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Abstract

A sharp regularity theory is established for homogeneous Gaussian fields on the unit circle.

Two types of characterizations for such a field to have a given almost-sure uniform modulus of

continuity are established in a general setting. The first characterization relates the modulus to

the field’s canonical metric; the full force of Fernique’s zero-one laws and Talagrand’s theory

of majorizing measures is required. The second characterization ties the modulus to the field’s

random Fourier series representation. As an application, it is shown that the fractional

stochastic heat equation has, up to a non-random constant, a given spatial modulus of

continuity if and only if the same property holds for a fractional antiderivative of the

equation’s additive noise; a random Fourier series characterization is also given.
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1. Introduction

This article has two purposes: to present a sharp regularity theory for Gaussian

fields on the unit circle S1; and to apply this theory to formulate a spatial regularity
theory for the fractional stochastic heat equation (SHE). In this introduction, we
describe the results that we aim at, and the road that we take to achieve them.

We have in mind the equation

@X

@t
ðt; xÞ ¼ DxX ðt; xÞ þ @BH

@t
ðt;xÞ : xAS1; tA½0; 1�; uð0; xÞ ¼ 0; ð1Þ

where D is the standard Laplacian (Laplace–Beltrami) operator on S1; and where BH

is a Gaussian field on ½0; 1� � S1 whose behavior in time is that of fractional
Brownian motion (fBm) with any parameter HAð0; 1Þ; and whose behavior in space
is homogeneous, and can be completely arbitrary within that restriction. In the
sequel, we will omit the superscript H and simply call the fBm B:

By ‘‘regularity theory’’ for a Gaussian field Y we mean a characterization of
almost-sure modulus of continuity for Y that can be written using information about
Y ’s covariance. We seek necessary and sufficient conditions whenever possible, hence
the use of the word ‘‘characterization’’. By ‘‘spatial regularity theory’’ for the
stochastic heat equation, we mean a characterization of the almost-sure modulus of

continuity for the equation’s solution in its space parameter xAS1; that can be
written using information about the spatial covariance of the equation’s data
(additive Gaussian fractional noise @B=@t), or that can be formulated in exact
relation to the data’s almost sure modulus of continuity in x:

Let us be more specific about the distinction between the various characteriza-

tions. Let YðxÞ :¼ ðI 	 DxÞ	H
Bð1; xÞ: This defined a homogeneous Gaussian field on

S1: We can also abusively use the notation Y for the random field Y :¼ ðI 	 DÞ	H
B

on ½0; 1� � S1; which can be called the ‘‘2H-fractional spatial antiderivative’’ of B: It
is well understood (for the Brownian case, see [15], or more recently [10,13,14]) that
in our one-dimensional situation, B does not need to be a bonafide function in x for
the SHE (1) to have a solution. In fact only Y needs to be a bonafide function; in [12]
it is shown that this is a necessary and sufficient condition even in the fractional
Brownian case.

Once a condition for existence is given, it is natural to seek conditions for
regularity. We consider two types of conditions for guaranteeing/characterizing the
fact that the solution X of the SHE (1) admits a given fixed function f as an almost-
sure uniform modulus of continuity:

* Type I (an intrinsic or pathwise condition): the fact that the same almost-sure

continuity holds for Y :¼ ðI 	 DÞ	H
B;

* Type II (a condition on the distribution): a condition that can be written using the
covariance function of Y :

From the applied physical point of view, the necessary Type I condition may be
quite useful. Indeed, the solution of a stochastic PDE can be a model for a turbulent
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physical observation, such as the velocity of a fluid flow; the necessary Type I
condition asserts that the level of regularity (turbulence) that is observed is precisely
related to the regularity of the equation’s forcing term; but in many physical
situations, this forcing term is unobserved; our result allows to draw almost-sure
conclusions about the turbulence—and even the distribution—of the unobserved
forcing term from one sample observation, without any statistical (Type II) analysis.
This is of course an ideal situation, which has a lot to do with the Gaussian
framework we have chosen.

This article goes fairly far in proving both Type I and Type II necessary and
sufficient conditions for X ’s almost sure spatial continuity. This is achieved in
Section 3. The results are entirely new, even in the case of standard white noise
ðH ¼ 1=2Þ: Among the small number of recent works on stochastic PDEs driven by
fBm [4,6,8,9], those which study regularity questions only look at H41=2; and only
consider the time parameter, with the exception of [6] where standard techniques are
used to study spatial regularity. Our study of spatial regularity uses Gaussian tools
instead. These tools are inspired by work done by two of the three authors of this
article in [13,14]. However, these articles had led the two authors to formulate
conjectures on the nature of a necessary and sufficient Type II condition; we prove
herein that this conjecture was erroneous (see Remark 4 below). Moreover, still in
[13], a necessary and sufficient Type I condition had been proved, but only the
Hölder scale f ðrÞ ¼ ra had been considered, and the way the Type I condition was
stated left gaps within the Hölder scale, which could not be filled using the
techniques in that article. In particular, it was believed that Type II conditions were a
first step in proving Type I conditions. We prove herein that such a strategy is
unnecessary (see Remark 5), that the two types of conditions can be proved
essentially disjointedly, and we believe that this more efficient method of proof is the
reason we were able to fill the gaps left in the Hölder scale in [13,14].

The proofs of our Type I and Type II theorems rely heavily on a more basic set of
underlying results for a single Gaussian field Y ¼ Y ðxÞ; proved in Section 2, which
constitute our general Gaussian regularity theory on the circle. In particular we
prove

* regularity theorem (the basis for our Type I theorem): Y admits a fixed function f

as an almost-sure modulus of continuity if and only if f exceeds, up to a non-
random constant, a canonical (entropy-based) modulus of continuity;

* summability theorem (the basis for our Type II theorem): any bound on the

canonical metric function dðxÞ ¼ ½EðY ðxÞ 	 Y ð0ÞÞ2�1=2 is equivalent to a
summability condition on the Fourier coefficients of Y ’s covariance.

The ‘‘if’’ part in our regularity theorem is well-known as part of the Fernique–
Talagrand theory (see [1]), while the ‘‘only if’’ part seems entirely new. Our proof
relies on revisiting the original work of Talagrand in [11], sharpening the proofs by
relying on the particularly simple structure of the circle. Our summability theorem
seems entirely new; it can be considered as an elementary—albeit non-trivial—result
in the harmonic analysis of the circle.
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The theorems of Section 3 also depend in a crucial way on sharp estimates

developed in [12] in proving that the solution X to (1) exists as a member of L2ðO�
½0; 1� � S1Þ if and only if the same holds for Y : These estimates, and the theory of the
SHE (1), are recalled in Section 3.1. The basic result is of the following form.

* Let tA½0; 1� be fixed and let rn and sn be the Fourier coefficients of the covariance
functions of Xðt; 
Þ and Yðt; 
Þ; respectively. Then up to a constant K that may

depend on t; we have K	1rnpsnpKrn:

In our effort to give results that are as sharp as possible, we have specialized to the

case of the Laplacian on the one-dimensional circle S1: It is easy to extend all our
sufficient conditions for continuity of X to higher-dimensional spaces, and/or much
more general operators; the difficulty is in extending the necessary conditions. We
will tackle the issue of sharp necessary conditions (‘‘lower bounds’’) for more general
operators and spaces in a subsequent publication. The extension to a uniformly
hypoelliptic operator on a smooth compact one-dimensional manifold should be
trivial, and we will not comment on this further. The reader may notice that our
‘‘lower bounds’’ proofs (necessary conditions) below make extensive use of a
property of spatial isotropy for B; meaning that the spatial part of the homogeneous
covariance function depends only on the parameter’s distance to the origin. Note
that this can also be characterized as saying that D commutes with the spatial
covariance operator of B: Since we always assume that B is spatially homogeneous,

in the case of the circle S1; isotropy is always satisfied. In higher-dimensional
problems, we believe there is hope of extending our one-dimensional lower bound
results only in the isotropic case.

To establish the ‘‘necessary’’, or ‘‘lower bound’’ portion of the Type I condition,
we will need a technical assumption (Condition B, see below) which amounts to
requiring that X is not Hölder-continuous. Without this assumption, in the Hölder
scale, we will show a slightly weaker result. The ‘‘necessary’’ or ‘‘lower bound’’ Type
II condition, and the ‘‘sufficient’’, or ‘‘upper bound’’ Type II condition require
separate mild technical assumptions which do not limit the regularity scales one may
wish to consider.

Extending the range of validity of the necessary condition of Type I to include
Holder-continuous moduli will be the subject of future work. However, in Corollary
2 below (also see Corollary 3), it can be seen that a Type I condition is
necessary without any restriction on the regularity, provided one is satisfied with
knowing that a certain canonical function fY is the common modulus of continuity
for Y and X : This function fY is known only if one has precise statistical (Type II)
information on B: In other words, the result is useful only if one knows the
distribution of B with some accuracy. In this sense, one is dealing with a hybrid Type
I–Type II condition. An arbitrary measurement of the regularity of X cannot alone
be guaranteed to transfer sharply to Y without the ‘‘non-Hölder’’ regularity
condition B. This is why we have spent the extra effort to exploit the full sharpness of
Gaussian regularity theory, despite the mathematical price we have to pay in
assuming Condition B.
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Summarizing our results on the stochastic heat equation,

* the Type I condition is always sufficient;
* Type II conditions are necessary and sufficient, modulo mild technical

assumptions;
* the Type I condition is necessary if the modulus is not too regular, i.e. not Hölder;
* in the Hölder scale, the Type I condition is nearly necessary;
* a Type I condition is necessary and sufficient with no regularity restriction if one

is satisfied with having an a.s. modulus of continuity that is defined in terms of a
formula of Type II.

