See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2297316
Robustness of Zakai’s Equation via Feynman-Kac Representations

Article - February 1970

DOI: 10.1007/978-1-4612-1784-8_20 - Source: CiteSeer

CITATIONS READS
6 14

3authors, including:

_3 Frederi Viens Ofer Zeitouni
Purdue University 276 PUBLICATIONS 8,895 CITATIONS

84 PUBLICATIONS 1,243 CITATIONS
SEE PROFILE
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project STATISTICAL ESTIMATION AND GAUSSIAN FIELDS USING THE MALLIAVIN CALCULUS View project

Project Stochastic calculus via regularization View project

All content following this page was uploaded by Frederi Viens on 29 October 2015.

The user has requested enhancement of the downloaded file.

ResearchGate


https://www.researchgate.net/publication/2297316_Robustness_of_Zakai%27s_Equation_via_Feynman-Kac_Representations?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2297316_Robustness_of_Zakai%27s_Equation_via_Feynman-Kac_Representations?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/STATISTICAL-ESTIMATION-AND-GAUSSIAN-FIELDS-USING-THE-MALLIAVIN-CALCULUS?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Stochastic-calculus-via-regularization?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederi_Viens?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederi_Viens?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Purdue_University?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederi_Viens?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ofer_Zeitouni?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ofer_Zeitouni?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ofer_Zeitouni?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederi_Viens?enrichId=rgreq-e19b9da890ba0683bdb3a8bed2e424bf-XXX&enrichSource=Y292ZXJQYWdlOzIyOTczMTY7QVM6Mjg5ODY3NTU3ODE4MzczQDE0NDYxMjEyMTk3MDg%3D&el=1_x_10&_esc=publicationCoverPdf

Robustness of Zakai’s equation via Feynman-Isac
representations

Rami Atar
Lefschetz Center for Dynamical Systems
Brown University, Providence RI
Frederi Viens
Department of Mathematics

University of North Texas, Denton TX

Ofer Zeitouni
Department of Electrical Engineering
Technion, Haifa, Israel

November 21, 1997



Abstract

We propose to study the sensitivity of the optimal filter to its initial-
ization, by looking at the distance between two differently initialized
filtering processes in terms of the ratio between two simple Feynman-
Kac integrals in the product space. We illustrate, by considering two
simple examples, how this approach may be employed to study the
asymptotic decay rate, as the difference between the growth rates of
the two integrals. We apply asymptotic methods, such as large devi-
ations, to estimate these growth rates. The examples we consider are
the linear case, where we recover known results, and a case where the
drift term in the state process is nonlinear. In both cases, only the
small noise regime and only one-dimensional diffusions are studied.

Keywords Non-linear filtering; Feynman-Kac; Large deviations.



1 Introduction

Zakai’s equation of nonlinear filtering theory represents the solution of the
filtering problem consisting of evaluating the conditional law of a Markov
process observed in white Gaussian noise. In this paper we study the stabil-
ity of Zakai’s equation with respect to perturbations in its initial conditions.

It is known since the work of Kunita (1971) that under mild conditions,
the conditional law, viewed as a random process taking values in the space of
probability measures, is stationary when appropriately initialized. Stettner
(1989) shows that whenever the state process is a Feller Markov process
converging in law to its unique invariant measure, so is its conditional law.
Actually, c.f. Stettner (1991), the joint law of the state and its filtering
process is Markovian even if the filter is wrongly initialized. It thus seems
natural to investigate the rate of convergence and to study the sensitivity of
the optimal filter to its initialization with the wrong initial measure. This
issue is also highly relevant for numerical and practical computation of the
optimal filter or its approximations, for almost never does one have access
to the true initial distribution.

Several approaches exist to analyze this exponential sensitivity, taking
full advantage of the linear structure of Zakai’s equation. In a recent article
Ocone and Pardoux (1996) have studied L? type of convergence, and showed
that the nonlinear filter initialized at the wrong initial condition converges
(in an L? sense) to the nonlinear filter initialized at the correct initial condi-
tion. In particular cases (most notably, the Kalman filter), this convergence
is exponential (see also Ocone (1997a) for a study of the Benes case from
a different point of view). In general, however, no rates of convergence are
given by this approach.

