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AbstractWe propose to study the sensitivity of the optimal�lter to its initial-ization, by looking at the distance between two di�erently initialized�ltering processes in terms of the ratio between two simple Feynman-Kac integrals in the product space. We illustrate, by considering twosimple examples, how this approach may be employed to study theasymptotic decay rate, as the di�erence between the growth rates ofthe two integrals. We apply asymptotic methods, such as large devi-ations, to estimate these growth rates. The examples we consider arethe linear case, where we recover known results, and a case where thedrift term in the state process is nonlinear. In both cases, only thesmall noise regime and only one-dimensional di�usions are studied.Keywords Non-linear �ltering; Feynman-Kac; Large deviations.

2



1 IntroductionZakai's equation of nonlinear �ltering theory represents the solution of the�ltering problem consisting of evaluating the conditional law of a Markovprocess observed in white Gaussian noise. In this paper we study the stabil-ity of Zakai's equation with respect to perturbations in its initial conditions.It is known since the work of Kunita (1971) that under mild conditions,the conditional law, viewed as a random process taking values in the space ofprobability measures, is stationary when appropriately initialized. Stettner(1989) shows that whenever the state process is a Feller Markov processconverging in law to its unique invariant measure, so is its conditional law.Actually, c.f. Stettner (1991), the joint law of the state and its �lteringprocess is Markovian even if the �lter is wrongly initialized. It thus seemsnatural to investigate the rate of convergence and to study the sensitivity ofthe optimal �lter to its initialization with the wrong initial measure. Thisissue is also highly relevant for numerical and practical computation of theoptimal �lter or its approximations, for almost never does one have accessto the true initial distribution.Several approaches exist to analyze this exponential sensitivity, takingfull advantage of the linear structure of Zakai's equation. In a recent articleOcone and Pardoux (1996) have studied Lp type of convergence, and showedthat the nonlinear �lter initialized at the wrong initial condition converges(in an Lp sense) to the nonlinear �lter initialized at the correct initial condi-tion. In particular cases (most notably, the Kalman �lter), this convergenceis exponential (see also Ocone (1997a) for a study of the Bene�s case froma di�erent point of view). In general, however, no rates of convergence aregiven by this approach.Another approach, which does yield exponential rate of convergence, ex-tends earlier Lyapunov exponent techniques suitable for the �nite state spacecase as in Atar and Zeitouni (1997a). It is based on evaluating the rate ofcontraction of solutions of Zakai's equation in the projective Hilbert metric,using the Birkho� coe�cient associated with the kernel of the solution, seeAtar and Zeitouni (1997b) for a development of this idea, and more recentwork Budhiraja and Ocone (1997), Borkar, Mitter and Tatikonda (1997).This technique can be applied rather well in the case of compact statespace, and yields results which are usually not tight when the noise levelin the observation is weak. A di�erent procedure, which as a by-productyields contraction in the Hilbert projective metric by controlling logarithmicderivatives of Zakai's kernel, is announced in Da Prato, Fuhrman and Malli-3



avin (1995). An approach based on studying the relative entropy is reportedin Clark, Ocone and Coumarbatch (1997) and in Ocone (1997b). Model ro-bustness over the in�nite time interval, and the relation of this problem tothe sensitivity to initial conditions is dealt with in Budhiraja and Kushner(1997a), Budhiraja and Kushner (1997b).The results based on Hilbert Projective metric are restricted to the com-pact state space case, and are usually not tight in the limit of low obser-vation noise, for reasons described in Atar and Zeitouni (1997b). Someexceptional cases where contraction results for one dimensional, IR-valueddi�usions exist and are tight are described in Atar (1997). Our goal in thispaper is to suggest a di�erent point of view, looking at the contraction inthe space of positive measures as a ratio of two expectations, for which asimple Feynman-Kac representation can be achieved. Asymptotic methods,such as large deviations, can be then applied to the estimation of the growthrate of the latter Feynman-Kac integrals. We content ourselves here withpresenting the idea and analyzing a simple one dimensional Gaussian di�u-sions, for which results are available in more generality by di�erent methods(see, e.g., Ocone and Pardoux (1996)). We also present some immediateconsequences for a class of one dimensional nonlinear di�usions. The case ofgeneral di�usion processes, even in one dimension, requires additional workand ideas and at present is not resolved.2 A Feynman-Kac representation for the decayrateFor any measurable space (
;F), let M(
;F) and M1(
;F) denote thespaces of �nite signed measures on (
;F) and of probability measures on(
;F), respectively. De�ne on M(
;F) the norm k � k compatible with thevariation distance i.e.,kpk = sup fp(f) : f is measurable on (
;F), jf j � 1g ; p 2M(
;F):One �xed notation, namely k � k, will be used to denote the above norm formeasures on di�erent measurable spaces. Next, for p; q 2 M(
;F), de�nethe exterior product p ^ q 2M(
� 
;F 
 F) byp ^ q = 12 (p� q � q � p):We then have 4