2. Sharp Gaussian regularity theory on the circle

This section presents the basic regularity theory for homogeneous Gaussian fields
on the circle. It is not difficult to modify the arguments to fit many one-dimensional
situations; as alluded to above, many isotropic higher-dimensional settings as well.

2.1. Definitions and statements of the regularity results

We start with some definitions.

Definition 1. Let f be a continuous increasing function on Rþ such that lim0þ f ¼ 0:

Let fYðxÞ: xAS1g be a bonafide random field on S1 (meaning Yð
Þ is almost-surely a

bonafide function on S1).

* We say that f is an almost-sure spatial uniform modulus of continuity for Y if
there exists an almost-surely positive (non-zero) random variable a0 such that

aoa0 ) sup
x;yAS1;jx	yjoa

fjYðxÞ 	 YðyÞjgpf ðaÞ:

* The canonical metric d of Y is defined for all x; yAS1 by

dðx; yÞ ¼ ðE½ðYðxÞ 	 YðyÞÞ2�Þ1=2:

* Y is said to be homogeneous if for any x in S1; Y and Yð
 þ xÞ have the same
distribution.

Remark 1. If Y is a homogeneous Gaussian field on S1 then dðx; yÞ ¼ dðjx 	 yjÞ
where Rþ{r/dðrÞ is some function on a neighborhood of 0: Indeed, by
homogeneity there exists some function d such that dðx; yÞ ¼ dðx 	 yÞ; and by
symmetry this also equals dðy 	 xÞ; i.e. dðrÞ ¼ dðjrjÞ: If Y is a separable random field,
then d will be continuous on Rþ and increasing in a neighborhood of 0: We leave the
proof of this last sentence to the reader.

ARTICLE IN PRESS
S. Tindel et al. / Journal of Functional Analysis 217 (2004) 280–313284



Definition 2. We call the function dð
Þ on Rþ the canonical metric function
of Y :

Remark 2. There are precious few processes for which an exact modulus of
continuity is known; we cite the standard Brownian motion W for which

lim sup
h-0

sup
s;tph

ðWðtÞ 	 WðsÞÞ=ððt 	 sÞlogðt 	 sÞ	1Þ1=2 ¼ þ1

while for the lim inf of the inf we get the value 	1; so that f ðrÞ ¼ ðr log r	1Þ1=2 is an
exact uniform mod. of cont. In this article, we are concerned only with sharp moduli
of continuity, in the sense that any (preferably non-random) multiple of an exact
modulus of continuity is still a sharp modulus of continuity.

Notation. We use the notation ^ for commensurate quantities: for positive
functions A and B of any variable x; AðxÞ^BðxÞ means that the ratio AðxÞ=BðxÞ
is bounded away from 0 and N:

Notation. We denote by $d the inverse function of d:

Note for example that for scalar fBm fBHðtÞ: tA½0; 1�g we have dðrÞ ¼ rH :

One can construct a random field on S1 that is homogeneous and that has the
same regularity properties than fBm; in particular we can construct it so that its

canonical metric function satisfies dðrÞ^rH ; we leave it to the reader to check this

can be done by taking rn ¼ n	ð1þ2HÞ in the random Fourier representation (3) below.
Alternately, one may also try to define a stationary fractional Ornstein–Uhlenbeck
bridge.

One should note however that there exists a major difference between this process
and the fBm on ½0; 1�: the latter is adapted to a Brownian filtration, while even the

concept of being adapted is unclear for a random field on S1:

Assumption A. We will assume throughout that d is differentiable except perhaps

at 0; and that lim0þd
0 ¼ þN: Without loss of generality this implies that d is concave

and strictly increasing in a neighborhood of 0:

In terms of regularity properties of Y ; differentiability of d except at 0 introduces

no loss of generality. The condition that d0 at zero is infinite introduces no loss of
generality outside of the very narrow class of processes Y that are a.s. b-Hölder-

continuous for all bo1 but that are not a.s. of class C1: For this class of processes,
similar results to those we prove herein hold, but the methods of proof are
substantially different. We do not comment on these processes further.

Remark 3 (Random Fourier series representation). For any spatially homogeneous

Gaussian field Y on S1 with canonical metric function d; there exists a sequence

ARTICLE IN PRESS
S. Tindel et al. / Journal of Functional Analysis 217 (2004) 280–313 285



frngNn¼0 of non-negative terms such that

dðrÞ2 ¼
XN
n¼1

rnð1 	 cosðnrÞÞ: ð2Þ

Indeed, any such Y can be written as a random Fourier series

Y ðxÞ ¼ Y0

ffiffiffiffi
r0

p þ 2
XN
n¼1

ffiffiffiffi
rn

p fYn cosðnxÞ þ Zn sinðnxÞg; ð3Þ

where all Yn’s and Zn’s are IID Nð0; 1Þ r.v.’s. Then just calculating d2 yields the
former statement.

We now introduce a condition needed for the lower bound proof of the next
theorem which characterizes the regularity of homogeneous Gaussian processes.

This condition is satisfied for the class of functions d defined by dðrÞ ¼ ðlogð1=rÞÞ	p

for any p40 no matter how large, and for all functions that are more irregular than
this class, but is not satisfied in the power scale defined by dðrÞ ¼ ra for any aAð0; 1Þ:
The case of the power scale will be treated separately without this condition.

Condition B. There exists a constant c40 such that in a neighborhood of 0 we haveZ a

0

dðrÞ dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðr	1Þ

p 4cdðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logða	1Þ

q

Our first result is the main elementary regularity theorem, which is key to our Type I
characterization.

Theorem 1. Let Y be a Gaussian random field on S1 with canonical metric function d:
Let

fdðaÞ ¼
Z dðaÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1

$dðeÞ

s
de ð4Þ

¼
Z a

0

dðrÞ dr

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðr	1Þ

p þ dðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logða	1Þ

q
ð5Þ

¼
Z 1

0

dðminðr; aÞÞdr

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðr	1Þ

p ð6Þ

¼
Z

N

0

dðminðe	x2

; aÞÞdx: ð7Þ
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There is a non-random constant K depending only on the law of Y such that the

following hold.

(a) Lower bound/necessary condition. If Assumption A and Condition B hold, if f is

an almost-sure uniform modulus of continuity for Y on S1; then for all a small

enough,

Kf ðaÞXfdðaÞ: ð8Þ

(b) Upper bound/sufficient condition. If lim0þ fd ¼ 0 then Kfd is an almost-sure

modulus of continuity for Y on S1:

This theorem shows that the function fd is, up to a constant, an exact uniform
modulus of continuity for Y ; as long as Y is more irregular than Hölder. The next
corollary shows that one can do nearly as well in the Hölder scale.

Corollary 1. Assume dðrÞ^ra for some a40 (the ‘‘fractional Brownian’’ scale). Then

the Lower bound (a) in Theorem 1 holds even though Condition B is not satisfied, if one

replaces f ðaÞ by f ðaÞlogð1=aÞ in line (8).

Part (b) of the theorem, which is valid in all cases, is the well-known sufficient
condition for knowing that fd is an almost sure uniform modulus of continuity. It
seems to be essentially due to Dudley and Fernique, as can be seen from Theorem 4.4
and Corollary 4.7 in [1]. Our contribution here is the lower bound of statement (a).
To our knowledge, no one has ever stated or proved any such result. The result that
is usually quoted when speaking about necessary and sufficient conditions for
regularity of homogeneous Gaussian processes is that the so-called entropy integral,
which here equals fdð1Þ; is finite if and only if the process is continuous, and that this
quantity is commensurable with the expected value EsupI Yof the supremum of
the process Y over its index set I : In our first attempt to prove part (a) of the
theorem, we had thought that the lower bound of the Dudley–Fernique theorem,
which here reads

fdðrÞpKE sup
½0;r�

Y ð9Þ

for any fixed r near 0; with K a universal constant, could be used to derive (a).
Indeed, if we could invoke a result based on (9) but with Y ¼ fYðxÞ: xA½0; r�g
replaced by Y ¼ fY ðx; yÞ :¼ Y ðxÞ 	 Y ðyÞ : ðx; yÞAS1 � S1; jx 	 yjorg; then a Fer-
nique zero-one law could be invoked much as in Step 5 of the proof of Theorem 1
below to conclude (a). Unfortunately, it is well-known that results such as (9) only
hold for homogeneous Gaussian fields; when a Gaussian field is inhomogeneous, the
entropy fdðrÞ must be replaced by Talagrand’s majorizing measure integral (see [11,
Theorem 17, part (b)]). This is especially crucial when the Gaussian field is blatantly
inhomogeneous; that is the case in our application here even if YðxÞ is homogeneous,
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since when x and y are close together, Yðx; yÞ is very small, while when x and y are
further apart, Y ðx; yÞ is much more on the order of 2YðxÞ: For these reasons,
entropy integral results cannot be used. We found no other way than to use the full
force of majorizing measures coupled with Fernique’s zero-one laws to prove (a).
Moreover we found no easy way of applying [11, Theorem 17, part (b)] directly,
because in this general lower bound result, the various correction terms were too big
for our purposes; this is why we have provided in Lemma 1 below a sharper version
of [11, Theorem 17, part (b)], valid for the simple situation of the circle.