Another approach, which does yield exponential rate of convergence, ex-
tends earlier Lyapunov exponent techniques suitable for the finite state space
case as in Atar and Zeitouni (1997a). It is based on evaluating the rate of
contraction of solutions of Zakai’s equation in the projective Hilbert metric,
using the Birkhoff coeflicient associated with the kernel of the solution, see
Atar and Zeitouni (1997b) for a development of this idea, and more recent
work Budhiraja and Ocone (1997), Borkar, Mitter and Tatikonda (1997).
This technique can be applied rather well in the case of compact state
space, and yields results which are usually not tight when the noise level
in the observation is weak. A different procedure, which as a by-product
yields contraction in the Hilbert projective metric by controlling logarithmic
derivatives of Zakai’s kernel, is announced in Da Prato, Fuhrman and Malli-



avin (1995). An approach based on studying the relative entropy is reported
in Clark, Ocone and Coumarbatch (1997) and in Ocone (1997b). Model ro-
bustness over the infinite time interval, and the relation of this problem to
the sensitivity to initial conditions is dealt with in Budhiraja and Kushner
(1997a), Budhiraja and Kushner (1997b).

The results based on Hilbert Projective metric are restricted to the com-
pact state space case, and are usually not tight in the limit of low obser-
vation noise, for reasons described in Atar and Zeitouni (1997b). Some
exceptional cases where contraction results for one dimensional, IR-valued
diffusions exist and are tight are described in Atar (1997). Our goal in this
paper is to suggest a different point of view, looking at the contraction in
the space of positive measures as a ratio of two expectations, for which a
simple Feynman-Kac representation can be achieved. Asymptotic methods,
such as large deviations, can be then applied to the estimation of the growth
rate of the latter Feynman-Kac integrals. We content ourselves here with
presenting the idea and analyzing a simple one dimensional Gaussian diffu-
sions, for which results are available in more generality by different methods
(see, e.g., Ocone and Pardoux (1996)). We also present some immediate
consequences for a class of one dimensional nonlinear diffusions. The case of
general diffusion processes, even in one dimension, requires additional work
and ideas and at present is not resolved.

2 A Feynman-Kac representation for the decay
rate

For any measurable space (Q,F), let M(Q,F) and M;(Q, F) denote the
spaces of finite signed measures on (£, F) and of probability measures on
(Q2, F), respectively. Define on M(€2, F) the norm || - || compatible with the
variation distance i.e.,

lpl| = sup{p(f): fis measurable on (2, F),|f| <1}, pée M(Q,F).

One fixed notation, namely || - ||, will be used to denote the above norm for
measures on different measurable spaces. Next, for p,q € M(,F), define
the exterior product pA g€ M(Q X Q, F@ F) by

1
pAq=§(p><q—q><p)-

We then have



Lemma 1 Let (Q,F) be a measurable space and let p,q € M1 (2, F). Then

lp Agll < lp—qll < 2|lpAql]. (1)

Proof: Note that for r,s € M(Q,F) one has ||r x s|| = ||r||||s]]. Indeed, let
f be measurable and such that |f| < 1, then by Jordan’s decomposition for
a signed measure and Fubini’s theorem,

(x5 = [ [ sespprtan]stdy) = [ gistan)

But |g(y)| < |I7|l, so (r x s)(f) < ||7||||s||. The reverse inequality is trivial.
The leftmost inequality in (1) follows from

20N q)=(p—q) xq—qx(p—q),
implying that
2lp Adll < l(p—q) < qll + llg x (p = @)l = 2[lp — ql| -

The rightmost inequality in (1) follows from

p(f)=—a(f) = x)(fx1)=(gxp)(fx1)=2(pAg)(fx1).

