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C Behavior of (ĝN (θ))0 when H ≥ 3/4 . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1. Introduction

In this article we are interested in the parameter estimation of a stationary
Gaussian process with explicit spectral density, which applies in particular to the
stationary solution of the Ornstein-Uhlenbeck equation driven by the fractional
Brownian motion, also known as the fOU process. The main assumption on
the data is that a single trajectory of the process is observed at predetermined
discrete times, with a fixed length of observation time, and an increasing horizon.
Thus this study, which applies to continuous-time Gaussian stochastic processes,
also falls within the realm of Gaussian time series with complex parametric auto-
covariances.

It is well known that the Maximum Likelihood estimation (MLE) is the pre-
ferred method of estimation because of its asymptotic optimality among den-
sities with regular properties and independent samples (see for example, [42]).
If the samples are generated from a single path of a stationary process, they
can be far from independent, and the asymptotic properties of the MLE can be
deduced, but this would depend on their distributional assumptions. For exam-
ple, one of the most studied classes of stochastic processes is the Gaussian one,
mainly because of its wide use in modeling events which have some degree of
temporal dependence, particularly when joint-distributional information need
only rely on the first two moments, since no further information is needed in
the Gaussian case. In a particular instance, the MLE estimator of a stationary
ARMA process is strongly consistent and asymptotically efficient (see section
10.8 in [7]). As an interesting generalization of the above fact, [41] studies the
parameter estimation of a Gaussian process with rational spectral density, using
a modification of the likelihood function.

Another interesting example in which the MLE uses spectral information
is the estimation of self-similar processes. The best known example of such
processes in a Gaussian setting is the fractional Brownian motion (fBm). Its
applications have been widely studied in many areas including hydrology, fi-
nance, climatology, and others. Jan Beran explains in more detail its definitions
and properties in [3] as well as another example of interest in applications: the
fARIMA process. The estimation of the fractal dimension H of the fBm pro-
cess, also known as Hurst parameter, which turns out to be the same parameter
determining the slow power speed of decay of the auto-correlation function for
fBm’s stationary increments, namely n2H−2, has been researched from different
points of view: exact and approximate Maximum Likelihood using spectral in-
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formation ([19], [15] and [32]), discrete variations of the sample paths ([27], [14],
[43], [45] and [12]), and wavelets ([2], [18], [35]).

A natural generalization of the above example is to consider processes whose
variogram is (see [27]):

v(t) = C|t|s + o(|t|s).
If s = 2H, a sufficient condition for the above to be true is that the spectral
density can be written as a power law with degree −1 − 2H plus a remainder
(see equation (5) in [4]). It is possible to estimate the parameter H of such
processes using the quadratic variation of a filtered process, which will be a
fundamental idea in our suggested method, though the interpretation of H as a
memory parameter for discrete observation, as in our study (where what matters
is the small-t behavior of the variogram), is not the same as its interpretation
for use with in-fill asymptotics, where how H determines self-similarity or path
regularity is what relates it to estimation schemes. The fractional Onrstein-
Uhlenbeck (fOU) process satisfies the above-mentioned condition from [27]; see
[10] for an exhaustive definition and initial study. We also give a brief review of
its definition in section 3.1.

Kleptsyna and Le Breton [29] proved that a maximum likelihood estimator
of the drift parameter λ for the fOU process (in the non-stationary case) can
be obtained using similar techniques to the case where H = 1

2 . This is attained
by considering H ∈ [ 12 , 1). The main difference between [29] and [34] is the
presence of the fractional kernels within the likelihood-estimate formulas, due
to the generalization of the Girsanov formula to the fBm case. They use this
formula to obtain an MLE of λ which is strongly consistent. Furthermore, they
compute approximations of the bias and MSE of their estimator. Tudor and this
paper’s second author [44] extended the previous result to fractional SDEs where
the drift parameter is not necessarily linear. They proved strong consistency of
the MLE estimator even in the case H < 1

2 , using Malliavin calculus techniques,
together with bias and MSE approximations for their estimate of λ. They also
provide a discretized estimator which is still strongly consistent under certain
conditions on the drift. A more recent estimate of λ (assuming λ > 0) was
developed by Hu and Nualart [25]. They propose a least-squares estimate which
is written in terms of an Itô stochastic integral, but its numerical manipulation
is difficult when H > 1

2 ; the estimator cannot be implemented directly when
H < 1

2 since then, the stochastic integral would have to be interpreted in the
Skorohod sense, and the latter cannot be evaluated measurably with respect
to the fOU process’s sigma-field, as it would be if the integral were a classical
Wiener or Wiener/Ito integral; in other words, because the Skorohod integral
is not a stochastic integral in the classical sense, but rather is a divergence
operator (it is the adjoint of a derivative operator, and cannot be interpreted
as an antiderivative in the case of fBm-based models), information from the
entire path of the noise term driving of the fOU process would be required,
which is not an explicit functional of the observations of the fOU process itself.
The estimate is strongly consistent for all H ≥ 1

2 and it turns out that for
H ∈

[
1
2 ,

3
4

)
the least-squares estimate satisfies a classical CLT with a variance



404 L. Barboza and F. Viens

depending on the unknown parameter λ. Moreover, they improved the numerical
applicability of the previous estimate by introducing a new one in terms of a
Riemann integral of the observed process Xt (H ≥ 1

2 ), and this estimate turns
out to be strongly consistent and satisfies a CLT for H ∈

[
1
2 ,

3
4

)
. The proofs of

strong consistency and the CLT for both estimates rely on Malliavin calculus
techniques, in particular, the Nualart-Pecatti-Ortiz characterization of normal
convergence for multiple stochastic integrals (see [39]). In a more recent study,
Brouste and Iacus (see [8]) proved that the variogram of a non-stationary fOU
process satisfies the regularity assumptions of Istas and Lang (see [27]) and
hence they were able to give a joint estimator of (H,σ2) when λ is fixed. In
fact, they proved that it is strongly consistent and asymptotically normal. When
H ∈ ( 12 ,

3
4 ) they also gave an estimator of λ based on Hu and Nualart’s results in

[25], under a certain combination of increasing-domain and infill asymptotics.
For H and σ fixed, their estimate is strongly consistent and asymptotically
normal as well. Recently [17] generalized the previous results to the estimation of
drift and scaling parameters of essentially any long-memory stationary Gaussian
process. That paper was written in response to their own paper jointly with El
Onsy [16] and several other recent papers cited in [17] which are other special
cases of their framework. However, their method does not appear to handle any
memory parameter, nor do any of the methods cited in their work.

As we mentioned from the outset, our interest is to estimate the parameters
in stochastic differential equations using discrete observations, which can be
particularly useful in the areas of econometrics and finance; indeed these fields’
long-memory stochastic modeling are typically limited in how frequently data
can be observed. Section section 4 contains a brief and specific analysis of such a
situation in the case of financial data. Unlike the cases described in the references
above, the asymptotics are taken when the number of observations increases,
but the time length among observations remains fixed. In the case of a fOU
process this problem has been studied by [26] for the estimation of λ when the
Hurst parameter is fixed and is greater than 1

2 . The joint estimation of the pair
(λ, σ) has been solved for discrete observations in [46] when H is kept fixed in(
1
2 ,

3
4

)
. It is important to note that [47] solves the parameter estimation of the

entire set of parameters (H,λ, σ) for a fixed interval and infill asymptotics, i.e.
drawing on availability of data with arbitrarily high sampling frequency.

In the present article, using the Generalized Method of Moments, we show
how to achieve the joint estimation of any finite vector of parameters for sta-
tionary Gaussian sequences at the highest level of generality, using discrete
observations, without requiring infill asymptotics, and we show that our set-
ting applies directly to the joint estimation of H, λ and σ for the fOU process.
Normal asymptotics are established thanks to the Breuer-Major theorem, and
comments on efficiency are included. Our work is the first attempt to solve the
joint estimation of the fOU process for its three parameters using a classical
technique, without using infill asymptotics at all. We show via numerics for the
fOU process that our technique is easily implementable, with good empirical
precision and robustness properties even when operating with a moderate and
realistic dataset size.
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An interesting phenomenon occurs in the case of long-memory sequences such
as discretely-observed fOU: if using only a Method of Moments based directly
on the terms of the sequence itself, not its finite-differences, any estimator based
on quadratic variations fails to be asymptotically normal when H > 3/4. This
is a relatively well-known phenomenon, since that range of H falls beyond the
Breuer-Major theorem’s scope, though typically authors do not seek results in
that range. Arguably, such results would be unnecessary since one only needs to
consider one order filtered observations to avoid the non-normal asymptotics.
However, it is instructive to investigate this case a bit further. Here we provide
some calculations for the fOU case showing that the quadratic variation without
any filtering cannot converge to a normal law, or even, which is more surprising,
to a second-chaos law, but that it remains the basis for a strongly consistent
estimator of the variance nonetheless. This requires the use of the Malliavin
calculus.

This article is structured as follows: section 2 defines our GMM estimator for
any stationary Gaussian process and states its general properties: consistency,
asymptotic normality and efficiency. Section 3 is an application of the above re-
sults to the joint parameter estimation of the stationary solution of the fractional
Ornstein-Uhlenbeck SDE. Finally, section 4 analyzes the numerical performance
of the GMM estimator under a simulation study. Appendix A contain additional
numerics. Appendix B contains mathematical proofs of technical lemmas and
other results in the paper. Appendix C contains the convergence results, with
proofs, for the non-finite-differenced estimator for fOU when H > 3/4.

2. Joint estimation of Gaussian stationary processes

Let Xt be a real-valued centered gaussian stationary process with spectral den-
sity fθ0(x), where fθ(x) is a continuous function with respect to x, continuously
differentiable with respect to θ (θ represents a vector of paremeters and it be-
longs to a compact set Θ ⊂ Rp) and θ0 ∈ Interior(Θ). Hereafter, θ0 will be the
true parameter of Xt. By Bochner’s theorem, the autocovariance function of Xt

can be written as:

ρθ(s) := Cov(Xt+s, Xt) =

∫
R

eisxfθ(x)dx =

∫
R

cos(sx)fθ(x)dx (2.1)

for s ≥ 0 and θ ∈ Θ.
Note that if we assume that ρθ(s) is a continuous function of s, then by [21]

(page 257), the process Xt is ergodic. Take a positive integer L ≥ p, and define:

ρθ(α) := (ρθ(α · 0), . . . , ρθ(α · L))′. (2.2)

Now we have the condition that let us to identify the parameter θ.

Assumption 2.1 (Identifiability condition). Take α > 0. Then the subvector
of ρθ(α):

ρθ,p(α) = (ρθ(α · 0), . . . , ρθ(α · (p− 1)))′.

is an injective map in θ. Assume also that the map ρθ,p(α) is differentiable.
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Remark. Note that the above assumption can be obtained if ∇θρθ,p(α) is a
non-singular matrix or ∇θρθ(α) is a full-column rank matrix for any θ ∈ Θ.
Here we are using the notation ∇θ· to mean the gradient of its argument with
respect to θ.

The concept of filter will be used along this article. Its definition is as follows:

Definition 2.1. A filter a = (a0, . . . , aL) of length L + 1 and order l is a
sequence of L+ 1 real numbers such that:

L∑
q=0

aqq
r = 0, 0 ≤ r ≤ l − 1, r ∈ Z

L∑
q=0

aqq
l �= 0

when l > 0. When l = 0, we will assume that a0 = 1 and aq = 0 for 0 < q ≤ L.

