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Abstract. The stochastic volatility extension of the Black-Scholes model for one stock
price is applied to the problem of stochastic portfolio optimization. The main assump-
tion is that the portfolio manager has discrete access to the continuous-time stock
prices. In this partial information situation, one cannot hope for an arbitrarily accu-
rate estimate of the stochastic volatility. Using instead a new type of optimal stochastic
�ltering, and its associated particle method due to del Moral, Jacod, and Protter [10],
we propose a Monte-Carlo-type algorithm for solving the optimization problem.

1. Introduction

Many practicioners in today's �nancial industry believe that most stock prices and indices are best
modeled by continuous-time stochastic processes, and in particular by di�usion processes. In the early
1970's Black, Scholes, and Merton ([3], [23]) were the �rst to acknowledge this fact, leading to the
celebrated model that bears the �rst two authors' names. The third author's name is most often asso-
ciated with his so-called Mutual Fund theorems ([21], [22]), which cast the problem of optimal selection
of a portfolio of stock and risk-free asset in the framework of stochastic optimal control of di�usion
processes, with the Black-Scholes model as the underlying stock price. Accordingly, Merton obtains
answers by solving Hamilton-Jacobi-Bellman (HJB) equations. This approach contains two important
drawbacks. The �rst one is the notorious fact that the Black-Scholes model's basic assumptions, that
a stock's mean rate of return and volatility are constants, is not satis�ed in many markets. We choose
to use the Stochastic Volatility (SV) model, one of several extensions/corrections of the Black-Scholes
model which have recent appeared. The second drawback is that the optimal portfolio given by the
HJB equation makes changes continuously in time, based on stock-price information that arrives con-
tinuously in time, although for many investors, not only does the presence of transaction costs forbids
such continuous trading, but information does not come in continuously, and is thus incomplete. This
problem is just as concerning as the �rst one, but has received much less press. We tackle it by requiring
that portfolio selection and rebalancing occur only at a set of discrete observation times, based solely
on the available observations.

In Section 2 we present a new form of optimal stochastic �ltering, which shows how to estimate
stochastic volatility optimally in the setting of incomplete information. In Section 3, we explain how
this �ltered volatility must be used for the selection of an optimal portfolio. In section 4, we detail
an algorithm of the Monte-Carlo variety, for simulating the solution of the stochastic optimal control
problem of section 3. An outline of the proof of convergence of the algorithm is provided. We begin in
Paragraph 1.1 with a precise statement the problem we will solve, after which we review the relevant
bibliography in Paragraph 1.2.
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1.1. Statement of the problem. The SV model is

(1) dXt = Xt�dt+Xt� (Yt) dWt; Bt = ert

where t 2 R+, B is the non-risky asset (savings account), W is a Brownian motion,X is the risky asset
price, the mean rate of return � is assumed to be constant for simplicity, and the stochastic volatility
� (Yt) is a deterministic function � of a stochastic process Y that satis�es a di�usion equation driven
by another Brownian motion Z such that corr (W;Z) = � with 0 � j�j < 1, i.e.

(2) dYt = � (Yt) dt+ � (Yt) dZt:

Typically (see [15], and their statistical study of the Standard & Poor 500 index), practitioners take
� = exp and Y = a fast-mean-reverting process such as the Ornstein-Uhlenbeck process with large �:

(3) dYt = � (m� Yt) dt+
p
�dZt:

For i = 0; 1; � � � ; N , let FX
i be the information contained in the discrete sequence of observed asset

prices X0; X1; � � � ; Xi. Note that this is not the commonly used \�ltration of X", which contains much
more information. For �x = (x0; � � � ; xN ) a �xed sequence of positive numbers, denote by F �x

i , the
scenario (event) fX0 = x0; � � � ; Xi = xig. The stochastic volatility �ltering problem is to estimate the
conditional probability distribution

(4) pi (dy) := P
�
Yi 2 dyjFX

i

�
:

This probability measure is random since it depends on the values X0; X1; � � � ; Xi. However at time
i, the values X0 = x0; � � � ; Xi = xi are known to us (they constitute the observation, while Y is the
signal) and therefore FX

i can be replaced by F �x
i , and pi (dy) is non-random, depending only on the

parameters �xi := (x0; x1; � � � ; xi). We denote it by p�xi (dy).
We consider self-�nancing portfolios a = (ai)

N
i=0 with wealth Ws = Wai;bi

s = aiXs + biBs for
s 2 [i; i+1]. Using wealth as a state variable is a standard choice, and thus we can reduce the number
of control variables, by letting bi = (wi � xiai) e

�ri. Assume W0 = w0 is given. The basic portfolio
maximization problem with horizon N + 1 is to �nd a portfolio a� that attains the supremum

(5) V (0; x0; w0) = sup
a
E
h
U
�
Wa;b

N+1

�
jX0 = x0;W0 = w0

i
for all i = 0; � � � ; N , where the supremum is over all (a; b) that are non-anticipating, i.e. such that
(ai; bi) are functions depending only on w0; x0; x1; � � � ; xi. Other restrictions on (a; b) may be placed,
such as requiring thatW be bounded below (no ruin), or that the possible values for (ai; bi) be bounded
and/or discrete. Here U is some utility function. A typically choice is U (w) = wp=p for some p 2 (0; 1)
(the so-called Hyperbolic Absolute Risk Averse (HARA) case).