O

Consider now a strong Markov process, z¢t > 0, with RCLL paths
possessing the Feller property, taking values in a Polish space (5,8). Let
g : 5 — IR? be measurable and define

t
yt:/ g(zs)ds + odvy,
0

where vy, t > 0 is a standard Brownian motion on IR?, independent of ;.
Let by, b}, t > 0 be two processes on (5,8) with the same transition law
as x¢, but possibly different initial laws p,p’ € M;(S,S), respectively, and
which are independent of x4, 74 and of each other. Let Ey (Ey, £ ;) denote
expectation w.r.t. b (resp. b’, (b,b')) alone.
Let P be the measure induced by (x¢,y;), t > 0, and denote by Y, the
sigma-field generated by {ys,0 < s <t}. We assume that

t
£ [ lgolds < 0o, 12 0. (2)
0

5



Now let

1/t 1t 9
Ae=exp (2 [ oadu) = o [laaPds), 120,
and define the measure valued processes p; and p; by
p(@) = Ep[(b)Ae], 12> 0,0 € Co(IR),

pe(@) = pi(@)/pe(1). (3)

Let also A}, p} and p} be the processes defined as above, with b replaced
by o'. Then it is well known that in case where p equals the initial law of
x¢, one has P-a.s. that for all ¢ > 0, p; equals the conditional law of x4
given Y; under P. In this work however, we are interested mainly in the
case where p is arbitrary. p; may then be interpreted as the filtering process
with perturbed initial condition p. In particular, we shall look at the decay
rate of the distance between differently perturbed filtering processes:

) 1
lim sup 7 log ||p: — pil]-
t—o0

In view of Lemma 1 and equation (3), the decay rate above may be studied
in terms of ||p¢ A pi|| and ||p¢ x pi||, namely one has

[loe A il

llpe x Pl

and a similar statement for the lim inf. While by definition the denominator
can be written as:

t—o00

1 1
lim sup ;log lpe — Pl = lim sup n log
t—00

lpe X pill = EppAiAs,
we also have the following representation for the numerator.
Lemma 2 Let V; denote the event

bs V., allse[0,1].
Then

1
(pe A pi)(A) = 5 EpprAihily; Leones = Lopoes] . A€S®S,
and hence
llpe A pill < EpprAAiLy, (4)

implying that

Epy v AiAlL
bb Ny Vt) 5)

li —11 H — /H < li —11
1m su 0] 1m su 0]
P i g || Pt Pl = . P i g Eb,b’ A ; A ;

t—o00



Proof: By definition we have

1
(pe A p)(A) = 5 Eppey L+ 1ve] [Lepen = Logsoen) -
Using strong Markovity of the process (b, b}), a standard argument leads to

By AgAjlye [1(bt,b;)eA - 1(bg,bt)eA] =0, (6)

and the result follows. Indeed, if we let {F;} denote the filtration generated

by {(b, )}, and
T=inf{s > 0:b, = b.},

with inf ) = oo, then 7 is a stopping time on {F;}. The strong Markov
property states that for any bounded measurable H

Epp [Hy 00| F] = @b, b, 7) on {7 < o}

where ¢(a, 2, u) = Eyp [Hy|bo = 2,0 = 2']. Let usfixt > 0and A € S®S
and for n > 0 define

H(b,b) =
min {n, A Ay} 1ye [1(b(t—s),b’(t—s))eA - 1(b’(t—s),b(t—s))eA] :

Note that on {7 < oo} we have H" 0 8, = H}. Moreover, for x = 2’ and
any u one has ¢(z,2’,u) = 0. This proves that on {7 < oo}, Eyp [HF|F;] =
0, while on {7 = oo} this fact is trivial. Hence E, yH} = 0, and since
assumption (2) and the independence of {z;} and {r:} imply that A;A} is
Ey, yr-integrable, we obtain (6). ]

In many cases the bound (4) is useless, in particular if 5 = R%, d > 3,
and {z;} a standard Brownian motion, where V; occurs almost surely for
every ¢ (given Py p(Vp) = 1). However it is sharp in some other situations.
For example, it holds with equality in the case S = R and {z;} a diffusion
process, provided that P, (bo > bj) = 1. In high dimension, one needs
to replace the coupling time 7 by a more general coupling time, at which
time the joint law of (bs, ;) is exchangeable. For example, if § = IR? and
the components of b. are independent, one may take as coupling time the
maximum of the collision times for each coordinate. In more generality, one
may take as coupling time 7 any stopping time at which the law of (b,,b) is
the stationary law. For some examples where coupling times are explicitly
constructed, see Lindvall (1992).