In this article we will employ a family of discrete filters of length L and orders
in {0, . . . , L}. To simplify notation, we define for a filter a with order l:

bk :=

{∑L
q=0 a

2
q if k = 0

2
∑L−k

j=0 ak+jaj if k > 0
(2.3)

and b := (b0, . . . , bL)
′. It is straightforward to prove that given two different

orders li, lj , the corresponding vectors bi and bj are linearly independent. For
these reason we can assume the following:

Assumption 2.2. Assume that we can choose L filters a1, . . . ,aL with respec-
tive orders l1, . . . , lL such that the L× L+ 1 matrix:

B =

⎡⎢⎢⎢⎣
b′
1

b′
2
...
b′
L

⎤⎥⎥⎥⎦
satisfies that p ≤ rank(B) ≤ L.

Using this last assumption, we can define the function V (θ), for any θ ∈ Θ,
as:

V (θ) :=

L∑
k=0

bkρθ(αk),

and the filtered process with step size α > 0 (fixed) at t ≥ 0 as:

ϕ(t) :=

L∑
q=0

aqXt−αq.

for a fixed filter a. This filtered process was already considered in previous
estimation studies, for example [4], [11], [14] and [27]. Due to the stationarity of
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Xt, we can note that the variable ϕ(t) is centered gaussian, hence the expected
value of ϕ(t) is zero and its variance is E[ϕ(t)2] = V (θ0), as follows:

E[ϕ(t)2] =
L∑

q,q′=0

aqaq′E[Xt−αqXt−αq′ ]

=

L∑
q,q′=0

aqaq′ρθ0(α · |q − q′|)

=

L∑
k=0

bkρθ0(αk) = V (θ0).

Following the notation of [36] we define the vector of differences among the
squared filtered observations for each of the L filters and its corresponding V (θ),
for any θ ∈ Θ as:

g(t, θ) := (g1(t, θ), . . . , gL(t, θ))
′

where

g�(t, θ) = ϕ�(t)
2 − V�(θ), for 1 ≤ � ≤ L

and the subscript � means that we use the filter a� in the computation of the
filtered process and its variance entrywise. Clearly, in the jargon of Method of
Moments’ estimation, g(t, θ) satisfies a population moment condition (see [22]
and [36]):

E[g(t, θ0)] = 0

for all t ≥ 0. Also note that the vector g is a second-Wiener chaos vector (see
[38]).

Let us assume that we have observed the process Xt at times 0 = t0 < t1 <
· · · < tN−1 < tN = T and fix α = ti − ti−1.

Let A be a symmetric positive-definite matrix. We will denote ‖A‖ as its
matrix norm induced by the Euclidean norm in RL+1. It is important to note
that A can be chosen to ensure that the GMM estimate is efficient (see section
2.3). Denote, for each θ ∈ Θ, and for an arbitrary time t ≥ 0:

• g0(θ) := E[g(t, θ)] (vector of expected differences)

• ĝN (θ) := 1
N−L+1

∑N
i=L g(ti, θ) (vector of sampled differences)

• Q0(θ) := g0(θ)
′Ag0(θ) (squared distance of expected differences)

• Q̂N (θ) := ĝN (θ)′AĝN (θ) (sampled version of the above distance)

Note that g0(θ) does not depend on time t, due to the stationarity assumption
on Xt. Finally, we define the GMM (Generalized Method of Moments) estimator
of θ0 as (see [24], [22]):

θ̂N = argminθ∈ΘQ̂N (θ). (2.4)

The main idea behind the GMM estimation is that since the function Q0(θ) at-
tains a unique zero at θ0 under Assumptions 2.1 and 2.2 (see Lemma 2.2 below),
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we would want to find a value θ̂N (that depends on the current observations)
such that our weighted empirical approximation to Q0, namely Q̂N , should be
as small as possible.

It is easy to prove that all the remaining results are still valid if we substitute
the fixed matrix A with a sequence of random matrices (perhaps depending
on the data) with a deterministically bounded eigenstructure. In particular, we
can choose such sequence in order to attain convergence in probability to the
efficient alternative of A. For more details see section 2.3.

2.1. Consistency

In this section we will prove the strong consistency of the estimator defined in
(2.4). Our first lemma shows that the sequence Q̂N (θ) is uniformly convergent
for any θ ∈ Θ.

Lemma 2.1. It holds that:

sup
θ∈Θ

|Q̂N (θ)−Q0(θ)| a.s→ 0.

Proof. See Appendix B.

Under the injectivity assumptions on ρθ(α), we can prove:

Lemma 2.2. Under Assumptions 2.1 and 2.2:

Q0(θ) = 0.

if and only if θ = θ0.

Proof. See Appendix B.

And these two lemmas allow us to prove:

Theorem 2.1 (Strong Consistency). Under Assumptions 2.1 and 2.2, it holds
that:

θ̂N
a.s.→ θ0.

Proof. Because of Lemma 2.1 and 2.2 we can apply Theorem 2.1 in [36] and the
result holds.

2.2. Asymptotic normality

In this section we use the Breuer-Major theorem (see [6]) to prove the asymptotic

normality of θ̂N , under some specific assumptions on ρθ(α) and fθ(x). First
denote for any θ ∈ Θ:

ĜN (θ) := ∇θĝN (θ)

G(θ) := E[∇θg(·, θ)].

Note that G(θ) does not depend on t because of the stationarity of Xt. Now we
can state the following lemma:
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Lemma 2.3. Let θ ∈ Θ. The following is true:

(i) ĜN (θ) = G(θ) = −∇θV(θ). Moreover, G(θ) is a continuous function of
θ.

(ii) Under Assumptions 2.1 and 2.2 the matrix G(θ)′DG(θ) is non-singular
for any positive-definite matrix D.

Proof. See Appendix B.

The fact that Xt is a stationary process allows us to write this gaussian
process as a Wiener-Itô integral with respect to a complex centered Gaussian
random measure W over [−π

α ,
π
α ] as follows (see Section 3.2 in [33], Theorem

2.7.7 in [38] and Section 2.1 in [5]),

Xtk =

∫ π
α

− π
α

eitkxf̄θ0(x)
1/2dW (x) = I1(Ak(·|θ0)) (2.5)

where Ak(x|θ0) := eitkxf̄θ0(x)
1/2 is the corresponding kernel under this rep-

resentation for k ∈ {0, . . . , N} and f̄θ0(x) is the spectral density of Xt (for
tk = k · α, k ∈ Z):

f̄θ0(u) :=
∑
p∈Z

fθ0

(
u+

2π

α
p

)
, u ∈

[
−π

α
,
π

α

]
. (2.6)

Assume that we choose n and m such that tn < tm. The covariance between
Xtm and Xtn can be computed as:

Cov(Xtm , Xtn) = ρθ0(|tm − tn|)

=
α

2π

∫ π
α

− π
α

ei|m−n|αxf̄θ0(x)dx

=
1

2π

∫ π

−π

ei|m−n|uf̄θ0

(u
α

)
du. (2.7)

For the next lemma, we need to generalize the definition of bk in (2.3) in the
following way:

bi,jk :=

L−k∑
q=0

aiqa
j
q+k +

L−k∑
q=0

ajqa
i
q+k

where i, j = 1, . . . , L and aik is the k-th entry of the filter ai (recall the nota-
tion in Assumption 2.2). The main condition in the Breuer-Major theorem is
the summability of the second-power of the autocovariance function at integer
times (see [6]). In order to validate this argument we can make the following
assumption, which is equivalent to the above fact:

Assumption 2.3. Assume that for any i, j ∈ {1, . . . , L} we have that:

R(u|i, j) := min
(
1, |u|li+lj

)
f̄θ0(u) ∈ L2[(−π, π)],

where li is the order of the filter ai.
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The assumption above and the fact that the vector ĝN (θ0) can be rescaled
to obtain a sum of Hermite processes of second order, are sufficient conditions
to prove the asymptotic normality of the sample moment equations, as follows:

Lemma 2.4. Under Assumptions 2.1-2.3:

√
N ĝN (θ0)

d→ N (0,Ω)

where Ω is a L× L matrix whose components are:

Ωij = 2
∑
k∈Z

[
L∑

p=0

bi,jp ρθ0 [α(k + p)]

]2
. (2.8)

Proof. See Appendix B.

The next natural step in this analysis is to study the asymptotic behavior of
the Mean Squared error (MSE) of θ̂N . Note that from equation (2.5) the filtered
process can be represented for any � ∈ {1, . . . , L} and i ∈ {0, 1, . . . , N} as:

ϕ�(ti) =

L∑
q=0

aqXti−αq = I1(SAi,�(·|θ0)) (2.9)

where SAi,�(u|θ0) :=
∑L

q=0 aqAi−q(u|θ0), u ∈ R. Hence, using the multiplication
rule of Wiener integrals (see [40]), the componentwise average of the sample
moment equations is:

(ĝN (θ))� =
1

N − L+ 1

N∑
j=L

[ϕ�(tj)
2 − V�(θ)]

=
1

N − L+ 1

N∑
j=L

I2(SA�,j ⊗ SA�,j) = I2[B�,j(·|θ)]

where B�,j(·|θ) := 1
N−L+1

∑N
j=L SA�,j ⊗SA�,j and � ∈ {1, . . . , L}. Then we can

conclude that ĝN (θ) is a vector of L integrals belonging to the second Wiener-
chaos of W . Because of Lemma 2.4, we already know that:

√
N(ĝN (θ0))�

d−→ N (0,Ω�,�)

and therefore E[|(ĝN (θ0))�|2] = O(N−1). Hence there exists a constant K� > 0
such that:

E[|(ĝN (θ0))�|2] ≤
K�

N
.

so, we can use the fact that (ĝN (θ0))� belongs to the second-Wiener chaos
generated by the process W (x) and furthermore we can use the equivalence of
all the Ls-norms of (ĝN (θ0))� to get: (see Theorem 3.50 in [28])

E[|(ĝN (θ0))�|4s] ≤ cs[E[|(ĝN (θ0))�|2]]2s ≤
cs ·K�

N2s
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where cs > 0. Using Jensen’s inequality:

E[‖ĝN (θ0)‖4s] = E

⎡⎣∣∣∣∣∣
L∑

�=1

|(ĝN (θ0))�|2
∣∣∣∣∣
2s
⎤⎦ ≤ L2s−1

L∑
�=1

E
[
|(ĝN (θ0))�|4s

]
≤ L2scs

N2s
max
1≤�≤L

{K�}.

All these calculations allow us to study the behavior of the MSE of θ̂N . Let
εN := θ̂N − θ0. First note that because of the multivariate mean value theorem
(see Proposition F.6.1 in [31] and more details in [36]):

εN := θ̂N − θ0 = −[ĜN (θ̂N )′AĜN (θ̄N )]−1 · ĜN (θ̂N )′AĝN (θ0)

= −ψN (θ̄N , θ̂N ) · ĝN (θ0)

where θ̄N is a value in the interval [θ0, θ̂N ],

ψN (θ̄N , θ̂N ) := [G(θ̂N )′AG(θ̄N )]−1 ·G(θ̂N )′A (2.10)

and θ ∈ Θ (see Lemma 2.3). The next lemma states that all moments of ψN

can be uniformly bounded:

Lemma 2.5. Let ψN as in equation (2.10). Under the remark after assumption
2.1 there exists Rs,L > 0 such that:

E[‖ψN (θ̄N , θ̂N )‖4s] < Rs,L.

