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Parameter Estimation for a partially observed Ornstein-Uhlenbeck process
with long-memory noise
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Abstract: We consider the parameter estimation problem for the Ornstein-Uhlenbeck pro-
cess X driven by a fractional Ornstein-Uhlenbeck process V , i.e. the pair of processes defined
by the non-Markovian continuous-time long-memory dynamics dXt = −θXtdt + dVt; t > 0,
with dVt = −ρVtdt + dBH

t ; t > 0, where θ > 0 and ρ > 0 are unknown parameters, and
BH is a fractional Brownian motion of Hurst index H ∈ (12 , 1). We study the strong con-

sistency as well as the asymptotic normality of the joint least squares estimator
(
θ̂T , ρ̂T

)

of the pair (θ, ρ), based either on continuous or discrete observations of {Xs; s ∈ [0, T ]} as
the horizon T increases to +∞. Both cases qualify formally as partial-observation questions
since V is unobserved. In the latter case, several discretization options are considered. Our
proofs of asymptotic normality based on discrete data, rely on increasingly strict restrictions
on the sampling frequency as one reduces the extent of sources of observation. The strategy
for proving the asymptotic properties is to study the case of continuous-time observations
using the Malliavin calculus, and then to exploit the fact that each discrete-data estimator
can be considered as a perturbation of the continuous one in a mathematically precise way,
despite the fact that the implementation of the discrete-time estimators is distant from the
continuous estimator. In this sense, we contend that the continuous-time estimator cannot
be implemented in practice in any naïve way, and serves only as a mathematical tool in the
study of the discrete-time estimators’ asymptotics.

Key words: Least squares estimator; fractional Ornstein Uhlenbeck process; Multiple inte-
gral; Malliavin calculus; Central limit theorem.
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1 Introduction

1.1 Context and background

The question of drift parameter estimation for solutions of stochastic differential equations
driven by fractional Brownian noise goes back at least as far as the seminar work of Kleptsyna
and Le Breton in [17] (also see prior references therein), where a maximum likelihood estimator
(MLE) was proposed. This work was a first genuine attempt to show how to compute the
MLE in practice in the regular case (self-similarity ‘Hurst’ parameter H > 1/2), by relying on
continuous-time observation of a single path over a finite time interval, with strong consistency
and asymptotic normality as the horizon increases to infinity. This work was itself motivated
by – and is an extension of – now classical ideas of how to use the Girsanov theorem to compute
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the MLE in the case of white noise, as presented in the 1978 treatise [19]. The continuous-
time data was also invoked in [17] to justify that any diffusion-type parameter (any constant
multiplicative term in front of the equation’s driving noise) would then be directly observable.
That observation remains generally true in many contexts for continuous-time data, including
when the noise is fractional Brownian. It explains why so many authors since [17] have
continued to study the estimation of drift parameters for fractional-noise-driven problems.
We have listed some of these works below. Our paper inscribes itself in this line of work, and
can be viewed as a study of partial observation questions, as we will explain shortly.

Generally speaking, this effort to understand drift estimation for ergodic diffusions, even
Gaussian ones, is of fundamental importance for any quantitative study where mean-reverting
quantities are believed to be asymptotically stationary, and are either observed with noise or
are intrinsically stochastic. The best known class of examples, which also encapsulates the
question of whether or not the stochastic process of interest is observed directly or indirectly,
is that of stochastic volatility in quantitative finance. Some of the original ideas on how to
estimate this volatility’s drift parameters is given in the 2000 research monograph [12]. Similar
models with fractional noise were introduced in the late 1990’s, as in [10] for continuous time,
but to our knowledge, their statistical estimation was left unexplored for more than ten years.
The broadest question, applicable in finance and other fields, is to estimate jointly the drift,
diffusion, and memory parameters for fractional-noise-driven equations; it is typically non-
trivial, and with the exception of one study in [4], largely unresolved by bona fide statistical
means for non-self-similar discretely observed continuous-time processes. We will not address
this issue here. In the case of partially observed data, we refer the interested reader to a study
in the context of high-frequency financial data, where a sequential Bayesian methodology is
combined with classical estimation techniques and a calibration method to find H: see [9].
We also mention a method described in [27] for a similar model with partial observation,
where it is shown that the minimax-sense optimal estimator has a very slow convergence rate,
and relies on high-frequency data; it can be argued that when applied to bona fide financial
data, this estimator cannot be implemented without leaving the realm where continuous-time
semi-martingale models with long-memory volatility are appropriate.

The present paper looks specifically at a difficulty which arises when one single path is
used to estimate more than one real drift-type parameter. Questions of identifiability can arise
in this context (see for example the treatment of the Generalized Method of Moments (GMM)
as described in [21]). Once such a question has been resolved, the main practical obstacle to
implementation is typically that of discretizing the data given by the path, i.e. using only
observations in discrete time. For the sake of conciseness, we look at a specific situation
where identifiability is resolved explicitly and in a natural way, within the task of deriving the
continuous-time and discrete-time estimators, without having to rely on abstract conditions
which would provide a priori identifiability of the vector of parameters. Our objective is to
describe conditions under which strongly consistent and asymptotically normal estimation
can be established quantitatively, based on discretely-observed data alone. Since access to
and analysis of continuous-time data is not typically a realistic assumption, we will view any
estimators based on continuous-time data as tools in the task of deriving strong consistency
and asymptotic normality for the discrete-time estimators. Our strategy is to attempt to
discretize the former, which includes a need to approximate Riemann and stochastic integrals.
In the process, we discover some fundamental differences between the discrete and continuous
time estimators. In particular, we find that while least squares (LS) estimation appears to
be the best tool based on continuous-time observation of a path, when converted to discrete
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time data, the estimator’s interpretation as a LS optimizer is lost, and a GMM interpretation
seems more appropriate. This introduction, including our summary of results in Section 1.2,
contains specific details supporting these ideas.