3 A Gaussian Example

In this section we present a particularly simple example of a filtering problem
where computations using Section 2 can be carried out rather explicitly.
Let z; denote a stationary Orenstein-Uhlenbeck process, i.e.

1
d$t = —§$tdt + dwt, (7)
observed linearly in Gaussian white noise of intensity o:
dy; = x¢dt + odvy . (8)
Here, wy,v; denote independent standard Brownian motions. We let b,
denote independent stationary solutions to (7), and use p; to denote the
density of the standard normal law. We let

_ 1 rt 1 t
Ay = exp <_/ (bs - ws) dvs — 2—2/ (bs - ws)zds) , 120,
0 g 0

g

and

o o?

_ 1 ft 1 t
A}, = exp (—/ (b, — x5) dvg — —/ (b's—xs)zds), t>0.
0 2 0
It is straightforward to check that now, (5) reads
p(bo)p’(bo) A A7
Eb’b/ (ps(b%)ps(gé)AtAtlvt)
p(bo)p' () % A+
vy (FmmiyAdd)

In order not to be burdened by (inessential) technicalities, we make the
following:

(9)

1 1
lim sup — log ||p; — p}|| < lim sup - log
t—00 t t—00 t

Assumption A There exists a constant ' > 0 such that

! !
C~! < inf p(z) < sup p(z) <C,C7 V< inf (@) < sup P(z) <.
l’G]RPs(JC) z€R ps(x) z€R ps $) z€R ps(x)

Our goal is to prove the:

Theorem 1 Assume p,p’ satisfy assumption A. Then,

lim sup lim sup zlog lpn — Pl <0, as.. (10)
o M

o—0 n—

In fact, there exist a, 3 > 0 such that for allt large enough,

P(llpe = pill > exp(—at/0)) < exp(—pt/0). (11)



A control of the right hand side of (10) is possible, however since our bounds
are not expected to be particularly tight we do not try to make it explicit.
Proof of Theorem 1

Throughout this proof, we use ¢t to denote the time index, but except
when computing expectations we will always think of ¢ = 0,1, .... Thus, the
statement

limsup a; = 0, a.s.,
t—o00

is taken to say that limsup,_ . a, = 0,a.s. We also note that (11) fol-
lows readily from our proof of (10) by a Chebycheff inequality. Thus, we
concentrate here on proving the later.

Obviously, under assumption A, the right hand side of (9) reads

(Eb,b’ (/&t/&;]_vt) )

IN

1
lim sup n log ||p: — pLl] lim sup — log
t—00

t—00
1 Bl
= ligrisgp n log Fz . (12)

For ¢t < oo, let (Al)? denote the Karhunen-Loeve eigenvalues and let !(-)
denote the associated eigenfunctions. Let {a;},{a’} denote independent
sequences of independent standard normal random variables, and let ¢! =
fs ph(s)asds, vl = [J pi(s)dv(s). Then, ¢! are independent normal variables
of zero mean and variance 1/(A\))?, v! are independent standard normal
variables, and one has the identities

2
t < q;
It = / (bs — x5)2d5 = Z (F — (bf) ,
0
¢ o0 / 2
17 ::/(b’ — Z &_(ﬂ?
1 0 s At 7 9
t f — [ a; AR
IQ ::/(b5—$5)dl/5 = Z _t_gbi Vi
0 A
t 0 a/.

1= / (b, —ag)dvs, = Y (; - ¢§) vl
0 i

=1

|
=
w
~—
[\]
QL
V)

Further, one knows that A\! ~ 7i/t. The definitions above are used in the
proof of the following lemma, which is presented later.



Lemma 3 Forp € [1,00),

= 1
lim sup lim sup = log Ey(AY)y =~ (p3/2 - 3\/]_)) , @.S.. (13)
o—0 t—oo 1t 4
In particular,
lim sup lim sup %log B = —1, as.. (14)
o—0 t—00

The key to the evaluation of a bound on the right hand side of (12) lies in
restricting the domain of integration in Bj. For K a fixed constant (later
taken as K = 1+ n with > 0 arbitrary small), define the events

A= {Hai}: If < Kot)y, A= {{d}: I[' < Kot}.