Proof. See Appendix B.

Note also that because of the continuity of G:

ψN (θ̄N , θ̂N )
a.s.→ [G(θ0)

′AG(θ0)]
−1G(θ0)

′A.

and due to Lemma 2.5, for any s > 0:

E[‖εN‖2s] = E
[
‖ψN (θ̄N , θ̂N ) · ĝN (θ0)‖2s

]
= E

[
‖ψN (θ̄N , θ̂N )‖2s · ‖ĝN (θ0)‖2s

]
≤ E

[
‖ψN (θ̄N , θ̂N )‖4s

]1/2
E
[
‖ĝN (θ0)‖4s

]1/2
<

Rs,L

Ns

where Rs,L = (L · Rs,L · cs · max�{K�})1/2, and taking s = 1 we obtain an
upper bound for the MSE of θN . Furthermore, if we choose s > 1, we can apply
Borel-Cantelli lemma to get:

εN
a.s−→ 0

If we take γ > 0, and under the same reasoning as before, we can use Chebyshev’s
inequality to get:

P [‖εN‖ > N−γ ] ≤ E[‖εN‖2s]
N−2γs

<
Rs,L

N (1−2γ)s
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and hence for any γ < 1
2 there exists s such that s > 1

1−2γ and, by Borel-Cantelli

lemma there exists N0(ω) < ∞ such that for all N > N0(ω):

Nγ‖εN‖ < c a.s.

where c is an arbitrary positive constant. Hence, we conclude the following
theorem:

Theorem 2.2. Under Assumptions 2.1 and 2.2 we have:

(i) E[‖θ̂N − θ0‖2] = O(N−1)

(ii) Nγ‖θ̂N − θ0‖ a.s.−→ 0 for any γ < 1
2 .

Now we can state a CLT for θ̂N , under Assumptions 2.1-2.3:

Theorem 2.3 (Asymptotic Normality). Let Xt be a Gaussian stationary pro-

cess with parameter θ0. If θ̂N is the GMM estimator given in (2.4), then under
Assumptions 2.1-2.3, it holds that:

√
N(θ̂N − θ0)

d→ N (0, C(θ0)ΩC(θ0)′)

where C(θ0) = [G(θ0)
′AG(θ0)]

−1
G(θ0)

′A and Ω is defined as in Lemma 2.4.

Proof. Lemmas 2.3 and 2.4 gives sufficient conditions to apply Theorem 3.4 in
[36], and conclude the asymptotic normality of θ̂N .

2.3. Practical considerations

If the number of moment conditions L is greater than the number of parameters
p, the asymptotic variance of

√
N(θ̂N − θ0) is minimized when A = Ω−1 (see

Theorem 3.4 of [22] and [36] for a detailed proof of this fact). In the case of
a number of moment equations L equal to the number of parameters p, the
estimation problem is equivalent to the Method of Moments and hence A = I.

There are some numerical methods to compute a sequence of positive-definite

matrices such that ÂN
d−→ A in such a way that ÂN depends on the data

available. This type of procedure gives numerical advantages, specifically when
A = Ω−1, since the previous matrix depends on the unknown parameter θ,
while the sequence ÂN do not depend on this parameter. Three methods that
are commonly used to achieve the above are:

1. Hansen’s Two-Step estimator (see [24]),
2. Iterative estimator and
3. Continuous-Updating estimator (CUE) of Hansen, Heaton and Yaron (see

[23]).

For ease in our calculations in sections 3 and 4, we decided to use a constant
matrix A = Ω−1 under the case where L > p and A = I otherwise.
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3. Parameter estimation of the fractional Ornstein-Uhlenbeck
process

The main objective of this section is to apply the GMMmethod in the parameter
estimation of a particular gaussian stationary process: the fractional Ornstein-
Uhlenbeck process (fOU), under an increasing domain approach. First we will
give a brief introduction of the fOU process.

3.1. Introduction

Cheridito [10] defines the fractional Ornstein-Uhlenbeck process with initial con-
dition ξ ∈ L0(Ω), as the unique almost surely solution of the Langevin equation:

Xt = ξ − λ

∫ t

0

Xsds+ σBH
t , t ≥ 0,

where λ, σ > 0, H ∈ (0, 1] and we use the notation θ = (H,λ, σ). The stationary
solution of the above equation is written as:

Xt = σ

∫ t

−∞
e−λ(t−u)dBH

u , t ∈ R, (3.1)

where the integral is understood in the sense of Riemann-Stieltjes. Since this
process is centered-gaussian and stationary, we can describe its distributional
properties by using only its autocovariance function:

ρθ(t) = 2σ2cH

∫ ∞

0

cos(tx)
x1−2H

λ2 + x2
dx (3.2)

where H ∈ (0, 1) and cH = Γ(2H+1) sin(πH)
2π . Note that when H ≥ 1

2 we can
obtain an alternative expression for ρθ(t) (see Lemma B.1 and formula (B.4)
in the Appendix B). Note that using equation (3.2), we can write an explicit
expression of the spectral density of Xt in continuous time:

fθ(x) = σ2cH
x1−2H

x2 + λ2
.

Throughout this section we will assume that there exists a closed rectangle
Θ ⊂ R2 such that θ ∈ Θ.

3.2. Consistency

For ease of computation we will study the joint estimation of the three parame-
ters in θ when H ≥ 1

2 , and we will employ the autocovariance function obtained
in formula (B.4) only. Note that fθ(x) is continuous with respect to x, H, λ and
σ and its partial derivatives are also continuous functions of its parameters.
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Assumption 2.1 is verified locally because of Lemma B.2 in Appendix B. Note
that the sufficient conditions in order to the above assumption to hold are (1)
α < 1, (2) σ is of known sign and (3) 0 < λ < exp(Ψ(3)). The condition (2)
does not change the magnitude of the variance of the process Xt nor its scale,
since the process is centered. Finally, the joint GMM estimator defined in (2.4)
is consistent under the previous limitations.

The ergodicity of Xt is deduced from the expansion of the function ρθ(x)
when H �= 1

2 (see [10]):

ρθ(x) =
H(2H − 1)

λ
x2H−2 +O(x2H−4), as x → ∞. (3.3)

3.3. Asymptotic normality

Assume that we have a collection of at least 3 filters satisfying Assumption 2.2.
Hence, we can study under which cases Assumption 2.3 is satisfied:

Lemma 3.1. Let Xt be the stationary fOU process with parameters θ=(H,λ, σ).
The Assumption 2.3 holds under the following two cases:

Case 1 If l + l′ ≥ 1 then it holds for all H ∈ (0, 1),
Case 2 If l + l′ = 0 then it holds if H ∈ (0, 3

4 ),

where L ≥ 3.

Proof. See Appendix B.

Since the case 1 in the above lemma guarantees the asymptotic normality of
the moment equations for any H ∈ (0, 1), we decided to use filters with order
greater or equal to 1. If this is the case we can use the previous lemma together
with Lemma 2.4 to obtain the asymptotics of ĝN (θ) as follows:

√
N ĝN (θ)

d−→ N(0,Ω(θ)) (3.4)

where the covariance matrix Ω(θ) has entries according to equation (2.8).
The behavior of

(ĝN (θ))0 :=
1

N − L+ 1

N∑
i=1

ϕ0(ti)
2 − V0(θ)

deserves interest by itself due to its asymptotic behavior when H ≥ 3
4 and

whose proofs rely heavily on Malliavin calculus techniques. We summarized
these results in Appendix C.

We finish this section by applying the general results of the previous section
to obtain consistency and asymptotic normality for the fOU’s GMM estimator.
Assumption 2.1 on injectivity of the estimator is satsified, as shown in Lemma
B.2 in Appendix B; this lemma establishes this assumption for the fOU obser-
vations under an upper bound on λ and for α sufficiently small, where these
conditions do not depend on N . First, we can use the general result in Theorem
2.2 to conclude the following rates of convergence of the GMM estimator:
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Proposition 3.1. Let Xt be a fOU process with parameters θ = (H,λ, σ). Then,
for any positive-definite matrix A and under the conditions of Lemma B.2, the
GMM estimator θ̂N satisfies:

(i)

E[‖θ̂N − θ‖2] = O(N−1)

(ii) As N goes to infinity:

Nγ‖θ̂N − θ‖ a.s.−→ 0

for all γ < 1
2 .

Now we are ready to state the asymptotic distribution of our joint estimator,
using the limiting behavior of ĝN :

Proposition 3.2. Let Xt be the stationary fOU process with parameters θ =
(H,λ, σ). Then, for any positive-definite matrix A and under the conditions of

Lemma B.2, the GMM estimator θ̂N of θ in equation (2.4) is consistent for any
H ∈ (0, 1) and:

√
N(θ̂N − θ)

d→ N(0, C(θ)Ω C(θ)′) (3.5)

where C(θ) = [G(θ)′AG(θ)]−1G(θ)′A and Ω according to equation (2.8).

Proof. The consistency is immediate from Theorem 2.1, since Xt satisfies As-
sumption 2.1 locally. The asymptotic normality is attained since assumption 2.3
holds for any pair of filter lengths whose sum is greater or equal to 1, which
is the case in this example. Therefore, we can apply Theorem 2.3 to get the
desired result.

As we noted in section 2.3, we chose A = Ω−1 because this ensures that the
asymptotic variance is minimal. If this is the case the asymptotic variance can
be simplified to:

[G(θ)′Ω−1G(θ)]−1.

4. Numerical performance of the GMM estimators for the fractional
OU process

In this section we test empirically the properties of the GMM estimator of
(H,λ, σ) for the fOU case. We are especially interested in checking the per-
formance of the joint estimator for a fixed value of N , particularly when N is
not sufficiently large that the constants coming from the asymptotic variances
become secondary concerns. As noted below, we run tests for N = 1000 and
N = 600 observation times of a single path of the stochastic process, which
represents a realistic dataset size for such questions as the estmation of mem-
ory length in financial markets under stochastic volatility (see [13]) or in late-
Holocene paleoclimatology (See [1]), where single observation paths at discrete
times are all that is available. These are examples of situations which are not
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data-rich, but where the amount of data should be sufficient to provide evidence
of long memory. Specifically in the case of financial markets with stochastic
volatility memory, evidence exists that such memory does not persist for longer
than a few weeks at a given level. Assuming for instance that one has access
to 20 working days of stock-, option-, and/or volatility-market data, which cor-
responds to calibrating models to one-month options, in order to stay in the
realm of continuous-time models, i.e. to avoid having to consider jump models
to account for market microstructure, the best one typically hopes for (liberal
estimate) is to observe prices every 5 to 15 minutes depending on option liquid-
ity. This would correspond to roughly 600 to 2000 datapoints before one would
need to recalibrate or change the model, hence our order of magnitudes for N .
This section provides empirical estimates of the bias and variance of our joint
estimator on all three parameters, and a comparison to the the joint estimation
of the pair (H,σ) when λ is fixed.

First we choose a fixed step size among observations (α). In order to simu-
late the fOU process we employ the formula (B.4) together with the Choleski
decomposition of the autocovariance matrix of this gaussian process. This pro-
cedure gives us m independently-generated paths of the fOU process, each such
path, sampled at the N = 1000 observation times, representing one replication
of the single-trajectory dataset available in practice. In our simulations we use
m = 1000 replications. We decided to use finite-difference filters since they are
the most typical p-vanishing-moments filters in the literature (see [14, 11, 8]
for example). The filters were selected sequentially, i.e. we choose li = i for
i = 1, . . . , L, for the purpose of ensuring that the respective matrix B satisfies
Assumption 2.2 in page 6.