Lemma 1 Let (
;F) be a measurable space and let p; q 2M1(
;F). Thenkp ^ qk � kp� qk � 2kp ^ qk: (1)Proof: Note that for r; s 2M(
;F) one has kr � sk = krkksk. Indeed, letf be measurable and such that jf j � 1, then by Jordan's decomposition fora signed measure and Fubini's theorem,(r � s)(f) = Z �Z f(x; y)r(dx)�s(dy) =: Z g(y)s(dy):But jg(y)j � krk, so (r� s)(f) � krkksk. The reverse inequality is trivial.The leftmost inequality in (1) follows from2(p^ q) = (p� q)� q � q � (p� q);implying that2kp ^ qk � k(p� q)� qk+ kq � (p� q)k = 2kp� qk :The rightmost inequality in (1) follows fromp(f)� q(f) = (p� q)(f � 1)� (q � p)(f � 1) = 2(p^ q)(f � 1):Consider now a strong Markov process, xt; t � 0, with RCLL pathspossessing the Feller property, taking values in a Polish space (S;S). Letg : S ! IRd be measurable and de�neyt = Z t0 g(xs)ds+ �d�t;where �t; t � 0 is a standard Brownian motion on IRd, independent of xt.Let bt; b0t, t � 0 be two processes on (S;S) with the same transition lawas xt, but possibly di�erent initial laws p; p0 2 M1(S;S), respectively, andwhich are independent of xt, �t and of each other. Let Eb (Eb0 , Eb;b0) denoteexpectation w.r.t. b (resp. b0, (b; b0)) alone.Let P be the measure induced by (xt; yt), t � 0, and denote by Yt thesigma-�eld generated by fys; 0 � s � tg. We assume thatE Z t0 jg(xs)j2ds <1; t � 0: (2)5



Now let �t = exp� 1�2 Z t0 (g(bs); dys)� 12�2 Z t0 jg(bs)j2ds� ; t � 0;and de�ne the measure valued processes �t and pt by�t(�) = Eb [�(bt)�t] ; t � 0; � 2 Cb(IR);pt(�) = �t(�)=�t(1): (3)Let also �0t, �0t and p0t be the processes de�ned as above, with b replacedby b0. Then it is well known that in case where p equals the initial law ofxt, one has P -a.s. that for all t � 0, pt equals the conditional law of xtgiven Yt under P . In this work however, we are interested mainly in thecase where p is arbitrary. pt may then be interpreted as the �ltering processwith perturbed initial condition p. In particular, we shall look at the decayrate of the distance between di�erently perturbed �ltering processes:lim supt!1 1t log kpt � p0tk:In view of Lemma 1 and equation (3), the decay rate above may be studiedin terms of k�t ^ �0tk and k�t � �0tk, namely one haslim supt!1 1t log kpt � p0tk = lim supt!1 1t log k�t ^ �0tkk�t � �0tk ;and a similar statement for the lim inf . While by de�nition the denominatorcan be written as: k�t � �0tk = Eb;b0�t�0t;we also have the following representation for the numerator.Lemma 2 Let Vt denote the eventbs 6= b0s; all s 2 [0; t]:Then(�t ^ �0t)(A) = 12 Eb;b0�t�0t1Vt h1(bt;b0t)2A � 1(b0t;bt)2Ai ; A 2 S 
 S;and hence k�t ^ �0tk � Eb;b0�t�0t1Vt ; (4)implying thatlim supt!1 1t log kpt � p0tk � lim supt!1 1t log Eb;b0�t�0t1VtEb;b0�t�0t ! : (5)6