Then,
B By (AeAjLy,)
By Ep(A¢)?
By (AN 14,1 41y, Ep(Asl 4 ;
< b/ (As tiAQAt v) 2 ol {At);:B_ltlJrQC{. (15)
Ey(Ay) Ey(Ay) By

The proof of the following lemma is postponed to the end of this section:

Lemma 4 With K as above, and any n > 0,

lim sup lim sup %log Ct <0, as. (16)

o—0 t—0o0

Equipped with Lemmas 3 and 4, our next task is to achieve a control on
B, which is contained in the following.

By = Eyy(AALa 1y 1y,) < BYP(ADE (1a1aly,) . (17)

In view of (12), (15) and Lemma 4, Lemma 3), (17) and the following large
deviations computation complete the proof of Theorem 1:

Lemma 5

3+x/§)2
— | , a.s

) ) o -
lim sup lim sup ?log Eb,b/(lAtlAglvt) <Kt ( 1

o—0 t—0o0

10



Indeed, taking p = 1 4+ ¢ with 6 small enough and 1 > 0 small enough one
obtains that

B ’
lim sup lim sup zlog ($) <é (1 - (3 il \/§) + 977) +0(6) <0, as.,

o—0 t—0o0 t B% 4

where g, —,_0 0. The proof of Lemma 5 is presented below. ]

Proof of Lemma 5: It is enough to show that

lim sup 7 log E (Ey (14,14 1v,)) < ~K~!

n—oo 1

(#) +g(a), (18)

where ¢g(0) —,_0 0. Indeed, assume (18). Then, for any 0 < 5 < 1,

P (Eb,b'(lAnlAéllvn) > exp (—% (K_l (#) +9(U))))
< exp (—@ (K—l (#) +9(0)+ g(n))) :

where g(n) —,— 0, implying by the Borel-Cantelli lemma that

M)2 »

lim sup lim sup zlog Eyp(1a,14 1y,) < K1 ( 1
n n

o—0 n—oo
The conclusion of the lemma follows by noting that, from monotonicity,
o o
? 10g Eb,b’(lAtlAé 1Vt) S m 10g Ebyb/(]‘Al_tJ 1A/I_tj 1VI_tJ ) .

Turning to the proof of the key estimate (18), the following transformation
reduces the three-dimensional problem into two-dimensional one:

b—w V3u v
YCR I (19)
bl—w, V3u, V. ?
V2 2 2
where u_, v, are two independent Orenstein-Uhlenbeck processes satisfying
the SDE (7). Rewrite now (18) in terms of u , v to obtain that

lim sup g log B (Ey (14,14, 1v,))

n—oo 1

11



1t
< lim sup zlogP(;/ (\/§u5 —v,)%ds < 2K o,
0

n—oo T

1 st 1 st
—/ (\/§u5 + v5)2d5 <2Ko, ;/ 1,.<0ds = 0)
0 0

t
1 R
< —inf{g/ #(w,y)m(dw,d@/)r
[z 0// fQa,y)ym(de, dy) = 1,
//(\/596 +y)* f(2, y)m(dz, dy) < 2K o,
//(\/596 —y)*f(z,y)m(dz,dy) < 2K o,
f(xvy) = f(wvy)]-yZO} ) (20)
where m(dx,dy) = exp(—(2* + y*)/2)dzdy/27, fs, [, denote the partial
derivatives of f(z,y) w.r.t. z,y, respectively, and the last inequality in (20)
is a consequence of the Donsker-Varadhan theorem for occupation measures,
c.f. Deuschel and Stroock (1989) pg. 241 for this version. The conclusion
now follows by solving the calculus of variations problem (20), as outlined

below.
The cost function in the constrained problem is

10 = [f (55 + rteanr ) mtaoay

where

r(z,y) = M(V3e + ) + Xa(V3e = y)* + e
The Fuler-Lagrange equation then has the form

LIV log fI1? + §(Alog f — allog ), — yllog f1,) = r(e,y).