In order to solve numerically for θ̂N = (ĤN , λ̂N , σ̂N ) in (2.4), we use the quasi-
Newton L-BFGS-R algorithm contained in the R-routine optim (see [9] and
[37]). This optimization algorithm is designed for solving non-linear problems
with simple bounds. In order to check that there was an acceptable level of
variability produced by the optimization method, we compared the theoretical
bounds induced in formula (3.5) with the empirical variance e(V ar) defined the
largest eigenvalue of the empirical covariance matrix of the estimator vector.
99% of the confidence regions constructed with the empirical variance contained
the true parameter for each scenario.

Finally, we ran different scenarios for the purpose of verification of our GMM
procedure. We chose four different values of the parameter H (0.55, 0.65, 0.75
and 0.85) so that it is possible to assess the effect of increasing levels of long-
memory in our estimates’ performance. In addition, for each of the above cases
we worked with subscenarios with an increase of 10% in λ and a decrease of 10%
in the value of σ, as a quick check on the robustness the empirical statistics.
We noted no significant aberrant behavior in these various scenarios; though all
results are reported below, readers may safely concentrate on the case λ = σ = 1.
We chose a maximum number of filters equal to 7, and since there are three
parameters to estimate, we selected an initial order equal to 3. The scenarios
were chosen so that we could analyze the impact of small changes on the actual
values of the parameters in a given fOU process.
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Table 1

Comparison of Scenarios (α = 0.1).

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

3 0.058 0.057 0.000 0.054 0.053 0.000 0.048 0.047 0.000
4 0.049 0.047 0.000 0.048 0.047 0.000 0.042 0.041 0.000
5 0.045 0.043 0.000 0.045 0.043 0.000 0.040 0.039 0.000
6 0.043 0.042 0.000 0.045 0.043 0.000 0.038 0.037 0.000
7 0.043 0.042 0.000 0.045 0.043 0.000 0.038 0.037 0.000

0.40

3 0.065 0.062 0.001 0.082 0.078 0.002 0.066 0.063 0.001
4 0.058 0.056 0.001 0.074 0.070 0.002 0.062 0.060 0.001
5 0.053 0.051 0.000 0.067 0.064 0.002 0.058 0.056 0.001
6 0.052 0.049 0.000 0.068 0.064 0.002 0.056 0.054 0.001
7 0.052 0.049 0.000 0.068 0.064 0.002 0.057 0.054 0.001

0.55

3 0.061 0.056 0.002 0.080 0.074 0.003 0.062 0.059 0.002
4 0.060 0.055 0.002 0.079 0.074 0.003 0.063 0.059 0.002
5 0.060 0.055 0.002 0.080 0.075 0.003 0.064 0.060 0.002
6 0.061 0.055 0.002 0.081 0.075 0.003 0.063 0.059 0.002
7 0.061 0.055 0.002 0.081 0.075 0.003 0.064 0.060 0.002

0.70

3 0.115 0.103 0.008 0.136 0.124 0.007 0.112 0.102 0.006
4 0.115 0.103 0.007 0.130 0.119 0.007 0.105 0.096 0.005
5 0.109 0.099 0.006 0.126 0.116 0.006 0.102 0.094 0.004
6 0.104 0.095 0.005 0.120 0.111 0.005 0.099 0.091 0.004
7 0.106 0.097 0.005 0.118 0.109 0.005 0.096 0.088 0.004

0.85

3 0.258 0.203 0.042 0.248 0.202 0.034 0.233 0.191 0.031
4 0.219 0.197 0.009 0.244 0.225 0.008 0.224 0.205 0.009
5 0.179 0.162 0.005 0.205 0.189 0.005 0.185 0.171 0.004
6 0.160 0.145 0.004 0.177 0.163 0.003 0.163 0.150 0.003
7 0.156 0.141 0.004 0.169 0.155 0.003 0.154 0.141 0.003

Tables 1 and 2 comprise three empirical metrics of comparison among sce-
narios:

M̂SE :=
1

m

m∑
i=1

‖θ̂N,i − θ‖2

e(V̂ ar) := maximum eigenvalue of V̂ ar(θN )

B̂ias
2
:=

∥∥∥∥∥ 1

m

m∑
i=1

θ̂N,i − θ

∥∥∥∥∥
2

.

where θ̂N,i is the GMM estimate of θ using a sample size ofN which was obtained

using the i-th fOU replication. V̂ ar(θN ) is the empirical covariance matrix of
the GMM estimator based on the m replications. These metrics are computed
as the number of filters increases (i.e. as L increases). The calculations of Table
1 use a sample size N = 1000 and table 2 use N = 600. The second table also
uses an increased time-step of α = 0.5 which in principle might affect estimator
accuracy, though this seems to also depend on the value of H. We have also
computed the empirical statistics when λ is assumed to be known, and when
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Table 2

Comparison of Scenarios (α = 0.5).

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

3 0.314 0.295 0.017 0.355 0.325 0.028 0.337 0.312 0.023
4 0.275 0.259 0.015 0.368 0.335 0.031 0.289 0.265 0.022
5 0.264 0.248 0.014 0.348 0.320 0.027 0.272 0.250 0.021
6 0.261 0.245 0.014 0.344 0.318 0.025 0.264 0.244 0.019
7 0.265 0.248 0.016 0.349 0.321 0.027 0.264 0.243 0.019

0.40

3 0.147 0.143 0.002 0.169 0.166 0.001 0.145 0.141 0.003
4 0.137 0.133 0.002 0.154 0.152 0.000 0.135 0.132 0.002
5 0.132 0.128 0.002 0.149 0.147 0.000 0.133 0.130 0.002
6 0.131 0.128 0.002 0.151 0.149 0.000 0.130 0.127 0.002
7 0.132 0.129 0.002 0.150 0.148 0.000 0.130 0.127 0.001

0.55

3 0.198 0.169 0.030 0.256 0.224 0.043 0.207 0.174 0.027
4 0.197 0.167 0.028 0.254 0.211 0.041 0.202 0.166 0.035
5 0.186 0.157 0.027 0.240 0.198 0.041 0.189 0.156 0.031
6 0.173 0.148 0.023 0.212 0.178 0.032 0.179 0.148 0.029
7 0.173 0.149 0.023 0.225 0.188 0.036 0.180 0.148 0.030

0.70

3 0.174 0.169 0.001 0.254 0.230 0.020 0.170 0.166 0.000
4 0.207 0.201 0.002 0.237 0.229 0.005 0.216 0.210 0.003
5 0.179 0.174 0.002 0.218 0.211 0.004 0.184 0.180 0.001
6 0.170 0.166 0.001 0.208 0.202 0.003 0.178 0.175 0.001
7 0.173 0.168 0.001 0.208 0.203 0.002 0.175 0.172 0.001

0.85

3 0.201 0.188 0.002 0.204 0.193 0.002 0.168 0.158 0.001
4 0.195 0.181 0.004 0.206 0.191 0.006 0.167 0.154 0.005
5 0.177 0.164 0.003 0.189 0.175 0.006 0.156 0.144 0.005
6 0.168 0.156 0.002 0.175 0.163 0.004 0.142 0.131 0.004
7 0.166 0.155 0.002 0.175 0.163 0.004 0.145 0.134 0.004

using another class of filters, with results shown in Appendix A. Below are some
conclusions:

1. The empirical MSE (M̂SE) seems to decrease for a fixed scenario when
the number of filters (number of moment conditions L) increases. For α =
0.1, we observe an increase in the empirical MSE as the Hurst parameter
increases; this fact does not persist when α = 0.5, where the empirical
MSEs are larger by up to a factor of 3, particularly when H is small. The
case of only 600 datapoints with a larger time interval appears to reach the
limit of our joint estimation method’s reliability when trying to estimate
all three paramters together, since the MSE there exceeds 10% of the value
of the parameter routinely in this case. See however, the comments below
when λ is assumed known.

2. As the drift and diffusion parameters λ and σ are perturbed, the empirical
MSE seems to change mainly due to the change in the magnitude of the
variance when that happens.

3. Sensitivity of B̂ias
2
and e(V̂ ar) to λ and σ are noted as moderate, and for

each case the change persists as the number of filters increases. Dependence
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of e(V̂ ar) on σ is easily explained in theory since the asymptotic covari-
ance in Proposition 3.2 is proportional to σ2. The two empirical statistics
appear to be largely insensitive to the number of filters, however.

4. If we compare Tables 1 and 2 with Tables 3 and 4 in Appendix A, where
the estimation is performed keeping the parameter λ fixed on each sce-
nario, we notice that most of the empirical MSE is due to the variation
in λ estimation. The level of precision in essentially all scenarios is higher
than 100 to 1, and the estimators can be considered as empirically unbi-
ased. This holds even in the unfavorable case of 600 observation times and
larger time step (Table 4). We also note that sensitivity of the estimators’
performances to the number of filters is very low, except for large values
of H where it seems preferably to choose at least L = 3 even though there
are only two parameters to estimate.

5. Finally Tables 5 and 6 in Appendix A contain the joint estimation of the
three parameters under the same scenarios when the filters are Daubechies
wavelets. We note that if we compare those tables with Tables 1 and 2,
performance is essentially unchanged from one filter-class to the other. The
slight improvement from Daubechies filters compared to finite-difference
filters when the Hurst parameter is larger than 1

2 does not seem to be
significant.

Appendix A: Additional tables

Table 3

Comparison of Scenarios (α = 0.1). Estimation of (H, σ) with λ fixed.

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

2 0.00174 0.00166 1.26× 10−06 0.00180 0.00171 1.58× 10−06 0.00153 0.00145 1.30× 10−06

3 0.00134 0.00125 5.79× 10−07 0.00130 0.00121 3.81× 10−07 0.00116 0.00108 4.23× 10−07

4 0.00128 0.00119 2.62× 10−07 0.00128 0.00119 2.87× 10−07 0.00113 0.00104 5.19× 10−07

5 0.00128 0.00120 2.92× 10−07 0.00128 0.00119 2.05× 10−07 0.00113 0.00105 5.36× 10−07

6 0.00128 0.00120 1.11× 10−07 0.00128 0.00119 1.57× 10−07 0.00113 0.00104 5.29× 10−07

0.40

2 0.00275 0.00268 1.15× 10−06 0.00290 0.00281 2.32× 10−05 0.00235 0.00227 6.58× 10−07

3 0.00218 0.00211 3.49× 10−06 0.00225 0.00217 1.15× 10−05 0.00175 0.00167 1.54× 10−07

4 0.00215 0.00207 4.15× 10−06 0.00218 0.00210 9.43× 10−06 0.00170 0.00163 1.72× 10−07

5 0.00213 0.00206 4.25× 10−06 0.00218 0.00210 9.19× 10−06 0.00170 0.00163 2.50× 10−07

6 0.00214 0.00206 4.49× 10−06 0.00217 0.00209 8.77× 10−06 0.00169 0.00161 2.73× 10−07

0.55

2 0.00442 0.00435 1.62× 10−05 0.00413 0.00404 1.65× 10−05 0.00372 0.00364 1.38× 10−05

3 0.00318 0.00311 1.76× 10−05 0.00307 0.00299 1.54× 10−05 0.00273 0.00267 1.44× 10−06