We are largely motivated by the paper [6], which studies the drift-estimation problem
for the Ornstein-Uhlenbeck process driven itself by another, unobserved Ornstein-Uhlenbeck
process (OU-OU). Their work only deals with an underlying white noise. Specifically, let W
be a standard Brownian motion and let θ and ρ be positive real parameters. The OU-OU
process is the solution of the following system

{
X0 = 0; dXt = −θXtdt+ dVt, t > 0;
V0 = 0; dVt = −ρVtdt+ dWt, t > 0.

(1)

Here one may consider that X is observed, while V is not, or conversely, or that both processes
are observed; which interpretation is used makes a crucial difference, as we will see.

Since the quadratic variation of V is t, the classical Girsanov theorem implies that a natural
candidate to estimate θ is the MLE (recall that this idea was already contained in [19]), which
can be easily computed for this model: one gets

θ̂T =
−
∫ T
0 XtδXt∫ T
0 X2

t dt
(2)

=
−X2

T + T

2
∫ T
0 X2

t dt
, (3)

In (2), the integral with respect to X must be understood in the Itô sense. Consequently,
line (3) follows from Itô’s formula, and the fact that X too has quadratic variation equal to t.
One also notes that this estimator’s construction is in fact non-dependent on the form of the
bounded-variation part in the definition of V , which can be interpreted as a form of robustness
of θ̂T with respect to model misspecification, although we are about to see that the behavior
of θ̂T depends heavily on V ’s drift specification.

On the other hand, it is worth noticing that θ̂T coincides formally with a least squares
estimator (LSE). Indeed, by interpreting

∫ T
0 XtẊtdt as the Itô integral in (2), θ̂T formally

minimizes

θ −→
∫ T

0

∣∣∣Ẋt + θXt

∣∣∣
2
dt.

By reversing the roles of V and X, one can obtain an estimator for ρ similar to (3). However,
if V is unobserved, one may recast that estimator by using the estimated value of Vt based on
θ̂T and the observed path of X, based on (1). In other words, one defines

ρ̂T =
−V̂ 2

T + T

2
∫ T
0 V̂ 2

t dt

where V̂t = Xt + θ̂T
∫ t
0 Xtdt for every t 6 T . As it turns out, this joint estimator

(
θ̂T , ρ̂T

)
,

based on continuous observations of X alone, does not converge to (θ, ρ), but rather to an
explicit rational function of the pair of unknown parameters (θ, ρ). This was proposed and
proved in [6], wherein a semimartingale approach was used to study the asymptotic behavior.
Specifically they showed
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• strong consistency : as T −→ +∞, almost surely,

θ̂T −→ θ + ρ (4)

ρ̂T −→ θρ(θ + ρ)

(θ + ρ)2 + θρ
(5)

• asymtpotic normality : as T −→ +∞,

√
T

(
θ̂T − (θ + ρ), ρ̂T − θρ(θ + ρ)

(θ + ρ)2 + θρ

)
law−→ N(0,Γ)

where Γ is a covariance matrix which has a explicit form as a function of θ and ρ. While
intuition gathered from the full-observation case is in fact erroneous when V is unobserved

(the naïve candidates for θ̂T and ρ̂T lead to modified limits rather than
(
θ̂T , ρ̂T

)
−→ (θ, ρ) ),

nevertheless we have the full picture for the asymptotic behavior of the MLEs/LSEs associated
with (1), at the minor cost of having to solve a non-linear system of two equations to obtain
consistent estimates of (θ, ρ).

In the present paper, our goal is to investigate what happens when, in (1), the standard
Brownian motion W is replaced by a fractional Brownian motion BH . Thus we assume from
now on that X is an Ornstein-Uhlenbeck process driven by a fractional Ornstein-Uhlenbeck
process V : this means the pair (X,V ) is the unique solution of the system of linear stochastic
differential equations

{
X0 = 0; dXt = −θXtdt+ dVt, t > 0
V0 = 0; dVt = −ρVtdt+ dBH

t , t > 0,
(6)

where BH =
{
BH

t , t > 0
}

is a fractional Brownian motion (fBm) with Hurst index H ∈ (12 , 1),
and where θ > 0 and ρ > 0 are unknown parameters. Though X is defined for all H in (0, 1),
to keep technical difficulties to a reasonable level, we restrict ourselves to the case H ∈ (1/2, 1).
It turns out that we need the condition θ 6= ρ for identifiability; remarkably, this is not needed
when H = 1/2, as we saw in the system (4), (5). Details of our results are summarized in
Section 1.2.

We now provide some references to estimation with fBm noise, which are further moti-
vations for our work. We mentioned that the single-drift parameter estimation problem for
fractional diffusion processes based on continuous-time observations was originally studied in
[17] via maximum likelihood; more recent work on this question includes, e.g., [28, 26]. Re-
cently, the LSE for the fractional Ornstein-Uhlenbeck (fOU) process, i.e. the process V in
(6) was proposed in [14]: assuming V is fully observed in continuous time, the LSE for ρ is
defined by

ρT := −
∫ T
0 VtδVt∫ T
0 V 2

t dt
,

where the integral
∫ T
0 VtδVt is interpreted in the sense of Skorokhod. This integral is the

extension to fBm of Itô’s integral for Brownian motion. In the case ρ > 0, [14] proved that ρT
is strongly consistent and asymptotically normal as T → ∞. Unlike in the case of Brownian
motion (H = 1/2) discussed above, ρT does not coincide with the MLE given in [17], because
the Girsanov theorem for fBm takes a different form than in the case H = 1/2. Given the
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notorious fact that Skorohod integrals are difficult to interpret in practical terms for fBm, the
authors of [14] proposed in addition the following alternate estimator, which is arguably a
method of moments : (

1

HΓ(2H)T

∫ T

0
V 2
t dt

)− 1
2H

; (7)

they proved it is strongly consistent and asymptotically normal. In the case ρ < 0, [5]
established that ρT of ρ is strongly consistent and asymptotically Cauchy-distributed.