1.2. Signi�cance of the problem. Nonlinear stochastic �ltering has a key role in partially observed
stochastic control. We cite [13], [11], [12], [2] and recently [28]. Recent advances on �nance-related
aspect of this topic are still restricted to non-stochastic volatility: [29], [25], [20], [24], in which the
linear-quadratic and integral-quadratic models are considered, but only using standard linear �ltering.

There is no literature on �ltering of stochastic volatility in continuous time. The reason for this gap
is that probabilists' work on �ltering of continuous-time processes have concentrated on continuous-
time observation; in that situation, the volatility �2 (Y�) is, in principle, obtainable exactly from the
information in X (measurable w.r.t. the �ltration of X), as the so-called quadratic variation hXi of
X . However evaluating hXit, a problem of estimation, rather than �ltering, is treacherous in practice.
The �nancial industry contains notorious stories of investment �rms whose bankruptcy can be traced
to a poorly estimated volatility.

The popular ARCH/GARCH models are designed to estimate stochastic volatility in a stable way
(see [19], [4], [14]). Dan Nelson ([26]; see also [4]) showed that ARCH/GARCH models are in fact
an approximate �lter, since they converge to the full information SV as the observation time step
Æ ! 0, leading many to believe the task is now to \bridge the gap to continuous time" (see [4]; [16],
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[17], [18]). But the quality of the ARCH/GARCH \�lter" is only guaranteed for high observation
frequency Æ�1. We adopt a di�erent angle, seeking not an estimation but the optimal �lter when Æ is
�xed. The very recent work [10] gives a numerical method for discrete-observation �ltering of di�usions
under stochastic volatility, which opens the way to numerically solving the stochastic volatility control
problem with discrete information, as we detail below.

Recent work on volatility �ltering that departs from the ARCH/GARCH framework, but di�ers from
the optimal �ltering approach includes: [6] (a new projection �lter); [7] (reduction to linear (Kalman)
�ltering in a special case); [27] (�ltering w.r.t exogenous observation noise, not stochastic volatility).

2. Filtering with stochastic volatility

We establish an explicit recursion relation for the �lter in (4). Note �rst that replacing X by
~X = lnX does not change FX

i , while in F �x
i we simply need to replace xi by ~xi = lnxi. The advantage

of ~X is the explicit formula for t � i:

(6) ~Xt = ~xi +

Z t

i

�
�� �2 (Ys) =2

�
ds+

Z t

i

� (Ys) dWs:

Since corr (W;Z) = � for some � 2 (�1; 1), we decompose W = �Z + � ~W where �2 + �2 = 1 and ~W
is independent of Z. Using the de�nition of conditional expectation, one can prove that the nonlinear
stochastic �lter p�xi (dyi) is given recursively by

(7) p�xi+1 (dy) =

R
p�xi (dyi)E

Z
�
1dy (Yi+1) g

Z
i+1 (~xi+1 � ~xi) jYi = yi

�R
p�xi (dyi)E

Z
�
gZi+1 (~xi+1 � ~xi) jYi = yi

� ;

where EZ is an expectation with respect to Z only, and where for each �xed realization of the increments
fdZs : s 2 [i; i+ 1]g, gZi+1 (~x) is the density at ~x, with respect to the randomness of ~W , of the random

variable ~Xi+1 � ~xi, given ~Xi = ~xi and Yi = yi. Since Y and Z are non-random in the eyes of ~W , the
explicit formula (6) easily yields

(8) gZi+1 (~x) = (2��)�1=2 exp

 
� (~x� �)

2

2�

!
where the random variables � and � are de�ned by

� =

Z i+1

i

��
�� �2 (Ys)

2

�
ds+ �� (Ys) dZs

�
;

� =

Z i+1

i

�2�2 (Ys) ds:

In view of the complexity of the iterative formula (7), there is currently no hope to evaluate p�xi by
any other method than the \smart"-Monte-Carlo algorithm recently established in [10], even for the
simplest of examples. However, the proof of convergence of our Monte-Carlo method uses the explicit
formulas above in a crucial way.

The algorithm of [10] (detailed in Section 5 therein), itself a bootstrapping extension of the genetic
algorithm of [9], yields a good approximation (order n�1=3) of p�xi as the empirical distribution of a

family of n interacting particles
�
Y k
i

�n
k=1

(9) p̂�xi (dy) =
1

n

nX
j=1

ÆY j
t
(dy) :

The particles evolve according to the iteration of a two-step (selection/mutation) process. In the
mutation process, they evolve independently according to the Euler approximations of appropriate
di�usions, with time step m = n1=3.
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The proof presented in [10] assumes that � = 0, and shows the convergence in L1 of p̂�xi (f) to
p�xi (f) for deterministic bounded test functions f . We leave it to the reader to check that the following
extension of their result is not any deeper.