4 0.00312 0.00304 1.71× 10−05 0.00306 0.00298 1.87× 10−05 0.00268 0.00262 1.12× 10−06

5 0.00312 0.00305 1.60× 10−05 0.00306 0.00298 1.84× 10−05 0.00267 0.00261 1.05× 10−06

6 0.00311 0.00304 1.74× 10−05 0.00306 0.00298 1.85× 10−05 0.00266 0.00260 9.60× 10−07

0.70

2 0.00817 0.00793 1.90× 10−04 0.00837 0.00827 4.23× 10−05 0.00669 0.00652 1.16× 10−04

3 0.00426 0.00421 5.33× 10−06 0.00462 0.00458 2.40× 10−06 0.00352 0.00347 4.90× 10−06

4 0.00426 0.00422 5.53× 10−06 0.00458 0.00454 2.75× 10−06 0.00353 0.00349 4.87× 10−06

5 0.00426 0.00422 5.92× 10−06 0.00458 0.00453 3.18× 10−06 0.00353 0.00349 4.92× 10−06

6 0.00425 0.00421 6.12× 10−06 0.00457 0.00452 3.10× 10−06 0.00355 0.00351 4.79× 10−06

0.85

2 0.03361 0.03300 5.44× 10−04 0.03137 0.03053 7.81× 10−04 0.03046 0.02985 5.11× 10−04

3 0.01167 0.01165 4.39× 10−06 0.01035 0.01032 1.72× 10−05 0.00957 0.00954 1.74× 10−05

4 0.01172 0.01170 4.01× 10−06 0.01034 0.01031 1.74× 10−05 0.00947 0.00943 1.95× 10−05

5 0.01170 0.01169 3.99× 10−06 0.01025 0.01022 1.68× 10−05 0.00947 0.00943 2.26× 10−05

6 0.01171 0.01169 3.98× 10−06 0.01026 0.01023 1.71× 10−05 0.00945 0.00942 1.91× 10−05
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Table 4

Comparison of Scenarios (α = 0.5). Estimation of (H, σ) with λ fixed.

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

2 0.00179 0.00121 8.34× 10−07 0.00189 0.00131 2.47× 10−06 0.00159 0.00106 5.11× 10−07

3 0.00179 0.00122 1.12× 10−06 0.00186 0.00129 3.50× 10−06 0.00159 0.00106 6.27× 10−07

4 0.00180 0.00122 1.18× 10−06 0.00185 0.00128 3.79× 10−06 0.00158 0.00106 6.82× 10−07

5 0.00178 0.00121 1.41× 10−06 0.00185 0.00128 3.72× 10−06 0.00158 0.00105 7.32× 10−07

6 0.00179 0.00121 1.26× 10−06 0.00186 0.00128 3.53× 10−06 0.00158 0.00106 1.05× 10−06

0.40

2 0.00169 0.00124 7.24× 10−06 0.00172 0.00125 2.14× 10−06 0.00152 0.00111 5.87× 10−08

3 0.00171 0.00125 7.11× 10−06 0.00172 0.00125 1.99× 10−06 0.00153 0.00112 6.10× 10−08

4 0.00170 0.00124 7.28× 10−06 0.00172 0.00125 1.90× 10−06 0.00153 0.00112 7.78× 10−08

5 0.00170 0.00124 7.72× 10−06 0.00171 0.00125 1.77× 10−06 0.00152 0.00111 1.34× 10−07

6 0.00170 0.00124 7.88× 10−06 0.00170 0.00124 1.70× 10−06 0.00152 0.00111 1.77× 10−07

0.55

2 0.00183 0.00150 1.02× 10−05 0.00179 0.00149 3.18× 10−07 0.00152 0.00123 1.95× 10−07

3 0.00180 0.00149 1.07× 10−05 0.00175 0.00145 3.71× 10−07 0.00147 0.00119 1.60× 10−07

4 0.00180 0.00149 1.05× 10−05 0.00175 0.00145 3.68× 10−07 0.00146 0.00118 1.54× 10−07

5 0.00179 0.00148 9.46× 10−06 0.00173 0.00143 4.20× 10−07 0.00146 0.00118 2.30× 10−07

6 0.00179 0.00148 9.85× 10−06 0.00175 0.00145 3.33× 10−07 0.00146 0.00118 2.49× 10−07

0.70

2 0.00305 0.00279 2.82× 10−05 0.00334 0.00313 6.76× 10−06 0.00288 0.00265 2.06× 10−05

3 0.00270 0.00248 7.47× 10−06 0.00308 0.00288 4.75× 10−06 0.00250 0.00231 3.99× 10−06

4 0.00270 0.00248 6.60× 10−06 0.00308 0.00288 4.76× 10−06 0.00251 0.00231 4.01× 10−06

5 0.00269 0.00247 6.13× 10−06 0.00308 0.00288 4.64× 10−06 0.00249 0.00229 3.51× 10−06

6 0.00269 0.00247 6.17× 10−06 0.00306 0.00286 4.71× 10−06 0.00247 0.00227 3.06× 10−06

0.85

2 0.01554 0.01513 3.02× 10−04 0.01501 0.01457 3.46× 10−04 0.01298 0.01233 5.28× 10−04

3 0.01008 0.00999 2.00× 10−05 0.01027 0.01018 1.46× 10−05 0.00838 0.00826 4.72× 10−05

4 0.00998 0.00989 1.51× 10−05 0.01016 0.01007 1.43× 10−05 0.00830 0.00818 5.12× 10−05

5 0.00974 0.00965 1.41× 10−05 0.00991 0.00983 1.25× 10−05 0.00806 0.00794 5.39× 10−05

6 0.00974 0.00965 1.37× 10−05 0.00962 0.00954 1.24× 10−05 0.00798 0.00786 4.55× 10−05

Table 5

Comparison of Scenarios (α = 0.1). Estimation of (H,λ, σ) with Daubechies wavelets.

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

3 0.045 0.044 0.000 0.053 0.052 0.000 0.045 0.044 0.000
4 0.042 0.041 0.000 0.047 0.046 0.000 0.042 0.040 0.000
5 0.042 0.040 0.000 0.047 0.046 0.000 0.041 0.040 0.000
6 0.041 0.040 0.000 0.047 0.045 0.000 0.040 0.039 0.000
7 0.041 0.040 0.000 0.047 0.045 0.000 0.040 0.039 0.000

0.40

3 0.061 0.059 0.000 0.077 0.074 0.001 0.064 0.061 0.001
4 0.059 0.056 0.000 0.074 0.071 0.001 0.063 0.060 0.001
5 0.060 0.057 0.001 0.074 0.071 0.001 0.062 0.059 0.001
6 0.059 0.057 0.001 0.074 0.071 0.001 0.063 0.059 0.001
7 0.060 0.058 0.001 0.075 0.072 0.001 0.063 0.060 0.001

0.55

3 0.071 0.064 0.004 0.087 0.081 0.003 0.068 0.063 0.003
4 0.072 0.065 0.004 0.084 0.079 0.002 0.069 0.064 0.003
5 0.071 0.064 0.004 0.086 0.081 0.002 0.069 0.063 0.003
6 0.070 0.064 0.003 0.086 0.081 0.002 0.069 0.063 0.003
7 0.070 0.064 0.004 0.087 0.081 0.002 0.068 0.063 0.003

0.70

3 0.136 0.125 0.007 0.174 0.157 0.012 0.137 0.123 0.010
4 0.116 0.107 0.004 0.137 0.127 0.005 0.110 0.101 0.005
5 0.105 0.098 0.002 0.126 0.118 0.004 0.102 0.095 0.004
6 0.101 0.094 0.002 0.123 0.115 0.003 0.097 0.091 0.003
7 0.102 0.095 0.002 0.121 0.113 0.003 0.099 0.092 0.003

0.85

3 0.268 0.240 0.003 0.284 0.247 0.001 0.235 0.202 0.007
4 0.184 0.167 0.006 0.208 0.190 0.007 0.172 0.156 0.006
5 0.168 0.152 0.005 0.189 0.173 0.006 0.151 0.138 0.004
6 0.157 0.142 0.004 0.175 0.160 0.005 0.142 0.128 0.005
7 0.154 0.139 0.004 0.173 0.157 0.005 0.138 0.125 0.004
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Table 6

Comparison of Scenarios (α = 0.5). Estimation of (H,λ, σ) with Daubechies wavelets.

λ = 1, σ = 1 λ = 1.1, σ = 1 λ = 1, σ = 0.9

H L M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

M̂SE e(V̂ ar) B̂ias
2

0.25

3 0.217 0.203 0.012 0.216 0.213 0.002 0.212 0.202 0.009
4 0.305 0.280 0.023 0.344 0.332 0.010 0.338 0.315 0.022
5 0.306 0.283 0.022 0.349 0.335 0.011 0.322 0.301 0.019
6 0.299 0.276 0.021 0.360 0.345 0.013 0.318 0.297 0.020
7 0.306 0.280 0.024 0.358 0.343 0.012 0.319 0.297 0.021

0.40

3 0.126 0.124 0.000 0.129 0.125 0.002 0.120 0.118 0.000
4 0.134 0.133 0.000 0.160 0.158 0.000 0.133 0.131 0.000
5 0.137 0.135 0.000 0.156 0.154 0.000 0.130 0.128 0.000
6 0.134 0.132 0.000 0.159 0.157 0.000 0.128 0.126 0.000
7 0.136 0.134 0.000 0.157 0.155 0.000 0.126 0.125 0.000

0.55

3 0.197 0.169 0.027 0.249 0.212 0.047 0.191 0.169 0.028
4 0.195 0.167 0.026 0.246 0.201 0.043 0.189 0.162 0.026
5 0.194 0.166 0.026 0.235 0.192 0.041 0.178 0.152 0.024
6 0.194 0.165 0.028 0.224 0.184 0.038 0.174 0.148 0.025
7 0.194 0.165 0.027 0.221 0.184 0.035 0.167 0.145 0.020

0.70

3 0.202 0.167 0.031 0.232 0.194 0.035 0.192 0.161 0.029
4 0.187 0.182 0.002 0.228 0.222 0.002 0.179 0.175 0.001
5 0.181 0.177 0.001 0.216 0.211 0.001 0.169 0.166 0.001
6 0.176 0.172 0.001 0.212 0.208 0.001 0.166 0.163 0.001
7 0.176 0.172 0.001 0.214 0.210 0.001 0.165 0.161 0.001

0.85

3 0.202 0.188 0.004 0.212 0.195 0.007 0.175 0.161 0.006
4 0.198 0.183 0.004 0.204 0.187 0.007 0.172 0.157 0.007
5 0.192 0.177 0.005 0.195 0.179 0.006 0.165 0.151 0.007
6 0.194 0.180 0.004 0.195 0.179 0.006 0.165 0.150 0.007
7 0.189 0.175 0.005 0.193 0.178 0.005 0.167 0.152 0.007

Appendix B: Proofs

Proof of Lemma 2.1

First recall that E[ϕ(t)2] = V (θ0), where stationarity allows the above expres-
sion does not depend on t, and the data’s true parameter is θ0. Note that, for
any θ ∈ Θ and using the ergodicity of Xt:

‖ĝN (θ)− g0(θ)‖ =

∥∥∥∥∥ 1

N − L+ 1

N∑
i=L

[ϕ(ti)
2 −V(θ)]− [V(θ0)−V(θ)]

∥∥∥∥∥
=

∥∥∥∥∥ 1

N − L+ 1

N∑
i=L

ϕ(ti)
2 −V(θ0)

∥∥∥∥∥ a.s→ 0

where ϕ(t)2 := (ϕ1(t)
2, . . . , ϕL(t)

2)′ and V(θ) := (V1(θ), . . . , VL(θ))
′. Then we

have:

sup
θ∈Θ

‖ĝN (θ)− g0(θ)‖ a.s.→ 0. (B.1)

Furthermore, based on the proof of Theorem 2.6 in [36]:
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|Q̂N (θ)−Q0(θ)|
≤ |(ĝN (θ)− g0(θ))

′A(ĝN (θ)− g0(θ))|+ 2|(ĝN (θ)− g0(θ))
′Ag0(θ)|

≤ ‖ĝN (θ)− g0(θ)‖ · ‖A‖2 + 2‖ĝN (θ)− g0(θ)‖ · ‖A‖ · ‖g0(θ)‖
a.s.→ 0

for any θ ∈ Θ. Here we used the following facts: (1) the matrix A are deter-
ministic, (2) g0(θ) is uniformly bounded (because ρθ(t) is continuous over the
compact set Θ) and (3) equation (B.1). Finally if we take the supremum over
all θ ∈ Θ, the lemma holds.