The alternate choice of estimator (7) does not, however, avoid the use of continuous obser-
vations over discrete ones; this is a problem with many works on fBm-driven models, and is an
additional motivation for us to study the asymptotics of estimation for fBm-driven processes
based on discrete observations. There exists a rich literature on this practical problem for
ordinary diffusions driven by Brownian motions; we refer for instance to [26]. A handful of
authors are beginning to look at these questions with various fBm-driven models, starting with
[28] in 2007, and more recently [3, 7, 11, 20]. In particular, for the fOU process V , motivated
by the estimator given in (7), [15] studied its natural Riemann-sum-type time discretization

(
1

nHΓ(2H)

n∑

i=1

X2
i

)− 1
2H

(8)

providing strongly consistency and Berry-Esséen-type theorems for it. While we have no
doubt that this estimator is indeed strongly consistent and asymptotically normal, the proofs
in [15] rely on a possibly flawed technique, since the passage from line -7 to -6 on page 434
therein requires the condition H > 3/4, while one expects normal asymptotics only for the
case H 6 3/4.

In our paper, we focus our discussion on estimators which are derived from a basic LSE,
since that technique is known, at least in the Brownian case described in [6], to allow for a
straightforward bivariate extension, as mentioned previously. The LSE has also given rise to a
number of successful studies in the univariate case with fractional processes: we have already
cited [3, 7, 11, 20], while [2] is the continuous-time version of [3].

Herein, specifically, we begin our study of LSE for (θ, ρ) in (6) by using the formal least-

squares interpretation mentioned above, i.e. looking for the minimizer of θ −→
∫ T
0

∣∣∣Ẋt + θXt

∣∣∣
2
dt;

this leads formally to the following estimator for θ

θ̂T = −
∫ T
0 XtδXt∫ T
0 X2

t dt
(9)

and to the similar estimator

ρ̂T = −
∫ T
0 V̂tδV̂t∫ T
0 V̂ 2

t dt
(10)

for ρ, where, because of the fact that V is unobserved, one uses V̂t = Xt+ θ̂T
∫ t
0 Xtdt for every

t 6 T , instead of relying on the unobserved Vt in the construction of ρ̂T . These estimators
θ̂T , ρ̂T are no longer the MLEs, since, as we mentioned, the Girsanov theorem for fBm does not
have the same form as for Brownian motion, but they are still formally LSEs. Nevertheless,
there is a major difference with respect to the Brownian motion case. Indeed, since the process
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X is no longer a semimartingale, in (9) and (10) one cannot interpret the numerators using the
Itô integral; the Skorohod integral turns out to be the correct notion to use here. We mentioned
above that Skorohod integrals are difficult to use in practice, but since our Hurst parameter H
exceeds 1/2, it is possible to reinterpret the Skorohod integrals as so-called Young integrals, a
pathwise notion, modulo a correction term which we will be able to compute explicitly thanks
to the Malliavin calculus.

Having succeeded in correctly interpreting the stochastic integrals in (9) and (10), the issue
of how to discretize them becomes paramount to practical implementation, and herein we will
propose several different options, some of which allow for strong consistency and asymptotic
normality under broader conditions than others.

Our discrete-observation study also applies to the case H = 1/2 as a limiting case. The
article [6] treats this case solely with continuous observations; our work thus covers an exten-
sion of their work to discrete observations. Checking the validity of this statement rigorously
is straightforward; for the sake of conciseness, we leave it to the interested reader.

1.2 Summary of results and heuristics

We now summarize our results, the structure of our article, and our main proof elements,
including useful heuristics when available.

• In Section 2 and in the Appendix we introduce the needed mathematical background
material for our study, including elements of the Malliavin calculus, a convenient criterion
for establishing normal convergence on Wiener chaos, and the relation between Skorohod
integrals and Young integrals with respect to fBm when H > 1/2.

• In Section 3, we concentrate on proving strong consistency and asymptotic normality
for the estimators θ̂T and ρ̂T with continuous observations.

– We first prove the following almost surely convergences:

θ̂T → θ∗ := ρ+ θ, (11)

ρ̂T → ρ∗ :=
ρθ (θ + ρ)

ρ2−2H−θ2−2H

θ−2H−ρ−2H + (θ + ρ)2
. (12)

The proof relies on studying the numerator and the denominator of the expres-
sions for θ̂T and ρ̂T separately. For the denominators, we rely on Birkhoff’s ergodic
theorem, and elementary covariance estimations for exponential convolutions with
fBm. For the numerators, we express the Skorohod integrals as Young integrals
plus their correction terms involving Malliavin derivatives which are explicit deter-
ministic functions since our processes are Gaussian.

– The expression θ∗ = ρ+ θ in (11) is easy to explain: as noted below in line (16), X
satisfies a stochastic integro-differential equation in which the zero-mean-reversion
term − (ρ+ θ)X (t) dt appears, and thus a natural candidate for a consistent esti-
mator of ρ + θ is the LSE θ̂, whether one adds merely one mean-zero noise term

dBH or another term
(∫ t

0 Xsds
)

which is asymptotically small. This is why the

limiting behavoir of θ̂ remains the same for us as in (4), which is the Brownian
case (H = 1/2) studied in [6]. The details of this heuristic are omitted, since the
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full proof we present herein is needed to be convincing. On the other hand, the
expression in (12) for our ρ∗ is more opaque; there does not seem to be a direct
heuristic to explain it, beyond our computations. When one compares our ρ∗ in
(12) with the ρ∗ in (5) found in [6], one sees that the term ρθ in (5) is replaced by
the expression

(
ρ2−2H − θ2−2H

)
/
(
θ−2H − ρ−2H

)
, which can help identify how the

case of fBm deviates from the case H = 1/2.4 The expression for ρ∗ is analyzed

further in the context of discretizing
(
θ̂, ρ̂
)
, which helps explain to some extent why

this complicated expression arises, as the reader will find out in the first paragraph
of Section 4.2.