Theorem 2.1. Assume � 2 (�1; 1). Let x = (xi : i = 1; 2; � � � ; N) be a �xed sequence of positive
numbers. The approximate �lter p̂�xi of [10], which is a random probability measure in the probability

space
�

̂; F̂ ; P̂

�
where the particles in (9) are de�ned, is such that for any random function f on 
̂�R

satisfying jf (!; y)j � cf for some deterministic constant cf and all !; y:

Ê

�����Z p̂�xi (dy) f (y)�
Z

p�xi (dy) f (y)

����� � CBicf
n1=3

:

The constants B and C depend only on �; �; �; �; �.

3. General portfolio optimization

For any scenario �x := (x0; x1; � � � ; xN ), and any i � N , we de�ne �xi = (x0; � � � ; xi). Our portfolio
optimization problem can be imbedded in a dynamic one as follows: for all w; x; �x; for all i = 1; 2; � � � ; N ,
for all s 2 [i; i+ 1], �nd

(10) V (s; x; w) = V (s; x; w; �xi) = sup
a2A0

E
�
U
�Wa

N+1

� jXs = x;Wa
s = w;F �x

i

�
:

Recall that the control set A0 is the set of all sequences (aj)
N
j=0 of the form aj = aj

�
w0; �Xj

�
. It should

be clear from the self-�nancing condition

(11) Wt = aiXt + (Wi �Xiai)e
r(t�i)

that this is just as general as allowing aj to be of the form aj = aj
�
�Xj ; �Wj

�
.

Theorem 3.1. For s 2 [i; i+ 1), V in (10) satis�es the Hamilton-Jacobi-Bellman (HJB) equation

(12)
@V

@s
+ sup

a2A0

[(AaV ) (s; x; w)] = 0:

where for any �xed a 2 A0, Aa is the in�nitesimal generator of (X;Wa) in [i; i+1) with � replaced byq
Zi;X
s (x; �xi), where

Zi;X
s (x; �xi) := E

�
�2 (Ys) jXs = x;F �x

i

�
:

Moreover, there exists an optimal control in A0, i.e. the sup in (12) is attained. This theorem also
holds if A0 is replaced by any proper subset of A0.

Proof. This is easily established using the classical proof of the HJB equation for stochastic control,
and using the fact that because of self-�nancing (11), W is deterministic given X .

Here Zi;X appears naturally as the �ltered expected value of the squared Stochastic Volatility �2 (Ys).
In this sense, the dynamics of V follow a so-called separation principle (see [30], [2]), i.e. the fact
that the unobserved SV parameter �2 (Ys) can be replaced by its �ltered value at time s, given the
current information, and all past discrete information. Note that in the calculation of this �ltered
value, although the current stock price may be invoked, one is not allowed to use any continuous ow
of information for any non-zero length of time. This makes it impossible to estimate the SV using
formulas such as �2 (Yt) = hXit, notwithstanding the fact that the current stock price may be used.
However, as we are about to see in Proposition 3.2, since the controls in A0 can only change at times
i = 0; 1; � � � ; N , the optimal strategy only makes use of the information F �x

i at those times, a fact which
is arguably intuitively obvious.

We now present an iterative formula, which reduces the complexity of the HJB equation (12), and
is the key to our Monte-Carlo method.
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Proposition 3.2. Let I be any subset of R;and replace A0 by its restriction to I-valued sequences.,
For any i = 0; 1; � � � ; N , for any f = f (x;w; �xi), de�ne

(13) �i (f) (xi; wi) = �i (f)�xi�1
(xi; wi) := sup

ai2I
E
�
f
�
Xi+1;Wai

i+1; �xi
� jF �x

i ;Wai
i = wi

�
:

Then we have

(14) V (i; xi; wi)�xi�1
:= V (i; xi; wi; �xi) = �i

�
�i+1

�� � ��N (U)
��

�xi�1
(xi; wi)

and the control a� = (a�0_; � � � ; a�N ) which is obtained by calculating an optimal a�i for the sup in formula
(13) is such that a� 2 A0, and attains the sup in (10), i.e. is an optimal control.

Proof. One notes that given fF �x
i ;Wi = wig, the pair (X;W) is a Markov process because we are

allowed to replace � (Yt)
2 by Zi;X

t (Xt). It is then easy to check that supai2I can be replaced by
supa2A0

in the de�nition (13). One can then use Jensen's inequality to derive an upper bound on
V (N � 1; wN�1; xN�1). A reverse inequality is found by using the existence of an optimal control in
Theorem 3.1, and the Proposition follows easily by iteration.

4. Monte-Carlo method

Since the only available numerical method to approximate p�xi is the Monte-Carlo method of [10], it
is natural to approximate our optimization problem using further Monte-Carlo techniques.

4.1. Algorithm. The following assumption, which is not restrictive in practice, is designed to simplify
the proof of the convergence result (Theorem 4.1).