Proof: By de�nition we have(�t ^ �0t)(A) = 12 Eb;b0�t�0t h1Vt + 1V ct i h1(bt;b0t)2A � 1(b0t;bt)2Ai :Using strong Markovity of the process (bt; b0t), a standard argument leads toEb;b0�t�0t1V ct h1(bt;b0t)2A � 1(b0t;bt)2Ai = 0; (6)and the result follows. Indeed, if we let fFtg denote the �ltration generatedby f(bt; b0t)g, and � = inffs � 0 : bs = b0sg;with inf ; = 1, then � is a stopping time on fFtg. The strong Markovproperty states that for any bounded measurable HEb;b0 [H� � �� j F� ] = �(b� ; b0� ; �) on f� <1gwhere �(x; x0; u) = Eb;b0 [Huj b0 = x; b00 = x0]. Let us �x t > 0 and A 2 S
Sand for n > 0 de�neHns (b; b0) =min �n; �t�s�0t�s	 1V ct�s h1(b(t�s);b0(t�s))2A � 1(b0(t�s);b(t�s))2Ai :Note that on f� < 1g we have Hn� � �� = Hn0 . Moreover, for x = x0 andany u one has �(x; x0; u) = 0. This proves that on f� <1g, Eb;b0 [Hn0 jF� ] =0, while on f� = 1g this fact is trivial. Hence Eb;b0Hn0 = 0, and sinceassumption (2) and the independence of fxtg and f�tg imply that �t�0t isEb;b0-integrable, we obtain (6).In many cases the bound (4) is useless, in particular if S = IRd, d � 3,and fxtg a standard Brownian motion, where Vt occurs almost surely forevery t (given Pb;b0(V0) = 1). However it is sharp in some other situations.For example, it holds with equality in the case S = IR and fxtg a di�usionprocess, provided that Pb;b0(b0 > b00) = 1. In high dimension, one needsto replace the coupling time � by a more general coupling time, at whichtime the joint law of (bt; b0t) is exchangeable. For example, if S = IRd andthe components of b� are independent, one may take as coupling time themaximum of the collision times for each coordinate. In more generality, onemay take as coupling time � any stopping time at which the law of (b� ; b0�) isthe stationary law. For some examples where coupling times are explicitlyconstructed, see Lindvall (1992). 7



3 A Gaussian ExampleIn this section we present a particularly simple example of a �ltering problemwhere computations using Section 2 can be carried out rather explicitly.Let xt denote a stationary Orenstein-Uhlenbeck process, i.e.dxt = �12xtdt+ dwt ; (7)observed linearly in Gaussian white noise of intensity �:dyt = xtdt+ �d�t : (8)Here, wt; �t denote independent standard Brownian motions. We let b; b0denote independent stationary solutions to (7), and use ps to denote thedensity of the standard normal law. We let��t = exp� 1� Z t0 (bs � xs) d�s � 12�2 Z t0 (bs � xs)2ds� ; t � 0;and ��0t = exp� 1� Z t0 �b0s � xs�d�s � 12�2 Z t0 (b0s � xs)2ds� ; t � 0 :It is straightforward to check that now, (5) readslim supt!1 1t log kpt � p0tk � lim supt!1 1t log0B@Eb;b0 � p(b0)p0(b0)ps(b0)ps(b00) ��t��0t1Vt�Eb;b0 � p(b0)p0(b00)ps(b0)p0s(b00) ��t��0t� 1CA : (9)In order not to be burdened by (inessential) technicalities, we make thefollowing:Assumption A There exists a constant C > 0 such thatC�1 � infx2IR p(x)ps(x) � supx2IR p(x)ps(x) � C ; C�1 � infx2IR p0(x)ps(x) � supx2IR p0(x)ps(x) � C :Our goal is to prove the:Theorem 1 Assume p; p0 satisfy assumption A. Then,lim sup�!0 lim supn!1 �n log kpn � p0nk < 0 ; a.s.: (10)In fact, there exist �; � > 0 such that for all t large enough,P (kpt � p0tk > exp(��t=�)) � exp(��t=�) : (11)8