– We prove asymptotic normality of
(
θ̂T , ρ̂T

)
by expressing the Skorohod integrals as

iterated Wiener integrals, identifying dominant portions of these integrals, relying
on a criterion for normal convergence in law in Wiener chaos, combined with a
number of almost sure convergences. Our main asymptotics normality result is a

central limit theorem that holds for
√
T
(
θ̂T − θ∗, ρ̂T − ρ∗

)
as T → ∞, as soon as

H ∈ [1/2, 3/4). The asymptotic covariance is given explicitly. See Theorem 8. The
upper limit of validity of this theorem is a typical threshold in normal convergence
theorems in the second Wiener chaos. See for example a classical instance of this
situation in the Breuer-Major central limit theorem, as presented in [22, Chapter
7]. For H > 3/4, we conjecture that the estimators are asymptotically Rosenblatt-
distributed (again see [22, Chapter 7] for a classical example of such a phenomenon),
and that the convergence occurs almost surely; this point is not discussed further,
for the sake of conciseness.

• The topic of Section 4 is to construct estimators based solely on discrete observations.
The asymptotic results we prove still require increasing horizon. We also assume that X
is observed at evenly spaced intervals, with a time step ∆n, and we set the time horizon
to be Tn = n∆n → ∞ as n → ∞. Let tk = k∆n be the kth observation time. For
instance, the case ∆n = 1 corresponds to a fixed observation frequency; other conditions
on ∆n will include requiring ∆n to tend to 0 as fast as a certain negative power of
n, i.e. the observation frequency increases as the horizon increases. For some strong
consistency results, it will even be possible for us to relax conditions on ∆n where it
is allowed to tend to infinity like a power of n, i.e. with decreasing frequency as the
horizon increases.

Arguably, to be consistent with the assumption that only X is observed, the only estima-
tors which are of practical use are those which rely solely on the values {Xtk : k = 1, . . . , n}.
Designing such an estimator by discretizing

(
θ̂T , ρ̂T

)
turns out to be a difficult task, in

which the final expression solves a non-linear system in the spirit of that which would
follow from (11) and (12), but is rather distinct from this system because of the difficulty
in how to interpret the discretizations of the Skorohod or Young integrals.

The method we have chosen moves through several intermediate steps, where we grad-
ually increase the number of terms in the estimators which are replaced by discretized
versions. This method has the advantage of clearly showing where the restrictions on the

4As a way to compare these terms, which do coincide when H = 1/2, we can see that if ρ tends to θ,
the aforementioned expression in (5) tends to θ2 (1−H) /H , which thus deviates significantly from the case
H = 1/2 quantitatively, particularly for H close to 1.
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observation frequency ∆n come into play. Each intermediate estimator can be consid-
ered as a perturbation of the previous one, starting with the continuous-time estimator
of Section 3. Thus arguably all these estimators can be considered as tools used for
the final objective, attained in Section 4.3, of constructing a strongly consistent and
asymptotically normal estimator of (θ, ρ) based only on the data {Xtk : k = 1, . . . , n}.
Nonetheless, some of the other estimators are relevant in their own right, as they might
correspond to realistic partial or full observation cases.

– The main technical estimates which allow our discretization are given at the be-
ginning of Section 4. These are Lemmas 10 and 11, based on applications of the
Borel-Cantelli lemma. For Z any stochastic process, we let

Qn (Z) := n−1
n∑

k=1

(Ztk)
2 .

Let St :=
∫ t
0 X

2
s ds and Σt :=

∫ t
0 Xsds. We show that the discrepancy between

STn/Tn and its discrete version Qn (X) is = o
(
1/
√
Tn
)

almost surely. We then
compute three different discrepancies related to Σ: first we show that the difference
between T−1

n

∫ Tn

0 Σ2
tdt and its discrete version Qn (Σ) is also = o

(
1/
√
Tn
)

almost

surely. Then we show that with Σ̂ the version of Σ which depends only on X

observations, i.e. Σ̂tk := ∆n
∑k

i=1X
2
ti−1

, we get that Qn

(
Σ̂
)
− Qn (Σ) tend to 0

almost surely. This is helpful to prove strong consistency of discrete estimators. To

prove asymptotic normality, we need that Qn

(
Σ̂
)
− Qn (Σ) = o

(
1/
√
Tn
)
, which

we prove holds almost surely. Increasingly restrictive conditions on ∆n are needed
for these successive results.

– We first concentrate on discretizing the denominators of
(
θ̂Tn , ρ̂Tn

)
.

∗ We replace the denominator of θ̂Tn by Qn (X), yielding an estimator θ̃n, and
we then replace the denominator of ρ̂T by Qn (X) + (θ̃n)

2Qn (Σ), yielding an

estimator ρ̃n, because, as it turns out,
∫ T
0 V̂ 2

t dt is asymptotically equivalent,

almost surely, to Qn (X) + (θ̃n)
2Qn (Σ). Thanks to this, to the almost sure

equivalence ofQn (X) with STn/Tn, and similarly forQn (Σ), coming from Lem-

mas 10 and 11, the strong consistency and asymptotic normality of
(
θ̃n, ρ̃n

)

follows from that of
(
θ̂Tn , ρ̂Tn

)
proved in Section 3. Here it is sufficient to

assume H ∈ (1/2, 1) and ∆n 6 nα for some α ∈ (−∞, 1/H) for the strong
consistency; note that ∆n is allowed to remain constant or even increase like a
moderate power in this case. For the asymptotic normality, it is sufficient that
H ∈ (1/2, 3/4) and n∆H+1

n → 0.

∗ A second result is obtained in which we forego having access to the process Σ
itself, relying instead on its discrete version Σ̂tk = ∆n

∑k
i=1X

2
ti−1

; in this case,

almost-sure converge of ρ̃n requires nα+1∆H+1
n → 0 for some α > 0, and the

central-limit result for ρ̃n requires n3∆2H+3
n → 0.