The solution to the above, which is supported on {y > 0} and satisfies

// flz,y)ym(dz,dy) = 1, //(\/§x + ) f(z,y)ym(dz,dy) = 2K o

is given by ) a4 20
fla,y) = ery”e Ly>o

12



where ¢; is a normalization constant, v = —a? + /ot + 3(1 + 2a?) and for

small values of o,
o — 2Ko + o(o)
3+/3 '

Substituting into the rate function one obtains

3+3

24 f2
J

(wvy)m(dwady)z( )( o)+ oo™

and (18) follows. 0
Proof of Lemma 3 Write

Ap—exp(pi(ﬁ— Z )

Noting that the exponent is nothing but a quadratic form in the random
variables a;, taking the expectation reveals that

Tl (2 O 200 (e
T ETE: p(z o )

An analysis of the first term reveals that

1OgH—t_2 —Zlog 1—|—pt2/7r2 222)
1 ‘|‘p(UAZ) =1
t ®og(l + 2~ dx t
20m 20

while for the second term one notes that

p(v —2¢tvt0(kt) — (¢’
b= Z (027} /p+1)

is a sum of independent, random variables, whose variance is of order ¢, and

lim E(E;)/t = (= Dypfo"(L+ %) e (p=1)yP

2no 4o

Hence, E;/t — (p—1),/p/40, in probability, and a.s. on the sequence t,, = n
because F(FE, — E(E;))* = O(t?) (for fixed o). U

13



Proof of Lemma 4 The key to the proof is Chebycheff’s inequality: Fix
3 >0, then

_ —BKt _
Ey(Adye) < e72e Ey(Ayexp(B17/207)).

One now repeats the analysis of Lemma 3 to conclude that

VI=73 10g(1 +272)da

hmsup—logEb(AtlAc) < —-fpK —

t—o00

\/?W/ 1—|—x “Lda

—ﬁ](—\/l—ﬁu-wT_ﬁ.

Optimization over # > 0 and an application of Lemma 3 with p = 1 yield
the result, as soon as K > 1. L]

4 A non-Gaussian Example
Consider next the stochastic process z; solution of the SDE
dey = c(zy)dt 4 dwy, (21)

and let y; be asin (8). Define Fi(z) = [ (c(8)+6/2)df. To avoid unessential
technical difficulties, we use the following assumption:
Assumption B The functions |F(2)|, |¢/(z)] and |¢*(2) — 22 /2| are bounded
by a global constant C'.

We now have the

Corollary 1 Assume assumptions A and B. Then,

lim sup lim sup —log lpn — Pl <0, as.. (22)

oc—0 n—oo

Proof: Using assumptions A and B, one knows that the solution to (21)
is absolutely continuous w.r.t. to the Orenstein-Uhlenbeck b, with Radon-
Nikodym derivative equal to

t

exp ([ (etb)+ 0210, — 5 [ (200 = (0o/2005)
< Ce?%exp2Ct, (23)
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where the inequality above uses Ito’s formula:

F(by) = F(by) +/ s)+ bs/2)dbs +2/ s)+1/2)ds
Hence, exactly as in the argument leading to (9),

(Be 4C 4Ct Ey b’(AtA 1Vt)

< SRSV 24
Hpt pt” (EbAt) ( )

with the difference from the Gaussian case lying in the fact that in the R.H.S.
of (24), the random variables ¢! are neither independent nor Gaussian or
uncorrelated. However, due to the proof of (11), there exist a, > 0 such
that o

g (EW(AtA;th)

(Eohy)? > exp(—at/a)) < exp(—pt/a), (25)

where P denotes the measure under which ¢! are normal independent of
variance (A!)%. Applying now again a change of measure as in (23), we see
that for ¢ large enough,

Eyp(AAfLy,)
(M(Eb—At)? > exp(—at/a))

30t p (Eb,b'(AtAélvt)

<e _
(EpAy)?

> exp(—at/a)) )

and the conclusion follows from (25). U

Remark Obviously, assumption B is far from optimal, and one may re-
lax it by using appropriate Holder inequalities. However, even at best, the
technique of this section is quite limited and does not seem to allow one to
go beyond the case of linear observation functions h(-) or, more generally,
beyond the case of non-constant diffusion coefficients in the state process.
What is needed in order to better employ the bound (5) is a direct way of
controlling E(A?) which does not involve the Karhunen-Léeve expansion.
Rather, a conditional large deviation principle for the joint occupation mea-
sure of (b,b',,v) is needed. This will be reported elsewehere.
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