Proof of Lemma 2.2

Note that Q0(θ) can be written as (for any θ ∈ Θ):

Q0(θ) = g0(θ)
′Ag0(θ)

= [V(θ0)−V(θ)]′A[V(θ0)−V(θ)]

=

⎡⎢⎣b
′
1(ρθ0(αk)− ρθ(αk))

...
b′
L(ρθ0(αk)− ρθ(αk))

⎤⎥⎦
′

A

⎡⎢⎣b
′
1(ρθ0(αk)− ρθ(αk))

...
b′
L(ρθ0(αk)− ρθ(αk))

⎤⎥⎦
= (ρθ0(α)− ρθ(α))

′B′AB(ρθ0(α)− ρθ(α))

Since A > 0 and B has column-rank between p and L (see assumption 2.2) we
can diagonalize B′AB to get:

Q0(θ) =

p∑
i=1

λi[ρθ0(α · (i− 1))− ρθ(α · (i− 1))]2 + J(θ)

where {λi}pi=1 are non-zero eigenvalues of B′AB and J(θ) is a non-injective
function of θ such that J(θ0) = 0. Because of Assumption 2.1 the lemma holds.

Proof of Lemma 2.3

(i) Let 1 ≤ j ≤ p and θ ∈ Θ. Then the j-th column of ĜN (θ) is:

(ĜN (θ))j =
1

N − L+ 1

N∑
i=L

∂

∂θj

(
ϕ(ti)

2 −V(θ)
)

=
1

N − L+ 1

N∑
i=L

− ∂

∂θj
V(θ)

=
1

N − L+ 1

N∑
i=L

∂

∂θj
(V(θ0)−V(θ)) = − ∂

∂θj
V(θ)
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= E

[
∂

∂θj
ĝN (θ)

]
= (G(θ))j .

and the continuity is inherited from the continuous differentiability of
ρθ(·).

(ii) Using (i), we have:

G(θ) = −B∇θρθ(α)

and this matrix is a full rank-matrix due to the remark after Assumption
2.1 and the fact that B is full-rank too. Since D is positive definite, the
result holds.

Proof of Lemma 2.4

First note that by rescaling the vector ĝN (θ0) with the variance of each com-
ponent of the vector g(t, θ0), we can write the sample moment equations in the
following way:

√
NVD(θ0)

−1ĝN (θ0) =

√
N

N − L+ 1

N∑
i=L

(
ϕ�(ti)

2 − V�(θ0)

V�(θ0)

)
�∈{1,...,L}

=

√
N

N − L+ 1

N∑
i=L

(
Z2
�,ti − 1

)
�∈{1,...,L}

=

√
N

N − L+ 1

N∑
i=L

(H2(Z�,ti))�∈{1,...,L} (B.2)

where VD(θ0) := Diag (V�(θ0))�∈{1,...,L}, H2(x) = x2 − 1 is the second Hermite

polynomial (see [30]) and

Z�,ti :=
ϕ�(ti)√
V�(θ0)

.

So the main idea of the proof is to use the vector-valued version of the Breuer-
Major theorem with spectral-information conditions (see Theorem 3.1, [5]) to
study the asymptotic behavior of (B.2). In order to achieve this, we need to
analyze the spectral behavior of Z�,ti . First recall that for n,m ∈ {0, . . . , N} we
have (see equation (2.7)):

Cov(Xtm , Xtn) =
1

2π

∫ π

−π

ei|m−n|uf̄θ0

(u
α

)
du.

where f̄θ0(·) is the spectral density of the discretized version of Xt at t ∈
{t0, . . . , tN} (see equation (2.6)). Now, choose �, �′ ∈ {1, . . . , L} and note that
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the covariance among Z�,tm and Z�′,tn is: 1

β(m− n|�, �′)
:= Cov(Z�,tm , Z�′,tn)

=
1√

V�(θ0)V�′(θ0)

L∑
k,k′=0

a�ka
�′

k′Cov(Xtm−αk, Xtn−αk′)

=
1√

V�(θ0)V�′(θ0)

L∑
k,k′=0

a�ka
�′

k′ · 1

2π

∫ π

−π

ei[(m−n)−(k−k′)]uf̄θ0(u/α)du

=

∫ π

−π

ei(m−n)u|Pa�
(e−iu)| · |Pa�′ (e

−iu)| f̄θ0(u/α)√
V�(θ0)V�′(θ0)

du

=

∫ π

−π

ei(m−n)uh̄θ0,α(u|�, �′)du,

where Pa�
(x) :=

∑L
k=0 a

�
kx

k and

h̄θ0,α(u|�, �′) := |Pa�
(e−iu)| · |Pa�′ (e

−iu)| f̄θ0(u/α)√
V�(θ0)V�′(θ0)

.

If we denote h̄θ0,α(·) :=
(
h̄θ0,α(u|�, �′)

)
�,�′∈{1,...,L} the symmetric matrix of

spectral densities among different filters, it is easy to conclude that this matrix
does not depend on the sample size N , because α is fixed. Therefore, in order
to apply Theorem 3.1 of [5], we only need to check that h̄θ0,α(·) ∈ L2((−π, π))
uniformly. But this is true due to the fact that if l� and l�′ are the corresponding
filter orders for � and �′ respectively, the polynomial Pa�

(x) has l� vanishing
moments and:

‖h̄θ0,α(u|�, �′)‖2L2((−π,π))

=

∫ π

−π

|Pa�
(e−iu)|2 · |Pa�′ (e

−iu)|2 f̄θ0(u/α)
2

V�(θ0)V�′(θ0)
du

≤ 1

V�(θ0)V�′(θ0)

∫ π

−π

min
(
1, |u|2l�+2l�′

)
f̄θ0(u/α)

2du < ∞

by Assumption 2.3. Then:

√
NVD(θ0)

−1ĝN (θ0)
d→ N(0, U)

where, by Plancherel theorem: Uij =2
∑

k∈Z
β(k|i, j)2 =2‖h̄θ0,α(u|i, j)‖2L2((−π,π))

and finally the lemma holds with:

Ωij = Vi(θ0)UijVj(θ0) = 2
∑
k∈Z

E[ϕi(tn+k)ϕj(tn)]
2

1Without loss of generality assume that n,m > L.
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= 2
∑
k∈Z

⎡⎣ L∑
q,q′=0

aiqa
j
q′E
[
Xα(n+k)−αqXαn−αq′

]⎤⎦2

= 2
∑
k∈Z

[
L∑

p=0

bi,jp ρθ0 [α(k + p)]

]2
for i, j = 1 . . . , L.

Proof of Lemma 2.5

For any matrix norm ‖ · ‖ and N ∈ N, we have that:

‖ψN‖ = ‖(G′(θN )AG′(θN ))−1‖ · ‖G′‖op · ‖A‖,

where ‖ · ‖op is the operator norm. Because of the remark after Assumption 2.1
and Lemma 2.3, the operator norm in the above equation is bounded for all N .
Also note that if FN := G′(θN )AG(θN ) and if λmax(A) and λmin(A) are the
maximum and minimum eigenvalue of A:

‖F−1
N ‖ ≤ p · λmin(FN )−1 = p ·

[
inf

‖x‖=1
x′G′(θN )AG(θN )x

]−1

≤ p

[
inf

‖u‖≥1
u′Au

]−1

= p · λmin(A)
−1,

where u = G(θN )x. Moreover,

‖A‖ ≤ (L+ 1) · λmax(A)

and hence there exists Rs,L > 0 such that ‖ψN‖4s < Rs,L uniformly for all N .
The lemma holds.

Proof of Lemma 3.1

Take l, l′ ∈ {l0, . . . , lL}, hence:

∫ π

−π

R(u|l, l′)2du =

∫ π

−π

min
(
1, |u|2(l+l′)

)⎡⎣cH∑
p∈Z

∣∣u+2πp
α

∣∣1−2H(
u+2πp

α

)2
+ λ2

⎤⎦2

du

= α4H+2c2H

∫
1≤|u|≤π

⎛⎝∑
p∈Z

|u+ 2πp|1−2H

(u+ 2πp)2 + (λα)2

⎞⎠2

du+

α4H+2c2H

∫
|u|≤1

|u|2(l+l′)

⎛⎝∑
p∈Z

|u+ 2πp|1−2H

(u+ 2πp)2 + (λα)2

⎞⎠2

du.

(B.3)
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First note that for any 0 < H < 1 and p �= 0:

∑
p �=0,p∈Z

|u+ 2πp|1−2H

(u+ 2πp)2 + (λα)2
≤ 2

∞∑
p=1

(u+ 2πp)−1−2H < ∞

and this implies that the two summands in equation (B.3) are finite for all p if
π < |u| < 1. The same applies if |u| < 1 and p �= 0. If p = 0 and |u| < 1 then
the situation is slightly more complicated. Note that:∫

|u|<1

|u|2(l′+l) |u|2−4H

[u2 + (λα)2]2
du ≤ 2

(λα)4

∫ 1

0

u2(l′+l)+2−4Hdu < ∞

if and only if 2(l + l′) > 4H − 3. Then the lemma holds.

Lemma B.1. Assume that Xt is the stationary solution of the Ornstein-Uhlen-
beck SDE. Then, for t ≥ 0, the autocovariance function ρθ(t) of θ = (H,λ, σ)
is2:

ρθ(t) = e−λtVar(X0)

[
1 + e2λt

2
− λBθ(t)

]
(B.4)

where:

Var(X0) = σ2λ−2HHΓ(2H),

Bθ(t) =

∫ t

0

e2λvFH(λv)dv

FH(x) =
1

Γ(2H − 1)

∫ x

0

e−ss2H−2ds.

Proof. Note that:

ρθ(t) = E[XtX0] = σ2E

[∫ 0

−∞
eλudBH

u

∫ t

−∞
e−λ(t−v)dBH

v

]
= e−λt

[
Var(X0) + σ2E

[∫ 0

−∞
eλudBH

u

∫ t

0

e−λvdBH
v

]]
.