2.2. Proof of Theorem 1

2.2.1. Proof of the lower bound of Theorem 1

Let X ¼ fX ðtÞ: tAIg be a bounded Gaussian field on an index set I : Let d be its
canonical metric, and Bðx; eÞ be the ball of radius e centered at x in this metric. In
this general situation, we introduce some notation. For a fixed measure m on I ; let

gmðZÞ ¼ sup
xAI

Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=mðBðx; eÞÞÞ

p
de;

ymðZÞ ¼ sup
xAI

Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=supfmðfugÞ : uABðx; eÞgÞ

p
de;

fdðZÞ ¼ E½supfXðxÞ 	 XðyÞ : x; yAI ; dðx; yÞoZg�

bdðZÞ ¼ sup
xAI

E½supfjXðxÞ 	 XðyÞj : yAI ; dðx; yÞoZg�:

We note that ymXgm: Since X is centered, we have bdp2fd: Also we introduce the
metric entropy of d: NðeÞ is the smallest number of balls of radius e in the metric d
that are needed to cover I : Let D be the diameter of I in the metric d: Recall the
following result from Fernique’s general theory of suprema for Gaussian processes.

Proposition 1 (Talagrand [15, Theorem 17, part (a)]). There exists a universal

constant K (not dependent on X ) such that with the notation as above, for any

probability measure m on I ;

fdðZÞpKgmðZÞ:

Theorem 17 in [11] also establishes the following lower bound which is original to
Talagrand’s paper: for some probability measure m on I ;

ymðZÞpKbdðZÞ þ Zðlogð2NðZÞÞ þ 2 logð2D=ZÞ=log 2Þ1=2:

Yet this estimate is not sufficient for our purposes. In our specific situation however,
we are able to bring a slight improvement to Talagrand’s original lower bound
proof, by assuming condition B.

Step 1: A Talagrand-type lower bound. We begin with a lemma inspired by
Talagrand’s lower bound [proof of Theorem 17 part (b) in [11]].
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Lemma 1. With the notation as above, with K denoting a universal constant (not

dependent on X ), let Z40 be fixed. Let fBj : j ¼ 1;y;NðZÞg be a covering of I with

balls of radius no greater than Z: There exists a probability measure mj on Bj such that

for all xABj Z diamðBjÞ

0

ðlog½ðsupfmjðfugÞ : dðx; uÞpegÞ	1�Þ1=2
depKbdðZÞ; ð10Þ

and moreover, defining the probability measure m ¼ NðZÞ	1 PNðZÞ
i¼1 mj ;

ymðZÞp sup
jAf1;y;NðZÞg

supxABj

Z Z

0

ðlogNðZÞ

þ log½ðsupfmjðfugÞ : dðx; uÞpegÞ	1�Þ1=2
de ð11Þ

Proof. Let uj be the center of the ball Bj: On each ball Bj : j ¼ 1;y;NðZÞ we apply

Theorem 14 in [11] to obtain the existence of a probability measure mj on Bj such

that

Z diamðBjÞ

0

ðlog½ðsupfmjðfugÞ : dðx; uÞpegÞ	1�Þ1=2
depKE½sup

xABj

XðxÞ�

¼ KE½sup
xABj

X ðxÞ 	 X ðujÞ�pKE½ j sup
xABj

X ðxÞ 	 X ðujÞj �pKbdðZÞ;

proving the lemma’s first assertion. For the second, fix xAI and let j be such that
xABj; then for any epZ;

supfmðfugÞ : dðx; uÞpegX 1

NðZÞ supfmjðfugÞ : dðx; uÞpeg;

so that Z Z

0

ðlogð1=supfmðfugÞ : uABðx; eÞgÞÞ1=2
de

p
Z Z

0

ðlogNðZÞ þ logð1=supfmjðfugÞ : uABðx; eÞgÞÞ1=2
de;

and the result follows. &

Step 2: First majorizing measure integral estimation. Assume I is a compact Lie
group, let j 
 j and dx denote the Haar measure on I ; and its differential, and assume
X is homogeneous on I : Fix x0 in I : Let Bðx0; eÞ be the ball in the metric d centered at
x0 with radius e: Let

tðZÞ ¼
Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=jBðx0; eÞjÞ

p
de:
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Since X is homogeneous, we have jBðy; eÞj ¼ jBðx0; eÞj for any x0; yAI : In particular,
t does not depend on x0; and we have the following equalities for any fixed
probability measure m on I :Z

I

mðBðx; eÞÞ dx ¼
Z

I

dx

Z
I

1fjx	yjpeg mðdyÞ

¼
Z

I

mðdyÞ
Z

I

1fjx	yjpeg dx

¼
Z

I

mðdyÞjBðy; eÞj ¼ jBðx0; eÞj:

Since the function uðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=zÞ

p
is convex for 0ozo1=2; for small e; we can use

u

Z
I

mðBðx; eÞÞ dx

� 	
p
Z

I

uðmðBðx; eÞÞÞ dx:

Therefore

uðjBðx0; eÞjÞp
Z

I

uðmðBðx; eÞÞÞ dx;

which implies

tðZÞp
Z

I

dx

Z Z

0

uðmðBðx; eÞÞÞ de

p sup
xAI

Z Z

0

uðmðBðx; eÞÞÞ de

¼ gmðZÞ:

Step 3: Using the Talagrand-type lower bound. The last inequality, together with
inequality (11), proves, with the measures m and mj : j ¼ 1;y;NðZÞ; identified in

Lemma 1,

tðZÞp gmðZÞpymðZÞ

p sup
jAf1;y;NðZÞg

sup
xABj

Z Z

0

ðlog NðZÞ þ log½ðsupfmjðfugÞ : dðx; uÞpegÞ	1�Þ1=2
de: ð12Þ

Since we have no control over the term involving mj in the above expression, in

comparison to NðZÞ; we have no choice, as did Talagrand himself, but to use the

estimate
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A þ B

p
p

ffiffiffiffi
A

p
þ

ffiffiffiffi
B

p
: Then, with inequality (10), we obtain

tðZÞp Zðlog NðZÞÞ1=2 þ KbdðZÞ

p Zðlog NðZÞÞ1=2 þ KfdðZÞ: ð13Þ
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Step 4: Calculation of the majorizing measure integral. The next step in the proof is

to calculate t: Here we specialize to the case of d on the circle I ¼ S1: Recall that we

denote by $d the inverse function of d: We have

jBðx0; eÞj ¼ jfx : dðjx 	 x0jÞoegj ¼ jfx : jx 	 x0jo$dðeÞgj ¼ 2$dðeÞ:

Therefore t becomes

tðZÞ :¼
Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=jBðx0; eÞjÞ

p
de

¼
Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=ð2$dðeÞÞÞ

q
de: ð14Þ

We also note that because we are working on a one-dimensional index set, we have

NðZÞ ¼ 1

2$dðZÞ
ð15Þ

for any value of Z that yields an integer in this formula.
Step 5: Using the hypothesis of a.s. modulus of continuity with a zero-one law of

Fernique. To complete the proof of the lower bound, we need to estimate fd: To this

end, we use a zero-one-type result due to Fernique. Let Cf ðIÞ be the space of
continuous functions on I that have f as a uniform modulus of continuity, up to a
multiplicative constant. For any ap1; for any function g defined on I ; set

AaðgÞ ¼ sup
jx	yjpa

jgðxÞ 	 gðyÞj; Nf ðgÞ ¼ sup
ap1

AaðgÞ
f ðaÞ :

Then, following Fernique’s definitions [7, Definition 1.2.1], Nf is a gauge on Cf ðIÞ:
Indeed, it suffices to see that Nf is lower-semi-continuous, that is, for every M40;

the set KM ¼ fF;Nf ðFÞpMg is closed. Let Fn be a sequence in KM converging

uniformly to F: Then, for every n and for every ap1 and for every x; y such that
jx 	 yjpa; we have

jFnðxÞ 	 FnðyÞjpMf ðaÞ:

We obtain that FAKM when we let n-N:
Recall the main assumption in statement (a) of the theorem: f is an almost-sure

modulus of continuity for Y : This means that we have the existence of an almost
surely positive random variable a0 such that, if aoa0 then

AaðYÞpf ðaÞ:

Since Y is almost surely continuous, it is also almost surely bounded. This, together
with the last inequality, implies Nf ðYÞ is almost surely finite. A theorem of Fernique

[7, Lemma 1.2.3] implies E½Nf ðYÞ� :¼ coN where c ¼ cðf ;YÞ is a constant
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depending only on f and the law of Y (that is, depending only on the spatial
covariance of B). Therefore

fdðZÞpE sup
dðjx	yjÞpZ

jYðxÞ 	 YðyÞj

¼E sup
jx	yjp$dðZÞ

jYðxÞ 	 YðyÞj

p cf ð$dðZÞÞ: ð16Þ

Step 6: Conclusion. Combining (13), (14), and (15), we obtain

Z Z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=ð2$dðeÞÞÞ

q
depKfdðZÞ þ Z log

1

2$dðZÞ

 ! !1=2

Now let a be defined by a ¼ $d: Then for small a; with (16) and formula (5),Z a

0

dðrÞ dr

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðr	1Þ

p þ dðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logða	1=2Þ

q
pdðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logða	1=2Þ

q
þ cKf ðaÞ;

or in other words Z a

0

dðrÞ dr

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðr	1Þ

p pcKf ðaÞ: ð17Þ

Condition B and the formula for fd in (5) finish the proof of (a).