– We are then able to define and study a bonafide estimator based on discrete data
alone.
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∗ We begin with assuming that we have access to both Xtk and Σtk for all
k = 1, . . . , n. The stochastic integrals in θ̃n and ρ̃n were analyzed in Section 3,
and were found, under scaling by T−1

n , to be asymptotically constant, where
the explicit constants depend on the parameters. By using these limits and a
discretization of the Riemann integrals in the denominators of θ̃n and ρ̃n, this
allows us, at the beginning of Section 4.2, to motivate the definition of a pair
of estimators

(
θ̌n, ρ̌n

)
as solution of the non-linear system

F
(
θ̌n, ρ̌n

)
= (Qn(X), Qn(Σ))

where F is a positive function of the variables (x, y) in (0,+∞)2 defined by:
for every (x, y) ∈ (0,+∞)2

F (x, y) = HΓ(2H)×
{ 1

y2−x2

(
y2−2H − x2−2H , x−2H − y−2H

)
if x 6= y(

(1−H)x−2H ,Hx−2H−2
)

if y = x,

and the data statistics used in the system are Qn (X) and Qn (Σ). Strong
consistency and asymptotic normality follow for the uniquely defined

(
θ̌n, ρ̌n

)
.

The delicate computation of the asymptotic covariance is given. The parameter

restrictions remain the same as for
(
θ̃n, ρ̃n

)
, namely strong consistency if H ∈

(1/2, 1) and ∆n 6 nα for some α ∈ (−∞, 1/H), and asymptotic normality if
H ∈ (1/2, 3/4) and n∆H+1

n → 0.

∗ By redefining the estimators
(
θ̌n, ρ̌n

)
using Σ̂ instead of Σ, one ensures that

only the data {Xtk : k = 1, . . . , n} is used. Here, the results from the previ-
ous case can be applied directly with the auxiliary results on how Σ̂ perturbs
Σ (Lemma 11), to obtain the same almost-sure convergence and central-limit
result, but these are now restricted respectively to the aforementioned ob-
servation frequency parameter ranges nα+1∆H+1

n → 0 for some α > 0, and
n3∆2H+3

n → 0.

– Finally, to illustrate how the complexity of the nonlinearities in the definition of(
θ̌n, ρ̌n

)
may be attributable to the partial-observation problem, we define a pair

of estimators
(
θn, ρn

)
under the assumption that both {Xtk : k = 1, . . . , n} and

{Vtk : k = 1, . . . , n} are available. The ρ
n

is explicit given {Vtk : k = 1, . . . , n}, and
is identical to the one given in [15], i.e. (8), as it should be. The θn satisfies the
following straightforward non-linear equation given ρ

n
and {Xtk : k = 1, . . . , n}:

(θn)
2−2H −

(
Qn(X)

HΓ(2H)

)
(θn)

2 =
(
ρ
n

)2−2H
−
(
Qn(X)

HΓ(2H)

)(
ρ
n

)2
.

The parameter restrictions are the same as when X and Σ are discretely observed:

strong consistency holds for
(
θn, ρn

)
if H ∈ (1/2, 1) and ∆n 6 nα for some α ∈

(−∞, 1/H), and asymptotic normality holds if H ∈ (1/2, 3/4) and n∆H+1
n → 0.

Before we proceed with the details of our study, we provide needed mathematical tools in
Section 2.
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2 Preliminaries

In this section we describe some basic facts on the stochastic calculus with respect to a
fractional Brownian motion. For a more complete presentation on the subject, see [23] and
[1].
The fractional Brownian motion (BH

t , t > 0) with Hurst parameter H ∈ (0, 1), is defined as a
centered Gaussian process starting from zero with covariance

RH(t, s) = E(BH
t B

H
s ) =

1

2

(
t2H + s2H − |t− s|2H

)
; s, t > 0,

We assume that BH is defined on a complete probability space (Ω,F , P ) such that F is the

sigma-field generated by BH . By Kolmogorov’s continuity criterion and the fact E
(
BH

t −BH
s

)2
=

|s− t|2H , we deduce that BH admits a version which has Hölder continuous paths of any order
γ < H.

Fix a time interval [0, T ]. We denote by H the canonical Hilbert space associated to the
fractional Brownian motion BH ; the book [23], among many other references, can be consulted
for the construction and properties of H. We use the following convenient notation for Wiener
integrals with respect to BH :

BH (ϕ) :=

∫ T

0
ϕ (s) dBH .

Of interest to us is the fact that, with H > 1/2, for a pair of (non-random) functional elements
ϕ,ψ of H, its inner product satisfies

〈ϕ,ψ〉H = E
(
BH (ϕ)BH (ψ)

)
= H(2H − 1)

∫ T

0

∫ T

0
ϕ(u)ψ(v)|u − v|2H−2dudv.

It follows from [25] that the set |H| of functional elements in H is Banach and actually contains

L
1
H ([0, T ]).

The Malliavin derivative D w.r.t. BH , which is an H-values operator, is defined first by
setting that

DBH (ϕ) = ϕ

for any ϕ ∈ H, and then by requiring that it satisfy a multi-parameter chain rule: for any f ∈
C∞
b ( Rn, R) (infinitely differentiable functions from R

n to R with bounded partial derivatives)
and any ϕ1, ..., ϕn ∈ H, D operates on the cylinder r.v. F := f(BH(ϕ1), ..., B

H(ϕn)) as

DF =
n∑

i=1

∂f

∂xi
(BH(ϕ1), ..., B

H(ϕn))ϕi.

The domain D1,2 of D is then the the closure of the set of cylinder r.v.’s F with respect to
the norm

‖F‖21,2 := E(F 2) + E(‖DF‖2H).