L1: The utility function U and its derivative U 0 are bounded. The volatility function �2 is
bounded as �20 � �2 (y) � �21 where �0 and �1 are positive constants.

We assume that X0 = x0 and Y0 = y0 are given. Without abandoning the hypothesis that (X;Y )
have dynamics given by (1), (2), we impose that the only possible observations �x satisfy

(15) jlogxi+1 � log xij � Km00

where Km00 is a constant depending only on an integer m00. We will see below that an optimal choice is

Km00 = C +C (logm)
1=2

for some C depending only on the SDEs' coeÆcients, where m is the number
of Euler steps per unit interval of time. For large m, this choice makes it very unlikely (probability of
order N=m) that an observed �x would not satisfy the truncation condition (15). This condition implies
that the observations are bounded: maxi jlogxij � jlogx0j+NKm00 for all �x.

We also need to discretize the scenarii. For a �xed interger m0, we impose that for all �x and all i

(16) xi =
k

m0

for some positive integer value k. As soon as m0 is a multiple of 100, this is of course in accordance
with the fact that stocks are traded in cents.

It is traditional to impose that 0 � wi � erNwmax, for all i. This is equivalently a condition on the
control set A0, and can be achieved by saying that we pull out of the game if bankruptcy or a high
level of wealth occurs. We may also impose the same truncation condition (15) on the wi's as we did
on the xi's: Lastly we impose the same discretization condition (16) on the wi's as on the stock prices.

We restrict our study to bounded strategies: assume there exists A > 0 such that for all a 2 A0;

(17) max
i
jaij � A:

The discretization restrictions on wealth and stock prices imply that the strategy values ai are automat-
ically discretized. This de�nes a �nite set A0 of controls, with projection A0;i onto the i-th coordinate.
By self-�nancing it is clear that the typical mesh size for A0 is clearly of the order 1=m

0: However, if A0

is the smallest set of strategies that is strictly necessary to achieve all possible scenarii under conditions
(16) and (15), then this mesh size is not uniform, and in some locations, it is not even small. Therefore
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it is better to assume that A0 is the union of this smallest set and of ((1=m0)Z \ [�A;A])N ; or, more
generally:

L2: for all a 2 A0 there exists a
0 2 A0 such that for all i, jai � a0ij � 1=m0.

We introduce some notation.

� Truncation. For all �x 2 RN
+ , for all i = 0; � � � ; N , if jlog (xi+1=xi)j � Km let fxi+1g = xi+1, if

log (xi+1=xi) > Km let fxi+1g = xie
Km , and if log (xi+1=xi) < �Km let fxi+1g = xie

�Km . For
a pair (x;w) 2 R2

+, f(x;w)g will denote either (fxg ; fwg) or (fxg ; w) depending on whether
we truncate w-values.

� Discretization. For all x 2 R+, let [x] be the largest element of (1=m0)N that is smaller than
x. For a pair (x;w) 2 R2

+ we let [(x;w)] = ([x] ; [w]).
� Euler method. For any d-dimensional Markov process X with in�nitesimal generator L given
by (Lf) (x) = akj (x) @f=@xk@xj (x) + bj (x) @f=@xj (x), with � a square root of the matrix a,

the m-step Euler scheme for X on [i; i+ 1] is the process de�ned by X̂m
i (0) = Xi and

X̂m
i (j + 1) = X̂m

i (j) +m�1b
�
X̂m
i (j)

�
+m�1=2�

�
X̂m
i (j)

�
Bi;j

where (Bi;j)i=1;��� ;N;j2N is a family of independent standard d-dimensional Brownian motions.

We denote X̂m
i+1 = X̂m

i (m).

� Monte-Carlo approximation of �i. Let fX (k) : k = 1; � � � ; ng.be a sequence of independent
random variables sharing the same distribution as some integrable random variable X . Let

(18) M [X ] =
1

n

nX
k=1

X (k) :

This empirical mean is the standard Monte-Carlo procedure for approximating EX . For �xed
i 2 f1; � � � ; Ng, for all bounded functions f = f�xi (xi+1; wi+1), let

(19) �̂i (f)�xi�1
(xi; wi) = sup

a2A0;i

M
h
f
�hn
\(X;Wa)

m

i+1

oi�
jWi = wi; Xi = xi;L (Yi) = p̂�xi

i
where \(X;Wa)

m

i+1 is the restriction to (x;w) of the basic Euler approximation of (X;Y;Wa)i+1.
Here the conditioning under M means that the common starting point of the n independent

copies of \(X;Wa)
m

i+1 is (xi; wi; p̂
x
i (dy)) (or, more correctly, the starting distribution is Æxi 


Æwi

 p̂�xi ). The iteration of this procedure yields our Monte-Carlo method, denoted by

V̂ (i; �xi; wi) = �̂i
�
�̂i+1 Æ � � � Æ �̂N (U)

�
�xi�1

(xi; wi) :

� In the remainder of the paper, we write E [�j�xi; wi; y] as a shorthand for E [�jF �x
i ;Wi = wi; Yi = y]

when there is no risk of confusion.