2.2.2. Proof of the upper bound of Theorem 1

Part (b) is a consequence of a well-known property of homogeneous Gaussian
processes and the general theory of Gaussian regularity. Indeed, one only needs to
apply Theorem 4.4 and Corollary 4.7 in [1]. The details are left to the reader.

2.2.3. Proof of Corollary 1

In the proof of Theorem 1, in the Hölder case dðrÞ ¼ ra; all lower bound
calculations are valid up to inequality (17). The conclusion of the corollary follows
by calculating the left-hand side of (17) and comparing it to f ðaÞlogð1=aÞ:

2.3. Summability result

Our basic summability theorem translates the magnitude of d—and thus, by
Theorem 1 and Corollary 1, the regularity of Y—into a condition on the
summability of the qn’s. This explains why it is the basis for our Type II
characterization. The ‘‘sufficient condition’’ requires Condition C below, which is
stated relative to an upper bound g on the canonical metric (see statement (c) in the

theorem). One can think of Condition C as a condition on g ¼ d2:
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Condition C: There exist constants c; y040 such that for all 0oxoyoy0

gðxÞ=x2 	 gðyÞ=y2
XcðgðyÞ 	 gðxÞÞ=y2:

Condition C essentially places no restriction on the regularity of the canonical
metrics that can be used in Type II characterizations. Indeed, Condition C is satisfied
for all the following basic examples:

* ‘‘Hölder’’ scale:

dðrÞ2pr2a

for any aAð0; 1Þ; up to logarithmic corrections, this scale corresponds to the
Hölder scale of almost-sure uniform moduli of continuity f ðrÞ ¼ ra;

* logarithmic scale:

dðrÞ2pðlogð1=rÞÞ	1	2e

for any e40; this scale corresponds to the scale of moduli of continuity given by

f ðrÞ ¼ ðlogð1=rÞÞ	e;
* iterated logarithmic scale:

dðrÞ2pðlogð1=rÞÞ	1ðlog logð1=rÞ?logðn	1Þð1=rÞÞ	2ðlogðnÞð1=rÞÞ	2	2e

for any nAf2; 3;yg and any e40; here logðnÞ denotes the n-fold iterated

logarithm; this scale corresponds to the scale of moduli of continuity given by

f ðrÞ ¼ ðlogðnÞð1=rÞÞ	e:

Condition C is even satisfied in a scale which yields a.s. discontinuous Y ; although
this scale cannot be used for our purposes:

* logarithmic scale for discontinuous processes:

dðrÞ2pðlogð1=rÞÞ	e

for any eAð0; 1�:

Our basic summability theorem is the following.

Theorem 2. Let Y be a homogeneous Gaussian random field on S1 with canonical

metric function d: Let frngn be the sequence defined by the random Fourier series

representation (3) for Y : Let g be a strictly increasing continuous function on Rþ;
continuously differentiable on ð0;NÞ; with lim0þ g ¼ 0: Consider the following

statements:

(c) There exists a constant K40 such that for all rX0; dðrÞpK
ffiffiffiffiffiffiffiffi
gðrÞ

p
:
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(d) For any strictly decreasing, positive function h on a neighborhood of 0 withR
0 hðxÞdxoN: X

n

rnh g
1

n

� 	� 	
oN:

The implication ðcÞ ) ðdÞ always holds. The converse ðdÞ ) ðcÞ holds if we assume

Condition C.

2.4. Proof of Theorem 2

2.4.1. Proof of ðcÞ ) ðdÞ
To exploit the hypothesis on d in condition (c) note that we have for all n;

K2g
1

n

� 	
X

XN
j¼1

rjð1 	 cosðj=nÞÞX1

3

X5n

j¼n

rj ð18Þ

since for xA½1; 5�; 1 	 cos x41=3: Fix an h as in condition (d). Fix an integer k40: Let

Ik ¼
X5kþ1

n¼1

rnh g
1

n

� 	� 	

¼
Xk

l¼0

X5lþ1	1

n¼5l

rnh g
1

n

� 	� 	
:

We only need to show that Ik is bounded. Since h is decreasing and g is increasing, we

have hðgð1
n
ÞÞphðgð 1

5lþ1ÞÞ for any nA½5l ; 5lþ1�: This, coupled with inequality (18), and the

notation FðxÞ ¼ 1=ðxhðxÞÞ; yields

Ikp
Xk

l¼0

X5lþ1	1

n¼5l

rn

 !
h g

1

5lþ1

� 	� 	

p 3K2
Xk

l¼0

g
1

5l

� 	
h g

1

5lþ1

� 	� 	

¼ 3K2
Xk

l¼0

gð5	lÞ
gð5	ðlþ1ÞÞ

1

Fðgð5	ðlþ1ÞÞÞ

By Assumption A, without loss of generality, we can assume that gð0Þ ¼ 0 and that

g̃ ¼ g1=2 is concave (near 0), and also that gðxÞXx2 (near 0). This implies that
(near 0)

gðxÞ
gðx=5Þp25; gðxÞXx2:
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Also, without loss of generality, we can assume that UðxÞ ¼ xhðxÞ is decreasing near 0;
as the following lemma shows.

Lemma 2. Let h be a function satisfying the assumptions of condition (d). Then one can

find a function f satisfying the same assumptions, such that fXh and xfðxÞ is a

decreasing function in a neighborhood of 0.

Proof. Without loss of generality, one can assume that h is C1ðð0; 1ÞÞ and that
lim0 h ¼ N: Hence, in a neighborhood of 0, h is a decreasing convex function. Now,
if there exists a constant c1 such that, for b41;

hðxÞp c1

xjlogðxÞjb
� c1ðxÞ;

just take f ¼ c1: Otherwise, if there exists a x0 and a strictly positive constant c2

such that, for b41;

hðx0ÞX
c2

x0jlogðx0Þjb
� c2ðx0Þ;

then, by convexity of h; we have hXc2 in a neighborhood of 0, and

lim
x-0

xh0ðxÞ ¼ 	N: ð19Þ

On the other hand, if
R

0
hoN and h is a decreasing convex function, then

xhðxÞpc3 ð20Þ

in a neighborhood of 0. Putting together (19) and (20), we get

hðxÞ þ xh0ðxÞo0

for x small enough. Thus, xhðxÞ is a decreasing function in a neighborhood of 0. &

The estimate of Ik now yields

Ikp 75K2
Xk

l¼0

Uðgð5	ðlþ1ÞÞÞ

p 75K2
Xk

l¼0

Uð25	ðlþ1ÞÞ:

The conclusion the proof of ðcÞ ) ðdÞ is now immediate from the following trivial
calculation,

N4
Z x0

0

h ¼
Z x0

0

UðxÞ dx

x
¼ lnð25Þ

Z
N

y0

Uð25	yÞdyXlnð25Þ
XN
n¼n0

Uð25	ðlþ1ÞÞ;
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where the values x0; y0; and n0 are obvious notation signifying that we ignore the first
terms in Ik to ensure the validity of the inequalities used above when x is close to 0.

2.4.2. Proof of ðdÞ ) ðcÞ
The following lemma on summation by parts will be useful.

Lemma 3. Let ðAnÞn and ðBnÞn be sequences of real numbers. Let a1 ¼ A1; b1 ¼ B1;

and for all jX2; aj ¼ Aj 	 Aj	1 and bj ¼ Bj 	 Bj	1: Then

AnBn ¼
Xn

j¼1

Ajbj þ
Xn

j¼2

Bj	1aj:

Proof. Iterate the relation:

AnBn ¼ AnðBn 	 Bn	1Þ þ Bn	1ðAn 	 An	1Þ þ An	1Bn	1:

from n to 1. &

Step 1: Space discretization. We first show that it is sufficient to show the
conclusion of (c) for the x’s of the form x ¼ 1=n where n is an integer. Indeed assume
that there exist K40 and nmin an integer such that for all nXnmin:

dð1=nÞ2pKgð1=nÞ:

For an arbitrary xAð0; 1=nmin�; let n be such that xAð1=ðn þ 1Þ; 1=n�: We have

d2ðxÞp d2ð1=nÞpKgð1=nÞ

¼KgðxÞ 1 þ gð1=nÞ 	 gðxÞ
gðxÞ

� 	
: ð21Þ

By Assumption A, without loss of generality, we can assume that gð0Þ ¼ 0 and that

g̃ ¼ g1=2 is concave near 0: This implies that if b4x40; ½g̃ðbÞ 	 g̃ðxÞ�=½b 	
x�pgðxÞ=x: Using this fact and the fact that 1=ðn þ 1Þox implies 1=no2x as long
as xo1=2; we obtain:

g̃ð1=nÞ 	 g̃ðxÞ
g̃ðxÞ ¼ g̃ð1=nÞ 	 g̃ðxÞ

1=n 	 x

1=n 	 x

g̃ðxÞ

p
g̃ðxÞ

x

1=n 	 x

g̃ðxÞ

¼ 1=n 	 x

x
o1:
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Then we can estimate

gð1=nÞ 	 gðxÞ
gðxÞ ¼ g̃ð1=nÞ 	 g̃ðxÞ

g̃ðxÞ
g̃ð1=nÞ þ g̃ðxÞ

g̃ðxÞ

¼ g̃ð1=nÞ 	 g̃ðxÞ
g̃ðxÞ

g̃ð1=nÞ 	 g̃ðxÞ
g̃ðxÞ þ 2

 �
o3:

Returning to (21) we get

d2ðxÞp3KgðxÞ:

Step 2: Separating the head and the tail of d: Let n0 be a fixed integer larger than
nmin: We have

d2ð1=n0Þ ¼
Xn0	1

n¼1

rnð1 	 cosðn=n0ÞÞ þ
XN
n¼n0

rnð1 	 cosðn=n0ÞÞ

p
Xn0	1

n¼1

rnðn=n0Þ2 þ
XN
n¼n0

rn:

We only need to show that there exists K40 such that for all n04nmin; the following
two inequalities hold:

Xn0

n¼1

rnðn=n0Þ2pKgð1=n0Þ; ð22Þ

XN
n¼n0

rnpKgð1=n0Þ: ð23Þ

We will assume (d) holds and will assume successively that each of these two
inequalities does not hold; we will obtain a contradiction in each case.