The divergence operator δ is the adjoint of the derivative operator D : an H-valued r.v.
u ∈ L2(Ω;H) belongs to its domain Domδ if

E |〈DF, u〉H| 6 cu‖F‖L2(Ω)
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for some constant cu and every cylinder r.v. F . In this case δ(u) is uniquely defined by the
duality

E(Fδ(u)) = E 〈DF, u〉H
for any F ∈ D1,2. We will make use of the notation

δ(u) =

∫ T

0
usδB

H
s , u ∈ Domδ.

In particular, δ extends the Wiener integral: for h ∈ |H|, BH(h) = δ(h) =
∫ T
0 hsδB

H
s .

For every n > 1, let Hn be the nth Wiener chaos of BH , that is, the closed linear subspace
of L2(Ω) generated by the random variables {Hn(B

H(h)), h ∈ H, ‖h‖H = 1} where Hn is the
nth Hermite polynomial. The mapping In(h

⊗n) = n!Hn(B
H(h)) provides a linear isometry

between the symmetric tensor product H⊙n (equipped with the modified norm ‖.‖H⊙n =
1√
n!
‖.‖H⊗n) and Hn. It also turns out that In(h

⊗n) is the multiple Wiener integral of h⊗n

w.r.t. BH . For every f, g ∈ H⊙n the following product formula holds

E (In(f)In(g)) = n!〈f, g〉H⊗n .

For h ∈ H⊗n, the multiple Wiener integrals Iq(f), which exhaust the set Hq, satisfy a hyper-
contractivity property (equivalence in Hq of all Lp norms for all p > 2), which implies that
for any F ∈ ⊕q

l=1Hl, we have

(
E
[
|F |p

])1/p
6 cp,q

(
E
[
|F |2

])1/2
for any p > 2. (13)

It is well-known that L2(Ω) can be decomposed into the infinite orthogonal sum of the spaces
Hn. That is, any square integrable random variable F ∈ L2(Ω) admits the following “Wiener
chaos” expansion

F = E(F ) +

∞∑

n=1

In(fn),

where the fn ∈ H⊙n are uniquely determined by F .
Finally, we will use the following central limit theorem for multiple stochastic integrals (see
[24]).

Theorem 1 Let {Fn , n > 1} be a sequence of random variables in the q-th Wiener chaos Hq,
q > 2, such that limn→∞E(F 2

n) = σ2. Then the following conditions are equivalent:

(i) Fn converges in law to N (0, σ2) as n tends to infinity.

(ii) ‖DFn‖2H converges in L2 to a constant as n tends to infinity.

3 Asymptotic behavior of LSEs

Throughout the paper we assume that H ∈ (12 , 1), θ > 0 and ρ > 0 such that θ 6= ρ.
It is readily checked that we have the following explicit expression for Xt:

Xt =
ρ

ρ− θ
Xρ

t +
θ

θ − ρ
Xθ

t (14)

11



where for m > 0

Xm
t =

∫ t

0
e−m(t−s)dBH

s . (15)

On the other hand, we can also write that the system (6) implies that X solves the following
stochastic integro-differential equation

dXt = − (θ + ρ)Xtdt− ρθ

(∫ t

0
Xsds

)
dt+ dBH

t . (16)

For convenience, and because it will play an important role in the forthcoming computations,
we introduce the following processes related to Xt:

ST =

∫ T

0
X2

t dt; ΣT =

∫ T

0
Xtdt; LT =

∫ T

0
V 2
t dt; PT =

∫ T

0
XtVtdt;

and

L̂T =

∫ T

0
V̂ 2
t dt

where for 0 6 t 6 T
V̂t = Xt + θ̂TΣt, (17)

and θ̂T is our continuous LSE for θ as given in (9). We will need the following lemmas.

Lemma 2 Assume H ∈
(
1
2 , 1
)
. Then, as T → ∞

1

T

∫ T

0
X2

t dt −→ ηX , (18)

1

T

∫ T

0
Σ2
tdt −→ ηΣ, (19)

1

T

∫ T

0
ΣtXtdt −→ 0 (20)

almost surely, where

ηX =
HΓ(2H)

ρ2 − θ2
[ρ2−2H − θ2−2H ],

and

ηΣ =
HΓ(2H)

ρ2 − θ2
[θ−2H − ρ−2H ].

Proof. From (6) we can write

d

(
Xt

Σt

)
= A

(
Xt

Σt

)
dt+ d

(
BH

t

0

)

where A =

(
θ + ρ −θρ
1 0

)
. The process

(
Xt

Σt

)
is geometrically ergodic because the largest

eigenvalue of A is negative. Then to prove Lemma 2, using Birkhoff’s ergodic theorem (for
instance see [13]), it is sufficient to study the convergence of E[X2

t ], E[Σ2
t ] and E[ΣtXt] as

12



t −→ ∞.
For the convergence of E[X2

t ], (14) leads to

E[X2
t ] =

(
ρ

ρ− θ

)2

E[(Xρ
t )

2] +

(
θ

θ − ρ

)2

E[(Xθ
t )

2]− 2θρ

(θ − ρ)2
E[(Xθ)t(X

ρ
t )].

Since

ηX =

(
ρ

ρ− θ

)2

λ(ρ, ρ) +

(
θ

θ − ρ

)2

λ(θ, θ)− 2θρ

(θ − ρ)2
λ(θ, ρ)

then by using 1) of Lemma 21 we obtain

∣∣ηX −E[X2
t ]
∣∣ 6 c(H, θ, ρ)e−t/2.

Thus we deduce the convergence (18).
Using the same argument and the fact that

Σt =
Vt −Xt

θ
=
Xθ

t −Xρ
t

ρ− θ
(21)

we deduce the convergence (19).

Finally, the convergence (20) is satisfied by using
∫ T
0 ΣtXtdt =

ΣT

2 and point 5) of Lemma 21.

Lemma 3 We have

1

T

∫ T

0
XtδXt −→ −(ρ+ θ)ηX (22)

almost surely as T −→ ∞.