The theorem below exhibits a value 0 > 1 such that that the optimal choice for n; n0;m;m0;m00 is

m = m00 = n1=3 = (n0)
1=2

= (m0)
1=0 : The number of Monte-Carlo particles Y k

i used for constructing

p̂�xi is n, while only n0 = n2=3 Monte-Carlo particles are needed to construct �̂i given p̂�xi . It is more
convenient, and may indeed be more eÆcient in practice, to use n0 = n. That way, the k-th particle used

to calculate V̂ (i; �xi; wi) can be generated from the (X;Y;W)-dynamics starting at xi; Y
k
i ; wi. Let Si

be the set of all possible sequences �xi = (xj : j � i) that satisfy (15) and (16). Let Ti be the projection
on the ith coordinate of Si if one applies the truncation procedure in the variable w, otherwise let Ti
be (1=m0)Z \ [�wmax; wmax].

The Monte-Carlo procedure is as follows.

(1) Initialization. Let Xk
0 = x0; Wk

0 = w0 and Y k
0 = y0 for all k = 1; � � � ; n. For all (�x;w) 2

SN � TN let V̂ (N + 1; �x;w) = U (w).
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(2) Calculation of the �lter. For each �x 2 S, use the del Moral-Jacod-Protter method with
Euler time step 1=m to calculate the particles Y k

i = Y k
i (�x) for all i � N; k � n.

Repeat step 3 for i = N down to 0:
(3) Calculation of V̂ : We assume that we know V̂ (i+ 1; xi+1; wi+1; �xi) for all �xi+1 2 Si+1 and

wi+1 2 Ti+1, as well as the corresponding optimal strategy a�i+1 (�xi+1; wi+1) : From step 2, we

also know Y k
i (�x) for all �xi 2 Si, k � n. For each �xi 2 Si; wi 2 Ti, ai 2 A0;i :

(a) independently for each k � n

(i) simulate X̂m
i+1 (k) using the Euler scheme with time step 1=m for the pair (X;Y )

starting from
�
xi; Y

k
i (�x)

�
; over [i; i+ 1] [Note that it is necessary to simulate Ŷ k

i+1

also, but this value can be discarded],
(ii) calculated̂Wa

m

i+1 (k) = aiX̂
m
i+1 (k) + ai

�
X̂m
i+1 (k)� xi

�
er + wie

r;

(b) calculate the Monte-Carlo average

F̂ (ai; �xi; wi) =
1

n

nX
k=1

V̂
�
i+ 1;

hn
\(X;Wa)

m

i+1 (k)
oi

; �xi

�
;

(c) the i-th step optimal strategy and maximum expected yield are

V̂ (i; xi; wi; xi�1) = max
ai2A0;i

F̂ (ai; �xi; wi) ; a�i (�xi; wi) = argmax
ai2A0;i

F̂ (ai; �xi; wi) :

4.2. Usage and transaction costs. For each i = 0 to N , a practicioner who observes stock value xi
and portfolio value wi needs only to use the constant strategy a�i (�xi; wi) in the interval [i; i + 1). At

time i, this investor's expected maximal utility will then be given by V̂ (i; xi; wi; xi�1), up to an error
of order 1=m, as our main Theorem 4.1 proves.

The power of this algorithm lies in the fact that, although its storage requirements are important
(since at the very least, the values of a�i must be stored for each scenario (�x; �w)), the computations only
need to be performed once, and the practicioners may access the values of a�i directly from a calculated
worksheet. This is particularly interesting for persons wishing to trade at high frequency, since the
real-time computational demands are minimal.

Extending the algorithm to arbitrary non-random observation times T0; T1; � � � ; TN ; TN+1 = T is
straightforward. With equally spaced times, we let Æ�1 = (Ti+1 � Ti)

�1 be the observation frequency.
Clearly, higher Æ�1 implies a higher expected yield. However, taking into account transaction costs
implies that a higher Æ�1 means a lower mean rate of return for the stock.

For illustration purposes, placing ourselves in the HARA case, we will assume it has been established
that the uncertainty on the volatility, and its �ltering at rate Æ�1, translate into a maximum expected
utility in which the classical constant � is replaced by a function � (Æ) that grows linearly in Æ:

V (t; w) =
1

p
wp exp (pr (T � t)) exp

 
2p

1� p

(�� r)
2

(�0 + c0Æ)
2 (T � t)

!
:

Incorporating symmetric proportional transaction costs is trivial: if one assumes that the purchase or
sale of one dollar of stock costs c dollars, since there are Æ�1 transactions in each unit of time, the
mean rate of return � needs simply to be replaced by �� c=Æ. Thus to optimize the value of V over all
possible Æ, we simply need to �nd the maximum of

R2 (Æ) :=

�
�� r � cÆ�1

�0 + c0Æ

�2
:

The maximum Rmax occurs at Æmax := c

�
1 +

q
1 + �0 (�� r) (cc0)

�1

�
= (�� r) : This Rmax has a

numerator that ranges from (�� r) =2 to �� r as �� r increases, and a denominator of the same order
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of magnitude as �0 as long as the original risk premium ��r is not too small, and indeed very close to �0
for large ��r. In conclusion, when the risk premium is large, if one chooses the observation/transaction
rate Æ�1 appropriately, one can expect to do almost as well as with full observation.