Step 3: Controlling the tail.
Step 3.1: Assuming the tail is unbounded. The negation of inequality (23) is

equivalent to the existence of a sequence of integers ðNmÞm that increases to þN; and

a sequence of positive reals ðKmÞm that increases to þN; satisfying for all mAN;

XN
n¼Nm

rnXgð1=NmÞKm: ð24Þ

It will be convenient below to use the fact that without loss of generality, we can
choose Km to increase to infinity as slowly as we want, without effecting the sequence
ðNmÞm: Let h be a function as in (d). Recall that n/hðgð1=nÞÞ is strictly increasing.
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We introduce the following notation:

BðmÞ :¼
XN

n¼Nm

rn;

	 bðmþ1Þ :¼ BðmÞ 	 Bðmþ1Þ ¼ rNm
þ?þ rNmþ1	1;

AðmÞ :¼ hðgð1=NmÞÞ

aðmþ1Þ :¼ Aðmþ1Þ 	 AðmÞ40:

By hypothesis (d) the tail
P

N

n¼Nm
rnhðgð1=nÞÞ converges to 0 as m-N: We will

calculate this tail using the summation-by-parts Lemma 3 with the A’s and B’s as
above. This will enable us to use the hypothesis (24) on this tail, and another
application of Lemma 3 will yield a contradiction thanks to an appropriately chosen
h: Let m0 be fixed. We have

XN
n¼Nm0

rnhðgð1=nÞÞ ¼
XN

m¼m0

XNmþ1	1

n¼Nm

rnhðgð1=nÞÞ

X

XN
m¼m0

AðmÞð	bðmþ1ÞÞ

¼
XN

m¼m0	1

aðmþ1ÞBðmþ1Þ 	 lim
m-N

AðmÞBðmÞ;

where the last equality is by Lemma 3. We can prove that the last limit does in fact
exist and is equal to 0: Indeed

AðmÞBðmÞ ¼ hðgð1=NmÞÞ
XN

n¼Nm

rn;

p
XN

n¼Nm

rnhðgð1=nÞÞ

and the last term converges to 0 as m-N by hypothesis (d). Now we use (24) on the
first expression for the tail, which yields

XN
n¼Nm0

rnhðgð1=nÞÞX
XN

m¼m0

aðmÞgð1=NmÞKm

XKm0

XN
m¼m0

aðmÞgð1=NmÞ:
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We calculate this last series by Lemma 3 again, using the notation CðmÞ :¼ gð1=NmÞ
and 	cðmÞ :¼ gð1=Nm	1Þ 	 gð1=NmÞ:

XN
m¼m0

aðmÞgð1=NmÞ ¼
XN

m¼m0þ1

Aðm	1Þð	cðmÞÞ þ lim
m-N

AðmÞCðmÞ

¼
XN

m¼m0þ1

hðgð1=Nm	1ÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ�;

where the fact that the last limit is zero is a trivial consequence of the fact that h is
decreasing and integrable at 0:

To summarize we have proved:

XN
n¼Nm0

rnhðgð1=nÞÞXKm0

XN
m¼m0þ1

hðgð1=Nm	1ÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ�: ð25Þ

It is now sufficient to show that h can be chosen integrable at 0 and strictly
decreasing, and such that for all m0 large enough,

XN
m¼m0

hðgð1=Nm	1ÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ�X
1ffiffiffiffiffiffiffiffi
Km0

p : ð26Þ

Step 3.2: Choosing h: We let gm ¼ gð1=Nm	1Þ and introduce a arbitrary sequence

ðkmÞm such that lim km ¼ 0 and kmXðKmÞ	1=2: First we show that we can reduce the

problem of finding h as above to the problem of finding a strictly increasing sequence
of positive numbers ðhmÞm such that

XN
m¼m0

hm½gm 	 gmþ1�Xkm0
; ð27Þ

and such that the series on the left converges. Indeed define a function h as
follows: for each fixed m; define h to be linear on the interval ðgm; gm	1�; with
endpoints set to

hðgm	1Þ ¼ hm	1;

lim
xkgm

hðxÞ ¼minðhm; 2hm	1Þ:
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Since ðhmÞm is strictly increasing, this h is strictly decreasing. Moreover it is clear

that

XN
m¼m0

hm½gm 	 gmþ1�

¼
XN

m¼m0

hðgð1=Nm	1ÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ�

p
Z gm0

0

hðxÞdxp2
XN

m¼m0

hm½gm 	 gmþ1�:

This implies that (26) holds and also that h is integrable at 0; which is what we want.
Thus we only need to find ðhmÞm as in (27). Because of the flexibility we have on the

choice of ðKmÞm (being able to decrease all the values of Km as long as the resulting

sequence still converges to þN), there is no actual loss of generality in fixing the
values of hm and searching for new values of Km such that (27) holds and

kmXðKmÞ	1=2: More precisely we choose hm ¼ f ðgmÞ where f is any positive strictly

decreasing integrable function (e.g. f ðxÞ ¼ x	1=2). Then we can simply define ðkmÞm

by imposing that (27) hold as an equality. Note that we haveZ g1

0

f ðxÞ dxX
XN
m¼1

f ðgmÞ½gm 	 gmþ1�:

Therefore, km is the tail of this convergent series, and so it decreases to zero.
Therefore there is no loss of generality in reassigning the values of Km to satisfy for
all mX1:

Km ¼ ðkmÞ	2:

Step 4: Controlling the head. This step follows a similar structure to Step 3.
Step 4.1. Negating the head bound. The negation of inequality (22) is equivalent to

the existence of a sequence of integers ðNmÞm that increases to þN; and a sequence

of positive reals ðKmÞm that increases to þN; satisfying for all mAN;

XNm

n¼1

n2rnXðNmÞ2
gð1=NmÞKm: ð28Þ

Let h be a function as in (d). We introduce the following notation:

BðmÞ :¼
XNm

n¼1

n2rn;

bðmÞ :¼BðmÞ 	 Bðm	1Þ ¼
XNm

n¼Nm	1þ1

n2rn;
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AðmÞ :¼ 1

ðNmÞ2
h g

1

Nm

� 	� 	
;

aðmÞ :¼AðmÞ 	 Aðm	1Þ:

We will show in Step 4.3 that h can be chosen in such a way that with

An :¼ n	2hðgð1=nÞÞ; the sequence ðAnÞn is decreasing. This yields

XN
n¼Nm0

rnhðgð1=nÞÞ ¼
XN

n¼Nm0

n2rn

1

n2
hðgð1=nÞ 1a somme ci-dessous commence a m ¼ m0

X

XN
n¼Nm0

1

ðNmÞ2
h g

1

Nm

� 	� 	 XNm

n¼Nm	1þ1

n2rn

¼
XN

m¼m0

AðmÞbðmÞ

and then using summation by parts, this equals

XN
m¼m0þ1

ð	aðmÞÞBðm	1Þ þ lim
m-N

AðmÞBðmÞ

X

XN
m¼m0þ1

ð	aðmÞÞKm	1g
1

Nm	1

� 	
ðNm	1Þ2

XKm0þ1

XN
m¼m0þ1

ð	aðmÞÞg 1

Nm	1

� 	
ðNm	1Þ2

¼ Km0þ1

XN
m¼m0

AðmÞcðmÞ 	 lim
m-N

AðmÞCðmÞ;

where CðmÞ ¼ gð1=NmÞðNmÞ2: We note that AðmÞCðmÞ ¼ gð1=NmÞhðgð1=NmÞÞ: How-

ever, since we assumed that h is decreasing and
R

0 hoN; we get immediately that

limx-0 xhðxÞ ¼ 0; so that the last limit above is zero.
Step 4.2. Applying the method of Step 3. Thanks to the previous step we have:

XN
n¼Nm0

rnhðgð1=nÞÞXKm0

XN
m¼m0

hðgð1=NmÞÞ gð1=NmÞ 	
ðNm	1Þ2

ðNmÞ2
gð1=Nm	1Þ

" #

In fact this implies that inequality (25) holds. Indeed by Condition C, we get

XN
n¼Nm0

rnhðgð1=nÞÞXcKm0

XN
m¼m0

hðgð1=NmÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ�

which is stronger than (25) since hðgð1=NmÞÞ4hðgð1=Nm	1ÞÞ:
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We now apply the strategy of Step 3 by saying that it is sufficient to find a function
h integrable at 0 and strictly decreasing, and such that for all m0 large enough,
(26) holds. In addition to the methodology of Step 3, we also need to be sure

that An :¼ n	2hðgð1=nÞÞ is a decreasing sequence, since we needed this condition in
Step 4.1.

