)�f 2
(
1

4�

)
.

For the next term we can see that can be dealt with exactly asI2,2,0(�); in fact, it is
of smaller order because of the factors−3.
The last term is more delicate. We begin by noting that

I2,2,2(�):=
∫ �

1
I2,2,0(s, �)2e−2s ds = 8

∫ �

1
s−3f 2

( s

2�

)
ds

=8�−2
∫ 1

1/�
r−3f 2(r/2) dr.

To bound this quantity, we introduce a modified version of it: for fixeda > 0, we let

I a
g (x) := x2

∫ 1

x

r−3g2(r) dr,

where the functiong will be chosen to be equal tog(x) = (xf ′(x)f (x))1/2. With this
choice we do see that according to the hypotheses of the theorem, for somea > 0,
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assuming� > a−1, for all r �a, g′(r)�g(r)/(2r). We calculateI a
g by integration by

parts, using the partsv = r−2 and du = r−1g2(r) so thatu(r) = ∫ r

0 y−1g2(y) and
dv = −2r−3 dr:

I a
g (x) = x2u(1) − u(x) + x2

∫ 1

x

r−32u(r) dr. (40)

Now let J a
g (x) := x2

∫ 1
x

r−32u(r) dr. By hypothesis, 2g(r)g′(r)�g2(r)/r for all r ∈
[0, a], which implies for all suchr that

g2(r) − g(0) =
∫ r

0
2g(y)g′(y) dy�u(r).

We have thatg(0) = lim0 g = 0. Indeed, by hypothesis,g2(x) = 2xf ′(x)f (x)�f 2(x)

which tends to 0 at 0. This implies

I a
g (x)�x2

∫ 1

x

r−3u(r) dr = 1

2
J a

g (x). (41)

Combining (40) and (41) we obtain

J a
g (x)=I a

g (x) − x2u(1) + u(x)

� 1

2
J a

g (x) − x2u(1) + u(x),

which implies

J a
g (x)�2u(x). (42)

Returning now to the definition ofJ a
g and u we have

u(x)=
∫ x

0
r−1g2(r) dr

=
∫ x

0
r−1rf ′(r)f (r) dr

=1
2

f 2(x) (43)

and

J a
g (x) = x2

∫ 1

x

r−3f 2(r) dr.
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With x = �−1, we recognize a piece of the integral definingI2,2,2(�). In fact we have
by (42) and (43) that

I2,2,2(�)=8�−2
∫ 1

1/�
r−3f 2(r/2) dr

�8�−2
∫ 1

1/�
r−3f 2(r) dr

=8J a
g (�−1) + 8�−2

∫ 1

a

r−3f 2(r) dr

�4f 2
(
1

�

)
+ 1

�2
Kf ,

whereKf is a constant depending only onf . The second term above is negligible
compared to the first, since we know thatf (r)?r−1/2.
In conclusion, we have for large� and for allt �1, with F(x) = ∫ x

0 (1
s

∫ s

0 �(r) dr)2 ds,

I2(�, t)�F

(
1

�

)
+ 48f 2

(
1

�

)
,

which is the result required to obtain the first statement of the theorem.�

Proof of the Corollary 41. The statements in the corollary regarding the fBm and
logBm scales are readily verified by trivial estimations off andF in these cases.�
We finish this article by mentioning a conjecture on the multiplicative stochastic heat

equation. This is the case�(u) = u.

Conjecture 42.The evolution form of Eq.(36) with �(u) = u, namely

u(t, x) = Ptu0(x) +
∫ t

0
Pt−s[B�(�s , ·)u(s, ·)](x)

has a unique solution inL2(�× [0, t] × S1) as soon as
∑

qn < ∞, and it is given by
the following Feynman–Kac formula:

u(t, x) = Eb

[
u0(x + bt ) exp

(∫ t

0
B�(�r, x + bt − br) − Q(0)�2(t)/2

)]
,

where b is a standard Brownian motion independent ofB�, and whereEb is the
expectation with respect tob.

A joint paper in preparation by one of the two authors of this paper establishes
this Feynman–Kac formula for fBm in the case ofH > 1

2. It uses a Wiener chaos
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decomposition and some associated estimates. We do not believe that these estimates
are yet available forH < 1

2, making proving the above conjecture non-trivial, although
the result is readily believable.
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