4.3. Convergence.

Theorem 4.1. Let

" > 0; 0 = 1 +
2�21

(1� �2)�20
;  > 0; K�

0 = sup
y2R

������ �2 (y)

2

���� ; K > K�

0 :

Assume n1=3 � m = m00, m0 � m ; and n0 � m2. Assume that the truncation procedure f g in the

de�nition of �̂ operates only on the random variable X. Assume (15) and (16) hold with

Km = K� +
q
(2 + ")�21 logm;(20)

N <
Km

(1� �2)�20
:(21)

Then there exist constants B;C > 0 that depend only on the coeÆcients �; �; �; �; �; r; A, an integer m0

depending also on ; ", and a constant K�

";�;� depending only on K�; "; �; �, such that for each m > m0,

(22) sup
�x;wl

Ê
h���V (i; �xi; wi)� V̂ (i; �xi; wi)

���i � (N � i+ 1)
C

m

�
kUk �Bi + 1 +K�

";�;�

�
+ kU 0k e

(N�i)�

m�1

�
:

If the truncation procedure operates on both X and W, then the statements above remain true with �1
replaced by (1 _ A)�1 where A is the bound in (17). The supremum over wi can be over any arbitrary
set of values.

Strictly speaking, our theorem only guarantees a good approximation if m grows exponentially with
N . It is possible to formulate a theorem in which this condition is not needed. The following is an
informal discussion of what needs to be done.

For typical values of the parameters �; �; � (signi�cantly less than 1), with Euler time step m = 1000,
an admissible choice for N is 20, which may be uncomfortably small for people wishing to trade at
high frequency. However, in practice (see [10]) the term Bi can be replaced by 1 when Y is an ergodic
process, such as the oft used, mean-reverting O.U. process (3). Moreover, interpreting the term e(N�i)�

as exponential in N is betraying the fact if N represents a period of T years, it equals (1 +R)
T
where

R is the e�ective annual rate of increase corresponding to �, and thus does not depend on N .
The only problematic condition is (21). The presence of K� makes it possible to choose N large, but

the tradeo� is a larger value of ; examining the proof of Theorem 4.1, one can see that for manageble
values of m,  must be linear in K�, which means that a linear increase in N implies an exponential
increase in the number of space-mesh points m0. A better solution is to require bounded observations
jxij � xmax for all i � N . Then one can see that the restriction (21) is not needed. The probability of
one's actual observations not being bounded is given by

P

"
sup

t2[0;N ]

jX (i)j � xmax

#
= P

"
sup

t2[0;N ]

 Z N

0

� (Ys) dWs +

Z N

0

�
�� 1

2
�2 (Ys)

�
ds

!
� log (xmax=x0)

#
:

Choosing xmax = x0 exp
�
NK�

0 + �1
p
N logm

�
ensures that this probability no grater than 1=m. If

� � �2=2 is always negative (large volatility), the term NK�

0 can be deleted. For small volatility,

K�

0 < � so that expNK�

0 < (1 +R)
T
: The only remaining factor in xmax is exp�1

p
N logm, which is

the same order as the bound on xi implied by the truncation condition (15). We conclude that one can
generally ignore condition (21). The probability that the actual observations do not satisfy (15) is of
order 1=m.
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To prove Theorem 4.1, we need several propositions on convergence speeds: the �rst result covers
the standard Euler method for SDEs (see [1]), the second treats the standard Monte-Carlo method, the

third investigates the operation �̂. The fourth establishes a type of contraction property for �̂.

Proposition 4.2. Referring to the description of the Euler method above, let q (x; x0) and q̂m (x; x0)

be the densities of the laws of Xi+1 and X̂m
i+1 respectively, given Xi = x. There exist constants C and

C 0 depending only on a; b such that q (x; x0) + q̂m (x; x0) � Ce�C
0jx�x0j2 and

jx� x0j > 2=m ) jq (x; x0)� q̂m (x; x0)j � C

m
e�C

0jx�x0j2 :
Proposition 4.3. Let X be a bounded random variable (there exists a deterministic constant C such
that jX j � C). Let fX (k) : k = 1; � � � ; ng be a family of independent copies of X , under some other

probability measure P̂ and let M [X ] be as in (18). Then

Ê [jM [X ]�E [X ]j] � Ku
C

n1=2

where Ku is a universal constant.

Proof. The proof is presumably well known. It uses the basic ideas of large deviations and subgaus-
sian random variables.