Step 4.3. Choosing h: We choose hðyÞ ¼ 1 	 y; defined in a neighborhood of 0:
Clearly this h is integrable at 0 and strictly decreasing. Now for each integer m0 we
define km0

by

XN
m¼m0

hðgð1=NmÞÞ½gð1=Nm	1Þ 	 gð1=NmÞ� ¼ km0
:

Since h is bounded by 1; the left-hand side of this equality is the tail of a converging
series. Therefore km decreases to 0; and (26) holds by invoking the reassignment of
the values of ðKmÞm described at the end of Step 3.2.

The only thing left to prove is that this h is consistent with the

condition, announced at the beginning of Step 4.1, that An ¼ n	2hðgð1=nÞÞ is a
decreasing sequence for n large enough. That is, we want to show that for all n large
enough,

1

n þ 1

� 	2

ð1 	 gð1=ðn þ 1ÞÞÞp 1

n

� 	2

ð1 	 gð1=nÞÞ

which is equivalent to:

1 	 gð1=ðn þ 1ÞÞ
1 	 gð1=nÞ o1 þ 2=n þ 1=n2:

To see this we can assume without loss of generality that near 0; either g is concave
or gðxÞpx: In the first case, we have

1 	 gð1=ðn þ 1ÞÞ
1 	 gð1=nÞ ¼ 1 þ ½1 þ gð1=nÞ þ oðgð1=nÞÞ�g0ðxnÞ

1

nðn þ 1Þ;

where xAð1=ðn þ 1Þ; 1=nÞ: Since g is concave we have g0ðxnÞpg0ð1=ðn þ 1ÞÞÞ; and
also g0ðxÞpgðxÞ=xo1=x for small x: Thus we get:

1 	 gð1=ðn þ 1ÞÞ
1 	 gð1=nÞ o1 þ 2=n:

For the other case, gðxÞpx; we can also assume without loss of generality that

gðxÞXx2 because of Assumption A. Then we get for large n:

1 	 gð1=ðn þ 1ÞÞ
1 	 gð1=nÞ p

1 	 ðn þ 1Þ2

1 	 n	1
¼ 1 þ 1

n
þ o

1

n

� 	
o1 þ 2

n
:
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3. Sharp regularity for the fractional stochastic heat equation

3.1. The SHE with infinite-dimensional fractional Brownian noise

The metric j 
 j on the circle S1 identified to ½0; 2pÞ coincides with the usual
Euclidean distance on any subinterval of length p; normalized by the factor 2p; with

an obvious extension to S1 because of the identification of 0 and 2p: Let feng,fẽng
be the orthonormal basis of L2 ¼ L2ðS1Þ made of sine and cosine functions, i.e. the

set of real-valued eigenfunctions of D on S1; namely cos nx and sin nx: As in [12], and
as is often done in the theory of stochastic PDEs, let us write the SHE (1) in its
weaker evolution form:

Xðt; xÞ ¼
Z t

0

Pt	s½Bðds; 
Þ�ðxÞ : tA½0; 1�; xAS1: ð29Þ

Clearly, because the original equation had only an additive noise term, the evolution
form of the equation gives the solution explicitly. Here ðPtÞtX0 is the semigroup of

operators generated by the Laplacian on S1: The action of this semigroup on L2ðS1Þ
is characterized by

Pt½ein
�ðxÞ ¼ expð	tnÞeinx

which can of course be translated into a characterization using the trig functions en:
In accordance with our announcement in the introduction, we assume, as was done
in [12], and as is often done in the theory of stochastic PDEs with any sort of infinite-
dimensional noise, that the random field B is an infinite-dimensional fBm, with

values in L2ðS1Þ; given by a random Fourier series, generalizing the decomposition
(3): for fqngn a sequence of non-negative terms, we let

Bðt; xÞ ¼ BHðt; xÞ ¼ bH
0 ðtÞ ffiffiffiffiffi

q0
p þ

XN
n¼1

ffiffiffiffiffi
qn

p fbH
n ðtÞcosðnxÞ þ *bH

n ðtÞsinðnxÞg; ð30Þ

where the processes bH
n and *bH

n are IID fBm’s with constant Hurst parameter

HAð0; 1Þ: The reader can refer to any recent article on fractional Brownian motion

for a detailed treatment of how each process bH
n can be defined. We suggest our own

[12], or for a more detailed treatment, [2,5], or [3]. The following characteristic
formulas will help fix the reader’s ideas on fBm, although they will not be used
explicitly in the sequel:

* fBm bH is a centered Gaussian process with bHð0Þ ¼ 0 and

E½ðbHðtÞ 	 bHðsÞÞ2� ¼ jt 	 sj2H :

* the stochastic integral of deterministic functions with respect to fBm (Wiener
integral) is easily defined as a centered Gaussian random variable by extending the
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above relation; a fundamental formula for H41=2 is

E

Z 1

0

f ðuÞ dbHðuÞ
Z 1

0

gðuÞ dbHðuÞ
 �

¼
Z
½0;1�2

f ðsÞgðtÞjt 	 sj2H	2
ds dt:

When Ho1=2; this scalar product can also be computed, but it requires the use of
a singular integral kernel.

* fBm is almost surely g-Hölder-continuous for all goH:
* when H41=2 the increments of bH over small contiguous intervals are positively

correlated; when Ho1=2; they are negatively correlated.

The random field B can be generalized in the x parameter—meaning that Xðt; 
Þ
can be almost-surely a (Schwartz) distribution (a generalized function)—while still
allowing for the solution X in (29) to be defined as a bonafide function of both t and
x: This corresponds to any situation in which

P
qn ¼ N: In [12], the following (easy)

random Fourier representation is given for X when it exists:

Xðt; xÞ ¼
XN
n¼0

ffiffiffiffiffi
qn

p
cosðnxÞ

Z t

0

e	n2ðt	sÞbH
n ðdsÞ

þ
XN
n¼1

ffiffiffiffiffi
qn

p
sinðnxÞ

Z t

0

e	n2ðt	sÞ *bH
n ðdsÞ: ð31Þ

Moreover it is proved that a necessary and sufficient condition for existence of X is

X
n

qn

n4H
oN: ð32Þ

Only under the stronger condition that qn is summable can we guarantee that B is a

true function in L2ðS1Þ; but this is somewhat irrelevant to the purpose of studying X :
Note that both B and X are spatially homogeneous centered Gaussian random

fields. In particular, for fixed t; they can be represented using the following random
Fourier series

Bðt; 
Þ ¼
X
nAZ

ffiffiffiffiffiffiffiffiffiffi
qnðtÞ

p
enWn;

Xðt; 
Þ ¼
X
nAZ

ffiffiffiffiffiffiffiffiffiffi
snðtÞ

p
enGn;

where for nX1; e	n ¼ ẽn and q	nðtÞ ¼ qnðtÞ; and where ðWnÞn and ðGnÞ are I.I.D.

sequences of standard normal r.v.’s. The sequences W and G are independent.

Clearly qnðtÞ ¼ qnt2H and sn is another function of t: Also, for fixed t; X ðt; 
Þ is

almost-surely in L2 if and only if for each fixed x; E½X ðt; xÞ2�oN: The above facts
are where condition (32) come from. More specifically, in the proof of Theorems 2
and 3 in [12], it is established that the variance of the centered Gaussian r.v.
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R t

0 e	n2ðt	sÞBH
n ðdsÞ is commensurate with n	4H ; which means we have the following

single fundamental estimate:

Lemma 4. For fixed tA½0; 1; � we have snðtÞ^qnðtÞ=n4H ; where the commensurability

constants depend only on t; H; and on the original sequence ðqnÞn:

Our purpose now is to seek a stronger condition on ðqnÞn than (32) which

characterizes the fact that the solution has a specified almost-sure spatial modulus of
continuity.