Proof. From (6) and (A-2) we can write

∫ T

0
XtδXt = −θ

∫ T

0
X2

t dt− ρ

∫ T

0
XtVtdt+

∫ T

0
XtδB

H
t

= −θ
∫ T

0
X2

t dt− θρ

∫ T

0
XtΣtdt− ρ

∫ T

0
X2

t dt+

∫ T

0
XtdB

H
t

−αH

∫ T

0

∫ t

0
DsXt(t− s)2H−2dsdt

where αH = 2H(2H − 1). Moreover,

∫ T

0
XtdB

H
t =

∫ T

0
XtdXt + (θ + ρ)

∫ T

0
X2

t dt+ θρ

∫ T

0
XtΣtdt

=
X2

T

2
+ (θ + ρ)

∫ T

0
X2

t dt+ θρ

∫ T

0
XtΣtdt.

Thus ∫ T

0
XtδXt =

X2
T

2
− αH

∫ T

0

∫ t

0
DsXt(t− s)2H−2dsdt.
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Since
DsX

m
t = e−m(t−s)1[0,t](s)

we deduce that

1

T

∫ T

0
XtδXt =

X2
T

2T
− αH

T

∫ T

0

∫ t

0

1

ρ− θ
(ρe−ρ(t−s) − θe−θ(t−s))(t− s)2H−2dsdt

=
X2

T

2T
− αH

T

∫ T

0

∫ t

0

1

ρ− θ

(
ρe−ρr − θe−θr

)
r2H−2drdt. (23)

Thanks to l’Hôpital’s rule, as T −→ ∞

αH

T

∫ T

0

∫ t

0

1

ρ− θ

(
ρeρr − θeθr

)
r2H−2drdt −→ HΓ(2H)

ρ− θ
[ρ2−2H − θ2−2H ]

=
(ρ+ θ)ηX

αH
.

Finally, combining this last convergence and point 5) of Lemma 21, the proof of Lemma 3 is
done.

We now have all the elements to obtain our strong consistency result for θ̂T .

Theorem 4 We have
θ̂T −→ θ∗

almost surely as T −→ ∞, where θ∗ = θ + ρ.

Proof. The proof follows directly from the convergence (18) and Lemma 3.
The next lemmas are additional elements needed to prove the strong consistency of ρ̂T .

Lemma 5 We have
L̂T

T
−→ ηX + (ρ+ θ)2ηΣ

almost surely as T −→ ∞.

Proof. The equation (17) ensures

L̂T =

∫ T

0
X2

t dt+ 2θ̂T

∫ T

0
XtΣtdt+ θ̂2T

∫ T

0
Σ2
tdt,

and the desired conclusion follows by using Lemma 2 and Theorem 4.

Lemma 6 We have
1

T

∫ T

0
V̂tδV̂t −→ −ρθ(ρ+ θ)ηΣ

almost surely as T −→ ∞.

Proof. From (6) and (17) we can write

∫ T

0
V̂tδV̂t =

∫ T

0
XtδXt + θ̂T

∫ T

0
X2

t dt− θ̂T (θ + ρ)

∫ T

0
ΣtXtdt− ρθθ̂T

∫ T

0
Σ2
tdt

+

∫ T

0
Σtθ̂T δB

H
t + θ̂2T

∫ T

0
ΣtXtdt.
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On the other hand
∫ T

0
θ̂TΣtdB

H
t

=

∫ T

0
θ̂TΣtdVt + ρθ̂T

∫ T

0
ΣtVtdt

= −θ−1

∫ T

0
θ̂TXtdVt + θ−1θ̂T

∫ T

0
VtdVt + ρθ̂T

∫ T

0
ΣtXtdt+ ρθθ̂T

∫ T

0
Σ2
tdt

= −θ−1

∫ T

0
θ̂TXtdXt − θ̂T

∫ T

0
X2

t dt+ θ−1θ̂T

∫ T

0
VtdVt + ρθ̂T

∫ T

0
ΣtXtdt+ ρθθ̂T

∫ T

0
Σ2
tdt

=
−1

2θ
X2

T − θ̂T

∫ T

0
X2

t dt+
θ̂T
2θ
V 2
T + ρθ̂T

∫ T

0
ΣtXtdt+ ρθθ̂T

∫ T

0
Σ2
t dt.

Now, applying (A-2), we obtain
∫ T

0
V̂tδV̂t =

∫ T

0
XtδXt −

1

2θ
X2

T +
θ̂T
2θ
V 2
T − θ̂T θ

∫ T

0
ΣtXtdt+ θ̂2T

∫ T

0
ΣtXtdt

−αH

∫ T

0

∫ t

0
Ds(θ̂TΣt)(t− s)2H−2dsdt. (24)

On the other hand
Ds(θ̂TΣt) = ΣtDsθ̂T + θ̂TDsΣt.

It follows from (23) that

θ̂T =

∫ T
0 XtδXt

ST

=

1
2X

2
T − αH

∫ T
0

∫ t
0

1
ρ−θ

(
ρe−ρr − θe−θr

)
r2H−2drdt

ST
.

Hence, for s < T

Dsθ̂T =
XTDsXT − θ̂TDsST

ST
.

Thus

αH

∫ T

0

∫ t

0
Ds(θ̂TΣt)(t− s)2H−2dsdt

= αH
XT

ST

∫ T

0

∫ t

0
ΣtDsXT (t− s)2H−2dsdt− αH

θ̂T
ST

∫ T

0

∫ t

0
ΣtDsST (t− s)2H−2dsdt

+αH θ̂T

∫ T

0

∫ t

0
DsΣt(t− s)2H−2dsdt

:= J1,T − J2,T + J3,T

We shall prove that for every ε > 0

|J1,T |
T ε

−→ 0, (25)

|J2,T |
T ε

−→ 0, (26)

J3,T
T

−→ θ + ρ

ρ− θ
HΓ(2H)[(−ρ)1−2H − (−θ)1−2H ] (27)
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almost surely as T → ∞.
We first estimate J1,T . Clearly, (14) implies

J1,T = αH
XT

ST

∫ T

0

∫ t

0
ΣtDsXT (t− s)2H−2dsdt

=
αH

ρ− θ

XT

ST

∫ T

0
Σt

∫ t

0

(
ρe−ρ(T−s) − θe−θ(T−s)

)
(t− s)2H−2dsdt

=
αH

ρ− θ

XT

ST

∫ T

0
Σt

∫ t

0

(
ρe−ρ(T−t+x) − θe−θ(T−t+x)

)
x2H−2dxdt.