Proposition 4.4. Let the integers n; n0;m;m0;m00 be �xed and assume the values of �x are limited by
the condition

jlogxi+1 � log xij � Km00

where Km00 satis�es (20) for some �xed " > 0, with �1 replaced by (1 _ A)�1 if the truncation function
f g operates on both x and w. For any bounded function f = f�xi (xi+1; wi+1) ;

(23) sup
�xlwi

Ê
h����i (f)�xi�1 (xi; wi)� �̂i (f)�xi�1 (xi; wi)

���i � CBi kfk
n1=3

+
C kfk
m

+
kf 0k
m0

+
K" kfk
m00

+
Ku kfk
(n0)

1=2

where kfk = sup�xi+1;wi+1
jf (�xi+1; wi+1)j and kf 0k = sup�xi+1;wi+1

���� @f
@xi+1

���+ ��� @f
@wi+1

���� ; B and C depend

only on �; �; �; �; �; r; A, K" depends only on ", and Ku is a universal constant.

Proof. The �rst step is to notice that we have:

(24) E
�
f
�
Xi+1;Wa

i+1

� jF �x
i ;Wi = wi

�
=

Z
p�xi (dy)E

�
f
�
Xi+1;Wa

i+1

� jF �x
i ;Wi = wi; Yi = y

�
:

As a consequence we can rewrite����i (f)�xi�1 (xi; wi)� �̂i (f)�xi�1 (xi; wi)
���

�
����� supa2A0;i

Z
p�xi (dy)E

�
f
�
(X;Wa)i+1

� j�xi; wi; y�� sup
a2A0;i

Z
p̂�xi (dy)E

�
f
�
(X;Wa)i+1

� j�xi; wi; y�
�����

+ sup
a2A0;i

Z
p̂�xi (dy)

��E �f �(X;Wa)i+1
� j�xi; wi; y��E

�
f
��
(X;Wa)i+1

	� j�xi; wi; y���
+ sup

a2A0;i

Z
p̂�xi (dy)

���E �f ��(X;Wa)i+1
	� j�xi; wi; y��E

h
f
�n
\(X;Wa)

m

i+1

o�
j�xi; wi; y

i���
+ sup

a2A0;i

Z
p̂�xi (dy)

���E hf �hn\(X;Wa)
m

i+1

oi�
j�xi; wi; y

i
� E

h
f
�n
\(X;Wa)

m

i+1

o�
j�xi; wi; y

i���
+ sup

a2A0;i

Z
p̂�xi (dy)

���E hf �hn\(X;Wa)
m

i+1

oi�
j�xi; wi; y

i
�M

h
f
�hn
\(X;Wa)

m

i+1

oi�
j�xi; wi; y

i���
= A1 +A2 +A3 +A4 +A5:
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A5 is controlled uniformly in a; �xi; wi; y using Proposition 4.3 with X =f
�hn
\(X;Wa)

m

i+1

oi�
. Con-

trollingA4 is trivial using the fact that jf (x;w) � f ([(x;w)])j � kf 0k =m0. Proposition 4.2 for X =(X;Y;W)
easily yields a bound for A3. To control A2, since f is bounded, it is suÆcient to estimate

P

�����Z i+1

i

� (Ys) dWs

���� > Km00 � sup
y0

������ 1

2
�2 (y0)

���� jy� :
Using Chebyshev's inequality P (Z > a) � E

h
e�Z

2
i
e��a

2

one sees that to obtain a bound of 1=m it

is suÆcient to take � = (2 + ")
�1

��21 and Km00 as in (20). To �nish the proof of the proposition, we
must estimate

sup
�xi

sup
wi

Ê sup
a2A0;i

����Z �p�xi (dy)� p̂�xi (dy)
�
Fxi;wi;a (y)

���� :
where Fxi;wi;a (y) = E

�
f
�
(X;Wa)i+1

� j�xi; wi; y�. The presence of the supremum inside the expectation

causes a problem, which is remedied using the Hahn-Jordan decomposition of the measure � = p�xi � p̂�xi
into a di�erence of positive measures �1H +�1Hc , making it possible to bring the supremum inside the
y-integration, so Theorem 2.1 can be applied to the function 1H (y) supa jFxi;wi;a (y)j.
Proposition 4.5. For any bounded functions f = f�xi (xi+1; wi+1) and g = g�xi (xi+1; wi+1) ; which may

moreover be random under P̂, we have

sup
�xi

sup
wi

Ê
h����̂i (g)�xi�1

(xi; wi)� �̂i (f)�xi�1
(xi; wi)

���i � sup
�xi+1

sup
wi+1

Ê [jf�xi (xi+1; wi+1)� g�xi (xi+1; wi+1)j] ;

where the suprema in �xi and �xi+1 are over the �nite sets determined by conditions (15) and (16), while
the suprema in wi are over arbitrary sets.

Proof. Using the rule (24), Fubini's theorem, and the trivial fact Ef (Z) � sup f , the proof is
straightforward.