3.2. Type I (pathwise) characterization

3.2.1. General result and examples

We now describe how to use the first theorem to compare the almost-sure
regularities of B and X : In what follows t is a fixed positive value, and with Lemma 4
in mind, we abusively use the notation qn and sn for qnðtÞ and snðtÞ; omitting the t: It
is reassuring to note that from the proof of Theorems 2 and 3 in [12], qn and sn (and
similar time-dependent constant used below) are bounded away from 0 and N as
soon as the same holds for t:

Let Y ¼ ðI 	 DÞ	H
x B: The operator ðI 	 DÞ	H

x on L2 is defined by saying

that

ðI 	 DÞ	H
x ½ein
�ðxÞ ¼ einx=ð1 þ n2ÞH :

Y can be interpreted as an ‘‘antiderivative of order 2H’’ for B: For fixed t40; the
expansion of Y is a random Fourier series

Y ðt; 
Þ ¼
X
nAZ

ffiffiffiffi
rn

p
enð
ÞW 0

n

where, by Lemma 4, rn ¼ rnðtÞ is commensurate with sn:

sn^rn: ð33Þ

Now assume that Y has for fixed t; an almost-sure uniform spatial modulus of
continuity f : Let dY be the canonical metric function for Yðt; 
Þ: Assume dY satisfies
Assumption A and Condition B. Then by Theorem 1 part (a), for some K40; for all
a small enough,

Kf ðaÞX
Z

N

0

dY ðminðe	x2

; aÞÞ dx:
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Because of formula (2) and the fact that sn^rn we get that for some (possibly
different) constant K ; for all small r;

dY ðrÞ ¼
XN
n¼1

ffiffiffiffi
rn

p ð1 	 cosðnrÞÞ

XK
XN
n¼1

ffiffiffiffi
sn

p ð1 	 cosðnrÞÞ

¼KdX ðrÞ;

where dX is the canonical metric function for Xðt; 
Þ: Thus for some constant K ;

Kf ðaÞX
Z

N

0

dX ðminðe	x2

; aÞÞdx ¼ fdX
ðaÞ;

Now use part (b) of Theorem 1: since lim0þ f ¼ 0; the same holds for fdX
; and we get

that fdX
is an almost-sure uniform modulus of continuity for X ðt; 
Þ up to a constant.

Since KfXfdX
we get that f itself is an almost-sure uniform modulus of continuity

for Xðt; 
Þ: Since sn^rn; the roles of X and Y can be swapped, which proves the
following theorem, modulo the statements in the Hölder case, which are clear given
Corollary 1.

Theorem 3. Let X ;Y be as above, relative to B: Let the function dY be defined by

dY ðrÞ ¼
XN
n¼1

qn

1

n4H
ð1 	 cosðnrÞÞ

We assume Condition B hold for dY : Let f be an increasing continuous function on Rþ
with lim0þ f ¼ 0: For any fixed t40; f is, up to a multiplicative constant, an almost-

sure uniform modulus of continuity for Yðt; 
Þ if and only if f is, up to a multiplicative

constant, an almost-sure uniform modulus of continuity for Xðt; 
Þ: Also, dY is the

canonical metric function of Yð1; 
Þ; and the function fY defined by

fY ðaÞ ¼
Z

N

0

dY ðminðe	x2

; aÞÞ dx

is also an almost-sure uniform modulus of continuity for both Yðt; 
Þ and Xðt; 
Þ; and is

bounded above by a constant multiple of f :
In the Hölder case dY ðrÞ ¼ ra for some aAð0; 1Þ; Condition B is not satisfied.

However, we can assert that if f is an almost-sure uniform modulus of continuity for

Yðt; 
Þ; then %fðrÞ ¼ f ðrÞlogð1=rÞ is, up to a multiplicative constant, an almost-sure

uniform modulus of continuity for Xðt; 
Þ; and fY is bounded above by a constant

multiple of f logð1=
Þ; the same statements hold if one exchanges the roles of X and Y :

We now consider some illustrative examples. In this development, we omit the
appellation ‘‘almost-sure, uniform’’ when talking about spatial moduli of continuity.
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* Assume that Z is a Gaussian field on Rþ � S1 that is fBm in time with parameter
H and has fBm behavior in space with parameter H 0: According to the
summability Theorem 2, we see it is safe to assume that Z is of the formP

n

ffiffiffiffiffi
zn

p
enðxÞbH

n ðtÞ where zn^n	2H 0	1; or that at least zn is of the order of n	2H 0	1

in the power scale. Let then BH ¼ ðI 	 DÞ1=2
Z: In this way, qn^n1	2H 0

; and we
have a generalized random field @B=@t in the SHE (1) that is the first derivative of
fBm both in time and in space (with different Hurst parameters), and can thus be

considered as space-time fractional noise. Then we have Y ¼ ðI 	 DÞ1=2	H
Z:

From this (or directly from [12] or from Lemma 4) we see that there is existence of
X if and only if H 041 	 2H: Certainly if H 0o1 	 2H; we do not have existence.
But if we cannot guarantee that H 0 actually exceeds 1 	 2H—that is, if in the
Hölder scale it looks like H 0 ¼ 1 	 2H—we can still have a solution with a certain
amount of regularity. Indeed Theorem 3 asserts that only a spatial ‘‘derivative’’ of
Z of order 1 	 2H needs to exist; for example, the spatial modulus of continuity

of X is commensurate with faðrÞ ¼ ðlogð1=rÞÞ	a for some fixed a40 if and only if
the same holds for the spatial derivative or order 1 	 2H of Z: In this situation, Z

is spatially more regular than fBm of parameter 1 	 2H; but is not spatially fBm
for any parameter H 041 	 2H:

* Consider now the case where Z is spatially fBm with parameter H 041 	 2H: One

can check that a sharp spatial modulus of continuity for Y is f ðrÞ ¼
rH 0	1þ2H log1=2ð1=rÞ: Theorem 3 then asserts the following.
* For Eq. (1) driven by space–time fractional noise with Hurst parameters H and

H 0 respectively, the evolution solution X admits

f ðrÞ ¼ rH 0	1þ2H log1=2ð1=rÞ

as a modulus of continuity. Note here that the full force of the
characterization is being used because we start with a bound on the canonical
metric of the potential, and can reprove Theorem 3 without needing to
invoke the ‘‘lower bound’’ portion (a) of Theorem 1 and Corollary 1 (see
Corollary 2).

* If the evolution solution of Eq. (1) has fractional Brownian regularity in space,

in the sense that for some H 00Að0; 1Þ; it admits f ðrÞ ¼ rH 00
log1=2ð1=rÞ as a

spatial modulus of continuity, then the equation’s potential is the spatial

derivative of a Gaussian field which admits %fðrÞ ¼ rH 00þ1	2H log3=2ð1=rÞ as a
spatial modulus of continuity.

* In the previous ‘‘necessary condition implication’’, we do not know if the
logarithmic corrections can be disposed of, because we do not know whether
Corollary 1 is sharp. However, in the Hölder scale, these corrections can be
viewed as irrelevant.

* When H ¼ H 0 ¼ 1 	 2H ¼ 1=3; since then Y cannot be Hölder continuous, we
can try to invoke Theorem 1 without needing Corollary 1. We get the following.
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* For Eq. (1) driven by space–time fractional noise with common Hurst
parameters 1=3 in time and space, the evolution solution X does not exist.
This can be established using the results of [12] only. It can be considered as the
limit of non-existence of X :..

* However, in the case H ¼ 1=3; assume Y admits f ðrÞ ¼ r1=3 f̃ðrÞ as a spatial

modulus of continuity where lim0 f̃ ¼ 0 and f̃ðrÞbra for all a40: Then f̃ðrÞ is a
spatial modulus of continuity for X ; and the converse holds, still assuming
H ¼ 1=3:

3.2.2. Condition B is morally not necessary for regularity

A slightly weaker version of Theorem 3 can be formulated without Condition B if
one is willing to change from a pathwise to a distributional hypothesis. The
distributional hypothesis we make here is that the function fY ; which can be calculate
directly from the law of B; is continuous at 0: The final conclusion of the corollary
seems to be a pathwise statement, but we consider it a hybrid Type I–Type II
characterization because fY is characterized by the distribution of B: In other words,
an empirical measurement of the almost-sure modulus of continuity of X cannot be
guaranteed to apply also to B without Condition B; the only almost sure modulus of
continuity they are guaranteed to share is fY ; which requires a precise knowledge of
B’s distribution.

Corollary 2. Let B;X ;Y ; dY ; fY be as in Theorem 3, and let dX and fX be defined

similarly relative to X : We have

lim
rk0

fY ðrÞ ¼ 03 lim
rk0

fX ðrÞ ¼ 0:

In that situation X ð1; 
Þ and Yð1; 
Þ share both fY and fX as a.s. uniform moduli of

continuity. Consequently fY is an a.s. uniform spatial modulus of continuity of

continuity for X if and only if the same holds for Y : This last statement holds as soon as

one knows that either X or Y is a.s. continuous, or even merely a.s. bounded.

Proof. The proof follows from Theorem 3 part (b) and the fact, made trivial by
relations (2), (6), and (33), that fY^fX : Note that the last statement is a well-known
fact from the general theory of homogeneous Gaussian processes (see [1]). &

3.3. Type II characterization: summability interpretation

3.3.1. Statement of the summability results

The next lemma shows how to invert the formula that gives the almost-sure
modulus of continuity from the canonical metric function. In the notation of
Theorem 1, it is interesting to note that this lemma implies that d/fd is a bijective
linear map.
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Lemma 5. Let d be an increasing continuous function on Rþ with lim0þ d ¼ 0: Let

f ðaÞ ¼ fdðaÞ :¼
Z

N

0

dðminðe	x2

; aÞÞ dx ¼
Z dðaÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1=$dðeÞ

q
de: ð34Þ

Then

dðaÞ ¼ df ðaÞ ¼
Z f ðaÞ

0

ðlog 1=f̌ðeÞÞ	1=2
de

¼
Z a

0

f 0ðrÞðlogð1=rÞÞ	1=2
dr ð35Þ

¼ f ðaÞðlogð1=aÞÞ	1=2 	
Z a

0

f ðrÞðlogð1=rÞÞ	3=2ð2rÞ	1
dr ð36Þ

Proof. Trivial. &

This lemma poses a difficulty in terms of monotonicity of d with respect to f ;
because of the negative term in expression (36). However, by virtue of (35), some
knowledge of f 0 may help exploit this expression in a monotone way.