Using the proof of Lemma 5.2 in [25] and Lemma 2.1 of [10]:

Var(X0) = σ2λ−2HHΓ(2H) (B.5)

and

σ2E

[∫ 0

−∞
eλudBH

u

∫ t

0

e−λvdBH
v

]
= σ2H(2H − 1)

∫ 0

−∞

∫ t

0

eλ(u+v)|u− v|2H−2dvdu

2Note that FH(·) is the cdf of a Γ(2H − 1, 1) random variable when H ≥ 1/2.
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= σ2H(2H − 1)

∫ t

0

∫ ∞

v

e2λv−λxx2H−2dxdv

= σ2HΓ(2H)λ1−2H

∫ t

0

e2λvdv − σ2H(2H − 1)

∫ t

0

e2λv
∫ v

0

e−λxx2H−2dxdv

= Var(X0)

[
e2λt − 1

2
− λ

Γ(2H − 1)

∫ t

o

e2λv
∫ λv

0

e−ss2H−2dsdv

]
and hence:

ρθ(t) = e−λtVar(X0)

[
1 +

e2λt − 1

2
− λBθ(t)

]
and (B.4) holds. Note that [25] proves formula (B.5) in the case H ≥ 1

2 , but
using the analytical continuation of the gamma function its formula holds also
for 0 < H < 1

2 .

Lemma B.2. Let Xt be the fOU process and θ = (H,λ, σ). Consider the map-
ping:

ρθ,3(α) = (ρθ(α · 0), ρθ(α · 1), ρθ(α · 2))′.

in a closed rectangle Υ ⊂ Θ where it holds that λ < exp(Ψ(3)) and σ is of known
sign. Then Assumption 2.1 is satisfied for α sufficiently small3.

Proof. Following the proof of Lemma 5.2 in [25] we have that:

ρθ(t) ≈ σ2λ−2HHΓ(2H)− σ2t2H

2

for t sufficiently small. Define:

h1(θ) := ρθ(0) =
σ2

2
λ−2HΓ(2H + 1)

h2(θ) := ρθ(α) =
σ2

2
λ−2HΓ(2H + 1)− σ2

2
α2H

h3(θ) := ρθ(2α) =
σ2

2
λ−2HΓ(2H + 1)− σ2

2
(2α)2H .

It is not hard to verify that if λ < exp(Ψ(2H + 1)) < exp(Ψ(3)) then ∂h1

∂H > 0.
Also it is straightforward to compute that:∣∣∣∣∂h1

∂H
∂h1

∂λ
∂h2

∂H
∂h2

∂λ

∣∣∣∣ = −Hσ4Γ(2H + 1)λ−2H−1α2H logα

and the latter is strictly positive iff α < 1. Finally:∣∣∣∣∣∣
∂h1

∂H
∂h1

∂λ
∂h1

∂σ
∂h2

∂H
∂h2

∂λ
∂h2

∂σ
∂h3

∂H
∂h3

∂λ
∂h3

∂σ

∣∣∣∣∣∣ = −Hσ5Γ(2H + 1)λ−2H−122Hα4H log 2.

3Ψ(x) = d
dx

log Γ(x): digamma function. Note that exp(Ψ(3)) ≈ 2.52.
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and this expression is positive if sign(σ) < 0. Using the Theorem 4 in [20] we
can deduce that the mapping ρθ,3(α) is injective for α small. If the sign(σ) > 0
we can deduce the injectivity from the autocovariance function ρθ related to the
process −X. Also note that the mapping satisfies the remark after assumption
2.1 as a direct consequence of the above calculations.

Appendix C: Behavior of (ĝN(θ))0 when H ≥ 3/4

The last result we present and prove in this paper, Proposition C.1 below, shows
that if one does not perform any filtering of the observations of an fOU process,
but one attempts to construct a Method-of-Moments estimator based directly
on its the quadratic variations, for the purpose of estimating its variance, for
instance, then the estimator cannot be asymptotically normal when H > 3/4,
or even asymptotically of second-chaos type in law; this is the first item in
the next proposition. However, the second item in this proposition shows that
the estimator is strongly consistent nonetheless, with an L2-rate of convergence
of order N2H−2 (which is slower than N−1/2). The standard Borel-Cantelli
argument (such as the one employed to prove Lemma 2.5) then implies that the
estimator is strongly consistent with rate N−γ for any γ < 2 − 2H. The proof
of Proposition C.1 requires elements of the Malliavin calculus, which are also
given below.

Proposition C.1. Assume that Xt is a stationary fOU process with parameters
θ = (H,λ, σ) and H ≥ 3

4 . Then:

(i) If H = 3
4 : √

N

logN
(ĝN (θ))0

d−→ N(0, 2α−1c2θ)

where cθ = σ2H(2H−1)
λ = 3σ2

8λ .
(ii) If H > 3

4 , (ĝN (θ))0 does not converge to a normal law, or even a second-
chaos law. However,

E
[
|N2−2H(ĝN (θ))0|2

]
= O(1).

Proof. First note that since SAi,0 = Ai for all i ∈ {0, . . . , N} (see equations
(2.5) and (2.9)), the variance of ĝN (θ) := (ĝN (θ))0 is:

E[|ĝN (θ)|2] = 2

N2

N∑
i,j=1

〈Ai ⊗Ai, Aj ⊗Aj〉H

=
2

N2

N∑
i,j=1

〈Ai, Aj〉2H =
2

N2

N∑
i,j=1

[ρθ(|ti − tj |)]2

=
2ρθ(0)

2

N
+

2

N2

N∑
i,j=1
i �=j

[ρθ0(|ti − tj |)]2
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=
2

N

[
ρθ(0)

2 + ρθ(1)
2
]︸ ︷︷ ︸

βθ

+
2

N2

N∑
i,j=1

|i−j|≥2

[ρθ0(|ti − tj |)]2

where H := L2
[(
−π

α ,
π
α

)]
and its inner product is given by:

〈Aj , Aj′〉H = ρθ(|tj − tj′ |) = E[XtjXtj′ ] = E[I1(Aj(·))I1(Aj′(·))].
Using the expansion (3.3) we have:

E[|ĝN (θ)|2] = 2βθ

N
+

2

N2

N∑
i,j=1

|i−j|≥2

[
c2θ|ti − tj |4H−4 +O(|ti − tj |4H−6)

]
(C.1)

=
2βθ

N
+

2

N

[
α4H−4c2θ

N∑
k=2

(
N − k

N

)
k4H−4 + α4H−6

N∑
k=2

(
N − k

N

)
O(k4H−6)

]

where cθ := σ2H(2H−1)
λ . Note that for H = 3

4 , as N → ∞:

E

[
N

logN
|ĝN (θ)|2

]
−→ 2α−1c2θ

We can write (C.1) when H > 3
4 as:

E[|ĝN (θ)|2] = 2βθ

N
+

2

N2

N∑
i,j=1

|i−j|≥2

[
c2θ|α(i− j)|4H−4 +O(|α(i− j)|4H−6)

]

=
2βθ

N
+ 2α4H−4c2θN

4H−4
N∑

i,j=1
|i−j|≥2

|i− j|4H−4

N4H−4

1

N2

+
2

N
α4H−6

N∑
k=2

(
N − k

N

)
O(k4H−6)

therefore:

E[|N2−2H ĝN (θ)|2] −→ 2α4H−4c2θ

∫∫
[0,1]2

|x− y|4H−4dxdy =
2α4H−4c2θ

(2H − 1)(4H − 3)

Define:

D̃N (θ) :=

⎧⎨⎩
√

N
c̃1 logN if H = 3

4√
N4−4H

c̃2
if H > 3

4

where c̃1 = 2α−1c2θ and c̃2 =
2α4H−4c2θ

(2H−1)(4H−3) and denote FN := D̃N (θ)ĝN (θ).

For both cases we have that E[|FN |2] → 1 and hence the main assumption of
Theorem 4 in [39] is satisfied. Now we only need to prove that:

‖DFN‖2H
L2(Ω)−→ 2
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in order to prove the asymptotic convergence of FN towards a normal law. We
can compute the Malliavin derivative of ĝN (θ) as follows:

Dr ĝN (θ) =
1

N

N∑
i=1

2XtiDrXti =
1

N

N∑
i=1

I1(Ai(·))Ai(r)

and hence it turns out that:

E[‖DĝN (θ)‖2H] =
4

N2

N∑
i,j=1

E[I1(Ai(·))I1(Aj(·))]〈Ai, Aj〉H

=
4

N2

N∑
i,j=1

〈Ai, Aj〉2H = 2E[‖ĝN (θ)‖2H]

and this implies that:

E[‖DFN‖2H] = 2E[‖FN‖2H] −→ 2.

Therefore, we only need to prove that:

‖DFN‖2H − E[‖DFN‖2H]
L2(Ω)−→ 0

First note that by using the multiplication rule of Weiner integrals:

‖DFN‖2H =
4

N2
D̃N (θ)2

N∑
i,j=1

I1(Ai(·))I1(Aj(·))〈Ai, Aj〉H

=
4

N2
D̃N (θ)2

N∑
i,j=1

[I2(Ai(·)⊗Aj(·)) + 〈Ai, Aj〉H] 〈Ai, Aj〉H

=
4

N2
D̃N (θ)2

N∑
i,j=1

I2(Ai(·)⊗Aj(·)) + E[‖DFN‖2H]

and hence using the Lemma C.1 (i) and (ii) we have that:

E
[
‖DFN‖2H − E[‖DFN‖2H]

]
=

16

N4
D̃N (θ)4

N∑
i,j,i′,j′=1

E[I2(Ai(·)⊗Aj(·))I2(Ai′(·)⊗Aj′(·))]〈Ai, Aj〉H〈Ai′ , Aj′〉H

=
32

N4
D̃N (θ)4

N∑
i,j,i′,j′=1

〈Ai⊗̃Aj , Ai′⊗̃Aj′〉H2〈Ai, Aj〉H〈Ai′ , Aj′〉H

and therefore, using Lemma C.2, we conclude that:

E
[
‖DFN‖2H − E[‖DFN‖2H]

]
−→ 0

only if H = 3
4 . Then for H = 3

4 we can apply the Theorem 4 in [39] and deduce
that:
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N

c̃1 logN
ĝN (θ)

d→ N(0, 1).

For H > 3
4 , Lemma C.2 allows us to conclude that the limit of√

N4−4H

c̃2
ĝN (θ)

does not belong to the first Weiner chaos, and hence the GMM estimator is not
normally distributed. Define the following function:

IN (r, s) :=
N1−2H

√
c̃2

N∑
j=1

(Aj ⊗Aj)(r, s) (C.2)

for any (r, s) ∈ R2. By Lemma C.3, this function is not a Cauchy sequence in
H2. Hence we cannot find a second-Wiener integral I2(g(·, ·)) such that:

E[|FN − I2(g(·, ·))|2] = 2‖IN (·, ·)− g(·, ·)‖2H2 −→ 0

when H > 3
4 (see the proof of Theorem 2 in [43]). Then the limit in L2(Ω) of

ĝN (θ) is not even a second-chaos random variable.

Lemma C.1. If Ak(u) := Ak(u|θ) is defined as (2.5) for u > 0, then:

(i) The tensor product (Ak ⊗Aj)(u, v) is symmetric if and only if k = j.
(ii)

〈Ai1 ⊗ · · · ⊗Ain , Aj1 ⊗ · · · ⊗Ajn〉Hn =

n∏
k=1

〈Aik , Ajk〉H

for any H ∈ (0, 1).