The last and most technical step before proving Theorem 4.1 is to control kf 0k with f = �i Æ � � � Æ
�N (U), which we do in the next proposition

Proposition 4.6. Let f�xi�1 (xi; wi) = �i Æ � � � Æ �N (U)�xi�1
(xi; wi). There exists a constant K�;�;�

depending only on �; �; �; r; A, such that

sup
wi;�xi

�����@f�xi�1

@xi

����+ ����@f�xi�1

@wi

����� � K�;�;�;r;A

�
kUk exp

�
K2
m00

�2�20
+ iKm00

�
+ kU 0k e�(N�i)

�
Proof. From the expression f�xi�1 (xi; wi) = supa2A0

R
p�xi (dy)E

�
U
�Wa

N+1

� j�xi; wi; y�, the explicit
formula

(26) Wa
N+1 = wie

r +
NX
j=i

aj (Xj+1 � erXj) e
(N�j)r;

which follows from the self-�nancing condition, the expression for Xj=xi given by (6), and since p�xi also
depends explicitly on xi via formula (7), f�xi�1 appears as an explicit function of (xi; wi). An upper

bound on its derivatives is obtained using the general fact
�� d
dx (sup ga) (x)

�� � supa

���dgadx (x)
��� for any

family fgag of C1 functions. It follows immediately that���� @

@wi
f�xi�1 (xi; wi)

���� � kU 0k er:

For some constant K�;�;� depending only on �; �; �, the following upper bounds are straighforward,
using conditions L1, (15), L2, and the martingale property for j 7! Xj=xi:������ @@xiE

24U
0@wier + xi

NX
j=i

aj (Ei;j+1 (y)� erEi;j (y)) e(N�j)r

1A35������ � 2A kU 0k e�+r

e��r � 1
e�(N�i);
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Z

p
�xi�1

i�1 (dy0)EZ
�
1dy (Yi) g

Z
i (~xi � ~xi�1) jYi�1 = y0

�����
� K�;�;� exp (iKm00)

Z
p
�xi�1

i�1 (dy0)PZ [Yi 2 dyYi�1 = y0]

Z
p�xi�1 (dy

0)EZ
�
gZi (~xi � ~xi�1) jYi�1 = y0

� � K�;�;� exp

�
�K2

m00

�2�20

�
;

from which the proposition easily follows.
Proof of Theorem 4.1:
We prove the theorem by backwards induction on the value i. By de�nition we have V (N + 1; �x;w) =

U (w) = V̂ (N + 1; �x;w) and the theorem holds true for i = N + 1. Now assume (22) holds true for

some value i � N + 1. By de�nition of f�xi�1 ; V; V̂ ; and Propositions 4.4, 4.5 and 4.6, we get:

sup
�xi�1

sup
wi�1

Ê

���V (i� 1; �xi�1; wi�1)� V̂ (i� 1; �xi�1; wi�1)
���

� sup
�xi�1

sup
wi�1

Ê

����i�1
�
f�xi�1)�xi�2 (xi�1; wi�1)

�� �̂i�1
�
f�xi�1)�xi�2 (xi�1; wi�1)

����
+ sup

�xi

sup
wi

Ê [jV (i; �xi; wi)� V (i; �xi; wi)j]

� kUk
 
CBi

n1=3
+

C

m
+

K"

m00
+

Ku

(n0)
1=2

!
+
K�;�;�;r;A

m0

�
kUk exp

�
K2
m00

�2�20
+ iKm00

�
+ kU 0k e�(N�i)

�
+ (N � i+ 1)

C

m

�
kUk �Bi + 1 +K�

";�;�

�
+ kU 0k e

(N�i)�

m�1

�
:

It is optimal to choose n1=3 = m = m00 = (n0)
1=2

. Using the de�nition of Km in (20), and the bound
on N in (21), for m large enough, we obtain, for a constant K�

�;� depending only on K�; �; �,

exp

�
K2
m00

�2�20
+ iKm00

�
� K�

�;�

m0
exp

�
2 (2 + ")�21 logm

�2�20

�
=

K�

�;�

m0
m

2(2+")�21
�2�2

0 ;

hence the choice for m0 as announced in the Theorem, which �nishes the proof.
We conclude this article by studying the e�ect of discretizing the set of all possible strategies.

Assuming the control set A0 in the original problem (5) takes bounded values as in (17), let ~A0 be the
set of strategies described in the the paragraph leading to condition L2. [The study for nonbounded A0

requires a localization step which we omit.] The following proposition makes no claims regarding the
e�ect on the optimal strategy, but from the practitioner's standpoint, since an optimal strategy exists
for the discretized control set, only the e�ect on V is relevant.

Proposition 4.7. Let V (0; �) be given by (10). Let

~V (0;x;w) = sup
a2 ~A0

E
�
U
�Wa

N+1

� jX0 = x;Wa
0 = w

�
:

If conditions L1 and L2 hold, then there is a constant K depending only on �; �; r such that

0 � sup
x;w2R+

h
V (0;x;w) � ~V (0;x;w)

i
� 1

m0
(N + 1)CN kU 0k

1
:

Proof. The lower bound is trivial. The upper bound is easy if one writes V (0) = supA0
F and

~V (0) = sup ~A0
F with F (a) = E

�
U
�Wa

N+1

� jX0 = x;Wa
0 = w

�
, and one uses the explicit expression

(26) together with the fact that V (0)� ~V (0) � F (a�)� F (~a�) where a� is the optimal control in A0

and ~a� is its closest point in ~A0.
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