Theorem 4. Let f be an increasing continuous function on a neighborhood of 0 in Rþ;
continuously differentiable everywhere except at 0; with lim0þ f ¼ 0: Let d be given by

(36). Let B be defined by (30), and X ;Y be as above relative to B: Let dY be the

canonical metric function of Yð1; 
Þ: Recall the following three statements, which are

equivalent if Condition B holds for dY :

(e) for some fixed t40; Xðt; 
Þ has a constant multiple of f as an almost-sure uniform

modulus of continuity;
(e0) for some fixed t40; Yðt; 
Þ has a constant multiple of f as an almost-sure uniform

modulus of continuity;
(f) for all t40; Xðt; 
Þ and Yðt; 
Þ both have a constant multiple of f as an almost-sure

modulus of continuity;
If d satisfies Condition C, then (e), (e0) and (f) are implied by the following:

(g) for any continuous, decreasing, differentiable function h on ½0; 1� withR 1

0 hðxÞdxoN;

X
n

qn

n4H
h d

1

n

� 	2
 !

oN: ð37Þ

For the converse, assume that FðyÞ ¼ fY 3f̌ is continuously differentiable at 0: Then

(g) is implied by (e0). If moreover dY satisfies Condition B then (g) is implied by (e). If
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Condition B is not satisfied, (g) is still implied by (e) provided one replaces, in (37), the

expression dð1=nÞ by dð1=nÞlogðnÞ:

Remark 4. In [14], a conjecture in the direction of Theorem 4 was formulated. The

authors believed the above result would hold with hðrÞ ¼ r	1 in condition (g). This
theorem shows that such a condition (g) would be too strong. In fact, one can say
that the gap in regularity that is introduced by the stronger version of (g) translates

into a factor of order ðlogðd	2ðrÞÞÞ1=2; this factor is not visible in the Hölder scale,
which explains why in [13], in which only the Hölder scale is considered, it had been
possible to formulate necessary and sufficient conditions whose naive generalization
would lead the authors to the slightly erroneous conjecture of [14].

Remark 5. In [13,14], the authors had formulated results similar to Theorems 3 and
4 in the belief that a Type II characterization was a necessary intermediate step in the
proof of a Type I characterization. The proofs we propose here show that the two
types of characterizations can be established independently of each other.

Remark 6. The differentiability of F at 0 essentially brings no restriction. Indeed, if
the measured empirical modulus of continuity f is such that fbfY ; then we can
easily see that F 0ð0Þ ¼ 0 with continuity at 0: On the other hand, if it turns out that
f^fY ; then since our moduli of continuity are only defined up to a multiplicative
constant, one may as well assume that fY ¼ f ; in which case, as seen in Corollary 2
above and Corollary 3 below, Condition B and the condition on F 0 can be dispensed
with. A situation in which neither fbfY nor f^fY hold can perhaps be considered
as pathological, with a discontinuous F 0 as an even more of a stretch.

3.3.2. Proof of Theorem 4

Step 1 (converse). We begin by proving the ‘‘Converse’’ part.
Step 1.a: (e0) ) ðgÞ and [Condition B and (e)] ) ðgÞ: Assume first that Condition B

holds for dY : Then since the equivalence of (e) and (e0) follows from Theorem 3, we
only need to prove (e0) implies (g). First note by Theorem 3, under condition B, with
dY the canonical metric function of Yð1; 
Þ; (e0) implies

fY ðaÞ :¼
Z

N

0

dY ðminðe	x2

; aÞÞ dxpKf ðaÞ ð38Þ

for some constant K40: We wish for a similar statement relating dY and d:
Consider FðyÞ ¼ fY ðf̌ðyÞÞ: By hypothesis, this function is continuously differenti-

able everywhere in a neighborhood of 0 in Rþ: Also note by (38) that FðyÞpKy: The
following argument shows that we have, in a neighborhood of 0 in Rþ;

f 0
Y ðyÞp2Kf 0ðyÞ: ð39Þ

ARTICLE IN PRESS
S. Tindel et al. / Journal of Functional Analysis 217 (2004) 280–313310



Indeed, if this were not the case, there would exist a sequence fyngn decreasing to 0

such that

f 0
Y ðynÞ42Kf 0ðynÞ:

Since we have F 0ðyÞ ¼ f 0
Y ðf̌ðyÞÞ=f 0ðf̌ðyÞÞ; for all y in a neighborhood of 0 in Rþ; this

means that with zn ¼ f ðynÞ; we get F 0ðznÞ42K for all n: Now by the mean value
theorem on each interval ½0; yn�; there exists a value xnAð0; ynÞ such that FðynÞ ¼
ynF 0ðxnÞ: Therefore F 0ðxnÞpK for all n: We thus have two sequences fzng and fxng
that tend to 0 along which F 0 cannot tend to a common value, contradicting the
hypothesis that F is continuously differentiable at 0:

Therefore, using (35) and (39), in a neighborhood of 0; we have,

dY ðaÞp2KdðaÞ: ð40Þ

Recall that rn ¼ qnn	4H are the coefficients of the expansion of dY in the form of (2).
Inequality (40) allows us to use the implication ‘‘(c) implies (d)’’ from Theorem 2

with g ¼ d2 to conclude that for any decreasing, differentiable function h on ½0; 1�
with

R 1

0 hðxÞ dxoN;

X
n

qn

n4H
h d

1

n

� 	2
 !

oN:

We have thus proved (e0) implies (g) using Condition B.
Step1.b: ðeÞ ) ðgÞ with log correction factor. If (e) is assumed without Condition

B, the Hölder-case portion of Theorem 3 proves that %fðrÞ :¼ f ðrÞlogð1=rÞ exceeds fY

up to a multiplicative constant. Then applying the implication (e0) ) ðgÞ; which we
have just established, we obtain inequality (37) with d replaced by d %f:

X
n

qn

n4H
h d %f

1

n

� 	2
 !

oN: ð41Þ

However we can write

d %fðaÞ :¼ %fðaÞðlogð1=aÞÞ	1=2 	
Z a

0

%fðrÞðlogð1=rÞÞ	3=2ð2rÞ	1
dr

¼ logð1=aÞf ðaÞðlogð1=aÞÞ	1=2 	
Z a

0

logð1=rÞf ðrÞðlogð1=rÞÞ	3=2ð2rÞ	1
dr

p logð1=aÞf ðaÞðlogð1=aÞÞ	1=2 	 logð1=aÞ
Z a

0

f ðrÞðlogð1=rÞÞ	3=2ð2rÞ	1
dr

¼ dðaÞlogð1=aÞ:
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Since h in (41) is decreasing, we obtain

X
n

qn

n4H
h d

1

n

� 	2

log2ðnÞ
 !

oN;

which completes Step 1.b.
Step 2: ðgÞ ) ðfÞ: For the first statement of the theorem, assuming (g), and since

rn ¼ qnn	4H are still the coefficients of the expansion of dY ; assuming Condition C,
the implication ‘‘(d) implies (c)’’ in Theorem 2 proves that there exists K40 such
that the inequality dY ðaÞoKdðaÞ holds for small a: Applying the transformation
d/fd to this inequality yields for small a;

fY ðaÞpKfdðaÞ ¼ Kf ðaÞ;

where the last equality is by the definition of d: Theorem 3 could now be used directly
to conclude on the moduli of continuity of X and Y : However, our claim is that
condition B is not needed. To see this, note that by hypothesis lim0þ f ¼ 0; so that
the previous inequality justifies invoking Corollary 2, which does not require any
conditions, and implies here that both X and Y share both f and fY as a.s. uniform
spatial moduli of continuity. The theorem is proved.

3.3.3. Condition B is morally not necessary for summability

The presence of Condition B and the differentiability condition on F in Theorem 4
masks the fact that the summability condition (g) is a necessary condition for
continuity even when F is not differentiable at 0; and even when Condition B is not
satisfied. We can state this by rephrasing Theorem 4 in a slightly weaker form,
assuming only condition C: The resulting corollary operates in the same way as our
hybrid theorem Corollary 2: the usage of the corollary below assumes that we can
estimate fY sharply, i.e. that we have a handle on the distribution of B:

Corollary 3. Let B be as in (30), and assume that Y ¼ ðI 	 DÞ	H
X has canonical

metric function d satisfying Condition C. Define f ¼ fd as in (34). Then Conditions (e0)
and (g) are equivalent. Moreover, they are equivalent to each of the following:

(i) Y ð1; 
Þ is almost-surely bounded;
(ii) Y ð1; 
Þ is almost-surely continuous;

(iii) lim0þ fd ¼ 0

All these conditions are also equivalent to (e) and to (f).

Proof. That (e0) is equivalent to (i), (ii) and (iii) is a well-known fact from the general
theory of homogeneous Gaussian processes (see [1]). The only part that has not
already been established is (e0) ) ðgÞ: This follows by the proof of the same
implication in the proof of Theorem 4 because here since d ¼ dY ; inequality (40)
holds automatically, so there is no need to invoke the differentiability of F ; and for
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the same reason there is no need to use part (a) of Theorem 1, which makes
Condition B superfluous. The last statement is obvious by Corollary 2. &
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