Proof. (i) It is trivial to deduce that for u, v > 0:

(Ak ⊗Aj)(u, v) = exp(itku)f̄θ,α(u)
1/2 exp(itjv)f̄θ,α(v)

1/2

= exp(itkv)f̄θ,α(v)
1/2 exp(itju)f̄θ,α(u)

1/2 = (Ai ⊗Aj)(v, u)

if and only if exp(itk(u−v)) = exp(itj(u−v)), which is equivalent to have
that k = j.

(ii)

〈Ai1 ⊗ · · · ⊗Ain , Aj1 ⊗ · · · ⊗Ajn〉Hn =

=

∫
(−π/α,π/α)n

Ai1(s1) · · ·Ain(sn)Aj1(s1) · · ·Ajn(sn)ds1 · · · dsn

=

[∫ π/α

−π/α

Ai1(s1)Āj1(s1)ds1

]
· · ·
[∫ π/α

−π/α

Ain(sn)Ājn(sn)dsn

]

=

n∏
k=1

〈Aik , Ajk〉H
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Lemma C.2. Suppose that Ak is defined as (2.5). Define for H ≥ 3
4 :

PN :=
D̃N (θ)4

N4

N∑
i,j,i′,j′=1

〈Ai⊗̃Aj , Ai′⊗̃Aj′〉H2〈Ai, Aj〉H〈Ai′ , Aj′〉H

hence:

PN −→
{
0 if H = 3

4

k if H > 3
4 .

for some k �= 0.

Proof. First note that the inner product of the symmetric tensor products can
be written as:

〈Ai⊗̃Aj , Ai′⊗̃Aj′〉H2 =
1

4

[
〈Ai ⊗Aj , Ai′ ⊗Aj′〉H + 〈Ai ⊗Aj , Aj′ ⊗Ai′〉H+

〈Aj ⊗Ai, Ai′ ⊗Aj′〉H + 〈Aj ⊗Ai, Aj′ ⊗Ai′〉H
]

=
1

2
〈Ai, Ai′〉H〈Aj , Aj′〉H +

1

2
〈Ai, Aj′〉H〈Aj , Aj′〉H

then, by symmetry of the indices, we can write:

PN :=
D̃N (θ)4

N4

N∑
i,j,i′,j′=1

〈Ai, Ai′〉H〈Aj , Aj′〉H〈Ai, Aj〉H〈Ai′ , Aj′〉H

and we can study the limiting behavior of PN through the folllowing cases:

Case I: i = i′ = j = j′

In this case we analyzed the behavior of the diagonal, which is convergent
for any H ≥ 3

4 as follows:

PN =
D̃N (θ)4

N4
Nρθ(0)

4 =

⎧⎨⎩
ρθ(0)

4

2c̃21N logN
if H = 3

4
ρθ(0)

4

c̃22N
8H−5 if H > 3

4

−→ 0.

Case II: i = i′, j = j′ and i �= j
In this particular case we observe:

PN =
D̃N (θ)4

N4
ρθ(0)

2
N∑

i,j=1
i �=j

〈Ai, Aj〉2H =
D̃N (θ)4ρθ(0)

2

N4

[
2(N − 1)ρθ(1)

2

+
∑

|i−j|≥2

c2θα
4H−4|i− j|4H−4 + cθα

4H−6N

N∑
k=2

(
N − k

N

)
O(k4H−6)

]
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Note that if H = 3
4 :

PN =
D̃N (θ)4ρθ(0)

2

N4

[
2(N − 1)ρθ(1)

2 + c2θα
4H−4

N∑
k=2

(
N − k

N

)
k4H−4+

cθα
4H−6N

N∑
k=2

(
N − k

N

)
O(k4H−6)

]
� 1

N logN
+

1

N
−→ 0.

and if H > 3
4 :

PN =
D̃N (θ)4ρθ(0)

2

N4

[
2(N − 1)ρθ(1)

2 + c2θα
4H−4

∑
|i−j|≥2

|i− j|4H−4

N4H−4

1

N2
+

cθα
4H−6N

N∑
k=2

(
N − k

N

)
O(k4H−6)

]
� N5−8H +N2−4H

∫∫
[0,1]2

|x− y|4H−4dxdy −→ 0

since
∫∫

[0,1]2
|x− y|4H−4dxdy < ∞ if H > 3

4 .

Case III: i = i′, j �= j′ and i �= j
Without loss of generality, we can assume that |i− j| ≥ 2 and |j − j′|. If
|i−j| = 1 or |j−j′| = 1 then it can be proved that the rates of convergence
are the same as Case I and II. We can write PN as:

PN =
D̃N (θ)4

N4
ρθ(0)

[ AN︷ ︸︸ ︷
c3θα

6H−6
N∑

i,j,j′=1

|i− j|2H−2|i− j′|2H−2|j − j′|2H−2

+ 3c2θα
6H−8

N∑
i,j,j′=1

|i− j|2H−4|i− j′|2H−2|j − j′|2H−2O(1)︸ ︷︷ ︸
BN

]

the first factor behaves as:

AN = c3θα
6H−3N6H−3

N∑
i,j,j′=1

∣∣∣∣ i− j

N

∣∣∣∣2H−2 ∣∣∣∣ i− j′

N

∣∣∣∣2H−2 ∣∣∣∣j − j′

N

∣∣∣∣2H−2
1

N3

� N6H−3

∫∫∫
[0,1]3

|x− y|2H−2|x− y′|2H−2|y − y′|2H−2dxdydy′

and the second:

BN = c3θα
6H−3N6H−5

N∑
i,j,j′=1

∣∣∣∣ i− j

N

∣∣∣∣2H−2 ∣∣∣∣ i− j′

N

∣∣∣∣2H−4 ∣∣∣∣j − j′

N

∣∣∣∣2H−2
1

N3
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≤ c3θα
6H−32−2N6H−3

N∑
i,j,j′=1

∣∣∣∣ i− j

N

∣∣∣∣2H−2 ∣∣∣∣ i− j′

N

∣∣∣∣2H−2 ∣∣∣∣j− j′

N

∣∣∣∣2H−2
1

N3

� N6H−3

∫∫∫
[0,1]3

|x− y|2H−2|x− y′|2H−2|y − y′|2H−2dxdydy′

and the previous integral is finite for any H > 1
2 . Hence, PN is bounded

asymptotically, for H = 3
4 , by:

N2 ·N6H−3

N4 logN
=

1

N5−6H logN
−→ 0

and if H > 3
4 , it is bounded by:

N8−8H ·N6H−3

N4
= N1−2H −→ 0

Case IV: i �= i′, j �= j′ and i �= j
As we did in the previous case, the rates of convergence when at least
two indices are far apart by less than two units are the same as the ones
calculated in Cases I-II-III. So let us assume that |i− i′| ≥ 2, |j − j′| ≥ 2
and |i− j| ≥ 2.

PN =
D̃N (θ)4

N4

[ CN︷ ︸︸ ︷
c4θα

8H−8
N∑

i,j,i′,j′=1

|i− j|2H−2|i′ − j′|2H−2|i− j′|2H−2|i′ − j|2H−2

+ 4c3θα
8H−10

N∑
i,j,i′,j′=1

|i− j|2H−2|i′ − j′|2H−2|i− j′|2H−2|i′ − j|2H−4

︸ ︷︷ ︸
DN

]

and note that the first summand behaves asymptotically as:

CN = c4θα
8H−8N8H−4

N∑
i,j,i′,j′=1

∣∣∣∣ i− j

N

∣∣∣∣2H−2 ∣∣∣∣ i′ − j′

N

∣∣∣∣2H−2 ∣∣∣∣ i− j′

N

∣∣∣∣2H−2

×
∣∣∣∣ i′ − j

N

∣∣∣∣2H−2
1

N4

� N8H−4

∫
[0,1]4

(x− y)2H−2(x′ − y)2H−2

× (y − y′)2H−2(x− x′)2H−2dxdydx′dy′

and the second summand can be asymptotically bounded by:

c3θα
8H−10N8H−4

∫
[0,1]4

(x− y)2H−2(x′ − y)2H−2

× (y − y′)2H−2(x− x′)2H−2dxdydx′dy′
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and this quadruple integral is bounded for any H > 1
2 . Hence if H = 3

4 ,
PN is asymptotically bounded by:

N2

N4 logN
N8H−4 =

1

logN
−→ 0.

However, if H > 3
4 , the first summand of PN is asymptotically equal to:

N8−8HN8H−4

N4
= 1

then the limit of PN is not 0. Moreover, since DN is asymptotically
bounded by N8H−4, there exists k �= 0 such that:

PN −→ k.

Lemma C.3. If IN is defined as (C.2) and H > 3
4 , then it is not a Cauchy

sequence in H2.

Proof. We will prove the statement by contradiction. Assume that IN is Cauchy.
First of all, note that IN is bounded in H2 = L2((−π, π)2):

‖IN (·, ·)‖2H2

=
N2−4H

c̃2

N∑
i,j=1

〈Ai ⊗Ai, Aj ⊗Aj〉H2 =
N2−4H

c̃2

N∑
i,j=1

〈Ai, Aj〉2H

=
N4−4H

c̃2

1

N2

⎡⎣Nρθ(0) + 2(N − 1)ρθ(1) +
∑

|i−j|≥2

[ρθ(ti − tj)]
2

⎤⎦
≤ M1N

3−4H +
N2−4H

c̃2

∑
|i−j|≥2

[cθ[α(i− j)2H−2] +O(α(i− j)2H−4)]2

= M1N
3−4H +

1

c̃2
c2θα

4H−4
∑

|i−j|≥2

∣∣∣∣ i− j

N

∣∣∣∣4H−4
1

N2

+ α4H−6N3−4H
N∑

k=2

(
N − k

N

)
k4H−6

< M1 +
1

2
+ α4H−6M2 < ∞

where M1 := ρθ(0)+2ρθ(1)
c̃2

and M2 :=
∑∞

k=1 k
4H−6. This implies that IN is

dominated in L2((−π/α, π/α)2).
Also note that the pointwise limit of IN is (if H > 1

2 ):

|IN | =

∣∣∣∣∣∣N
1−2H

√
c̃2

N∑
j=1

exp(irtj) exp(istj)f̄θ,α(r)f̄θ,α(r)

∣∣∣∣∣∣
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=
N1−2H

√
c̃2

f̄θ,α(r)f̄θ,α(r)

∣∣∣∣∣∣
N∑
j=1

exp(iαrj) exp(iαsj)

∣∣∣∣∣∣ � N1−2H −→ 0

since: ∣∣∣∣∣∣
N∑
j=1

exp(iαrj) exp(iαsj)

∣∣∣∣∣∣ <
∣∣∣∣∣∣
∞∑
j=0

exp(iαrj) exp(iαsj)− 1

∣∣∣∣∣∣
≤
∣∣∣∣ exp[iα(r + s)]

1− exp[iα(r + s)]

∣∣∣∣ < ∞.

Then we can apply the dominated convergence theorem to conclude that:

E

[∣∣∣∣N2−2H

√
c̃2

ĝN (θ)

∣∣∣∣2
]
= E

[
|I1(IN (·, ·))|2

]
= 2‖IN (·, ·)‖2H2 −→ 0

but this contradicts the fact that:

E

[∣∣∣∣N2−2H

√
c̃2

ĝN (θ)

∣∣∣∣2
]
−→ 1

which was already evidenced in the proof of Theorem 3.2. Hence, by contradic-
tion, IN is not Cauchy.
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