A control of the right hand side of (10) is possible, however since our boundsare not expected to be particularly tight we do not try to make it explicit.Proof of Theorem 1Throughout this proof, we use t to denote the time index, but exceptwhen computing expectations we will always think of t = 0; 1; : : :. Thus, thestatement lim supt!1 at = 0; a.s. ;is taken to say that lim supn!1 an = 0; a.s. We also note that (11) fol-lows readily from our proof of (10) by a Chebyche� inequality. Thus, weconcentrate here on proving the later.Obviously, under assumption A, the right hand side of (9) readslim supt!1 1t log kpt � p0tk � lim supt!1 1t log Eb;b0 ���t��0t1Vt�Eb;b0 ���t��0t� !:= lim supt!1 1t log Bt1Bt2 : (12)For t <1, let (�ti)2 denote the Karhunen-L�oeve eigenvalues and let 'ti(�)denote the associated eigenfunctions. Let faig; fa0ig denote independentsequences of independent standard normal random variables, and let �ti =R t0 'ti(s)xsds, �ti = R t0 'ti(s)d�(s). Then, �ti are independent normal variablesof zero mean and variance 1=(�ti)2, �ti are independent standard normalvariables, and one has the identitiesI t1 := Z t0 (bs � xs)2ds = 1Xi=1 ai�ti � �ti!2 ;I 0t1 := Z t0 (b0s � xs)2ds = 1Xi=1 a0i�ti � �ti!2 ;I t2 := Z t0 (bs � xs)d�s = 1Xi=1 ai�ti � �ti! �ti ;I 0t2 := Z t0 (b0s � xs)d�s = 1Xi=1 a0i�ti � �ti! �ti :Further, one knows that �ti � �i=t. The de�nitions above are used in theproof of the following lemma, which is presented later.9



Lemma 3 For p 2 [1;1),lim sup�!0 lim supt!1 �t logEb(��pt ) = 14 �p3=2 � 3pp� ; a.s.: (13)In particular, lim sup�!0 lim supt!1 �t logBt2 = �1 ; a.s.: (14)The key to the evaluation of a bound on the right hand side of (12) lies inrestricting the domain of integration in Bt1. For K a �xed constant (latertaken as K = 1 + � with � > 0 arbitrary small), de�ne the eventsAt := ffaig : I t1 � K�tg ; A0t := ffa0ig : I 0t1 � K�tg :Then, Bt1Bt2 = Eb;b0(��t��0t1Vt)Eb(��t)2� Eb;b0(��t��0t1At1A0t1Vt)Eb(��t)2 + 2Eb(��t1Act )Eb(��t) := Bt11Bt2 + 2Ct1 : (15)The proof of the following lemma is postponed to the end of this section:Lemma 4 With K as above, and any � > 0,lim sup�!0 lim supt!1 �t logCt1 < 0 ; a.s.: (16)Equipped with Lemmas 3 and 4, our next task is to achieve a control onBt11, which is contained in the following.Bt11 := Eb;b0(��t��0t1At1A0t1Vt) � E2=pb (��pt )E1=qb;b0 (1At1A0t1Vt) : (17)In view of (12), (15) and Lemma 4, Lemma 3), (17) and the following largedeviations computation complete the proof of Theorem 1:Lemma 5lim sup�!0 lim supt!1 �t logEb;b0(1At1A0t1Vt) � �K�1  3 +p34 !2 ; a.s.10



Indeed, taking p = 1 + � with � small enough and � > 0 small enough oneobtains thatlim sup�!0 lim supt!1 �t log Bt11Bt2 ! � �0@1�  3 +p34 !2 + g�1A + o(�) < 0 ; a.s.;where g� !�!0 0. The proof of Lemma 5 is presented below.Proof of Lemma 5: It is enough to show thatlim supn!1 �n logE �Eb;b0(1An1A0n1Vn)� � �K�1  3 +p34 !2 + g(�) ; (18)where g(�)!�!0 0. Indeed, assume (18). Then, for any 0 < � < 1,P 0@Eb;b0(1An1A0n1Vn) > exp0@��n� 0@K�1  3 +p34 !2 + g(�)1A1A1A� exp0@�(1� �)n� 0@K�1 3 +p34 !2 + g(�) + �g(n)1A1A ;where �g(n)!n!1 0, implying by the Borel-Cantelli lemma thatlim sup�!0 lim supn!1 �n logEb;b0(1An1A0n1Vn) � �K�1  3 +p34 !2 ; a.s.The conclusion of the lemma follows by noting that, from monotonicity,�t logEb;b0(1At1A0t1Vt) � �dte logEb;b0(1Abtc1A0btc1Vbtc) :Turning to the proof of the key estimate (18), the following transformationreduces the three-dimensional problem into two-dimensional one:0@ b:�x:p2b0:�x:p2 1A =  p3u:2 + v:2p3u:2 � v:2 ! ; (19)where u:; v: are two independent Orenstein-Uhlenbeck processes satisfyingthe SDE (7). Rewrite now (18) in terms of u:; v: to obtain thatlim supn!1 �n logE �Eb;b0(1An1A0n1Vn)�11



� lim supn!1 �n logP�1t Z t0 (p3us � vs)2ds � 2K�;1t Z t0 (p3us + vs)2ds � 2K�; 1t Z t0 1vs<0ds = 0�� � inf n18 ZZ f2x + f2yf (x; y)m(dx; dy) :f � 0; ZZ f(x; y)m(dx; dy) = 1;ZZ (p3x+ y)2f(x; y)m(dx; dy)� 2K�;ZZ (p3x� y)2f(x; y)m(dx; dy)� 2K�;f(x; y) = f(x; y)1y�0o ; (20)where m(dx; dy) = exp(�(x2 + y2)=2)dxdy=2�, fx; fy denote the partialderivatives of f(x; y) w.r.t. x; y, respectively, and the last inequality in (20)is a consequence of the Donsker-Varadhan theorem for occupation measures,c.f. Deuschel and Stroock (1989) pg. 241 for this version. The conclusionnow follows by solving the calculus of variations problem (20), as outlinedbelow.The cost function in the constrained problem isJ(f) = ZZ  18 f2x + f2yf + r(x; y)f!m(dx; dy)where r(x; y) = �1(p3x+ y)2 + �2(p3x� y)2 + �:The Euler-Lagrange equation then has the form18kr log fk2 + 14(� log f � x(log f)0x � y(log f)0y) = r(x; y)f:The solution to the above, which is supported on fy � 0g and satis�esZZ f(x; y)m(dx; dy) = 1; ZZ (p3x� y)2f(x; y)m(dx; dy) = 2K�is given by f(x; y) = c1y2e�(
x2+y2)=2�21y�012



where c1 is a normalization constant, 
 = ��2 +p�4 + 3(1 + 2�2) and forsmall values of �, �2 = 2K�3 +p3 + o(�):Substituting into the rate function one obtains18 ZZ f2x + f2yf (x; y)m(dx; dy) =  3 +p34 !2 (K�)�1 + o(��1)and (18) follows.Proof of Lemma 3 Write��pt = exp p� 1Xi=1(ai�ti � �ti)�ti � p2�2 1Xi=1(ai�ti � �ti)2! :Noting that the exponent is nothing but a quadratic form in the randomvariables ai, taking the expectation reveals thatEb��pt = 1Yi=1 1q1 + p(��ti)�2 exp 1Xi=1 p(�ti )2 � 2�ti�ti�(�ti)2 � (�ti�ti)22(�2�2i =p+ 1) ! :An analysis of the �rst term reveals thatlog 1Yi=1 1q1 + p(��ti)�2 � �12 1Xi=1 log(1 + pt2=�2�2i2)� � tpp R10 log(1 + x�2)dx2�� + o(t)) = � tpp2� :while for the second term one notes thatEt := 1Xi=1 p(�ti)2 � 2�ti�ti�(�ti)2 � (�ti�ti)22(�2�2i =p+ 1)is a sum of independent, random variables, whose variance is of order t, andlimt!1E(Et)=t = (p� 1)pp R10 (1 + x2)�1dx2�� = (p� 1)pp4� :Hence, Et=t! (p�1)pp=4�, in probability, and a.s. on the sequence tn = nbecause E(Et �E(Et))4 = O(t2) (for �xed �).13



Proof of Lemma 4 The key to the proof is Chebyche�'s inequality: Fix� > 0, then Eb(��t1Act ) � e��Kt2� Eb(��t exp(�I t1=2�2)) :One now repeats the analysis of Lemma 3 to conclude thatlim supt!1 2�t logEb(��t1Act ) � ��K � p1� � R10 log(1 + x�2)dx�+ �p1� �� Z 10 (1 + x2)�1dx= ��K �p1� � + �2p1� � :Optimization over � � 0 and an application of Lemma 3 with p = 1 yieldthe result, as soon as K > 1.4 A non-Gaussian ExampleConsider next the stochastic process xt solution of the SDEdxt = c(xt)dt+ dwt ; (21)and let yt be as in (8). De�ne F (x) = R x0 (c(�)+�=2)d�. To avoid unessentialtechnical di�culties, we use the following assumption:Assumption B The functions jF (x)j, jc0(x)j and jc2(x)�x2=2j are boundedby a global constant C.We now have theCorollary 1 Assume assumptions A and B. Then,lim sup�!0 lim supn!1 �n log kpn � p0nk < 0 ; a.s.: (22)Proof: Using assumptions A and B, one knows that the solution to (21)is absolutely continuous w.r.t. to the Orenstein-Uhlenbeck b:, with Radon-Nikodym derivative equal top(b0)ps(b0) exp�Z t0 (c(bs) + bs=2)dbs� 12 Z t0 (c2(bs)� (bs=2)2)ds�� Ce2C exp 2Ct ; (23)14



where the inequality above uses Ito's formula:F (bt) = F (b0) + Z t0 (c(bs) + bs=2)dbs + 12 Z t0 (c0(bs) + 1=2)ds :Hence, exactly as in the argument leading to (9),kpt � p0tk � C3e4Ce4CtEb;b0(��t��0t1Vt)(Eb��t)2 ; (24)with the di�erence from the Gaussian case lying in the fact that in the R.H.S.of (24), the random variables �ti are neither independent nor Gaussian oruncorrelated. However, due to the proof of (11), there exist �; � > 0 suchthat PG  Eb;b0(��t��0t1Vt)(Eb��t)2 > exp(��t=�)! � exp(��t=�) ; (25)where PG denotes the measure under which �ti are normal independent ofvariance (�ti)2. Applying now again a change of measure as in (23), we seethat for t large enough,P  Eb;b0(��t��0t1Vt)(Eb��t)2 > exp(��t=�)!� e3CtPG  Eb;b0(��t��0t1Vt)(Eb��t)2 > exp(��t=�)! ;and the conclusion follows from (25).Remark Obviously, assumption B is far from optimal, and one may re-lax it by using appropriate H�older inequalities. However, even at best, thetechnique of this section is quite limited and does not seem to allow one togo beyond the case of linear observation functions h(�) or, more generally,beyond the case of non-constant di�usion coe�cients in the state process.What is needed in order to better employ the bound (5) is a direct way ofcontrolling E(��pt) which does not involve the Karhunen-L�oeve expansion.Rather, a conditional large deviation principle for the joint occupation mea-sure of (b; b0; x; �) is needed. This will be reported elsewehere.Acknowledgments The work of R. Atar was supported in part by theO�ce of Naval Research (ONR-N00014-96-1-0276). The work of O. Zeitouniwas partially supported by a grant from the basic research fund administeredby the Israeli Academy of Sciences. 15
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