The last equality comes from making the change of variable x = t− s.
Hence

|J1,T |
T ε

6 c(H, θ, ρ)
|XT |/T ε

ST/T

supt∈[0,T ] |Σt|
T ε

.

Using (18), (21) and the point 5) of Lemma 21, the convergence (25) is obtained.
Next we estimate J2,T . By (14) we have

J2,T = αH
θ̂T
ST

∫ T

0

∫ t

0
ΣtDsST (t− s)2H−2dsdt

= 2αH
θ̂T
ST

∫ T

0

∫ t

0
Σt

∫ T

s
XuDsXu(t− s)2H−2dudsdt

= 2αH
θ̂T

(ρ− θ)ST

∫ T

0

∫ t

0
Σt

∫ T

s
Xu

(
ρe−ρ(u−s) − θe−θ(u−s)

)
(t− s)2H−2dudsdt.

Then

|J2,T |
T ε

6 c(H, θ, ρ)

∣∣∣θ̂T
∣∣∣

ST

supt∈[0,T ] |Xt| supt∈[0,T ] |Σt|
T ε

∫ T

0

∫ t

0
e−min(θ,ρ)(T−s)(t− s)2H−2dsdt

6 c(H, θ, ρ)

∣∣∣θ̂T
∣∣∣

ST /T

supt∈[0,T ] |Xt| supt∈[0,T ] |Σt|
T ε

−→ 0

almost surely as T −→ ∞. The last convergence comes from (18), (21), Theorem 4 and the
point 5) of Lemma 21. Thus, the convergence (26) is satisfied.
Finally, we estimate J3,T . Using (21) and (14)

J3,T = αH θ̂T

∫ T

0

∫ t

0
DsΣt(t− s)2H−2dsdt

=
αH θ̂T
ρ− θ

∫ T

0

∫ t

0

(
e−θ(t−s) − e−ρ(t−s)

)
(t− s)2H−2dsdt.

By l’Hôpital rule we obtain

J3,T
T

−→ θ + ρ

ρ− θ
HΓ(2H)[θ1−2H − ρ1−2H ]

almost surely as T −→ ∞.
Using the above estimations (25), (26), (27) together with (24), Lemma 2, Theorem 4, the
point 5) of Lemma 21 and Lemma 3 the desired result is then obtained.
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Theorem 7 We have the almost sure convergence

ρ̂T −→ ρ∗

as T → ∞, where

ρ∗ =
θρ(θ + ρ)ηΣ

ηX + (θ + ρ)2ηΣ
.

Proof. The proof is a straightforward consequence of Lemma 5 and Lemma 6.
Our approach to prove the asymptotic normality for both estimators θ̂T and ρ̂T looks first

at the normal convergence of the T -indexed second-chaos sequence based on the kernel which
appears in the representation (15) of X. Thereafter, thanks to elementary stochastic calculus
in the second chaos, these double stochastic integrals will be identified in an expression for
the leading terms in θ̂T − θ∗ in the proof of Theorem 8. A similar technique, plus the use of
the chain rule of Young integrals and their relation to Skorohod integrals, is used to find again
that the leading terms in ρ̂T − ρ∗ are also linear combinations of the same double integrals;
the analysis of the lower-order terms are less evident than for θ̂T − θ∗; the proof of Theorem
8 records all the details.

We are ready to prove the asymptotic normality of
(
θ̂T , ρ̂T

)
.

Theorem 8 Assume that H ∈ (12 ,
3
4). Then

√
T
(
θ̂T − θ∗, ρ̂T − ρ∗

)
law−→ N (0,t P Γ P )

where the matrices Γ and P are defined respectively in (A-5) and (35).

Proof. We express θ̂T − θ∗ and ρ̂T − ρ∗ as linear combinations of the double stochastic
integrals identified in the previous theorem, plus lower-order terms.
The case of θ̂T − θ∗ is rather straightforward. It follows from (16) that

θ̂T − θ∗ =
ρθ
∫ T
0 XtΣtdt−

∫ T
0 XtδBt

ST
.

Since ∫ T

0
XtΣtdt =

1

2
Σ2
T

and

1√
T

∫ T

0
XtδB

H
t =

1

(ρ− θ)
√
T

∫ T

0

∫ t

0
(ρe−ρ(t−s) − θe−θ(t−s))δBH

s δB
H
t

=
1

(ρ− θ)
√
T

(
ρI2(f

ρ
T )− θI2(f

θ
T )
)

we can write
√
T
(
θ̂T − θ∗

)
=

1
(ρ−θ)

√
T

(
θI2(f

θ
T )− ρI2(f

ρ
T )
)

ST /T
+Rθ

T . (28)

where

Rθ
T :=

ρθ

2

Σ2
T/

√
T

ST/T
−→ 0 (29)
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almost surely as T −→ ∞.
For ρ̂t − ρ∗, the situation is significantly more complex. We have for every 0 6 t 6 T

V̂t = Xt + θ̂TΣt = Vt + (θ̂T − θ)Σt = Vt + (θ̂T − θ∗)Σt + ρΣt

= Vt −
ρ

θ
(Xt − Vt)−

1

θ
(θ̂T − θ∗)(Xt − Vt)

=
θ∗

θ
Vt −

ρ

θ
Xt −

1

θ
(θ̂T − θ∗)(Xt − Vt)

which leads to

L̂T =

∫ T

0
V̂ 2
t dt = IT + (θ̂T − θ∗)(JT + (θ̂T − θ∗)KT )

where

IT =
1

θ2
(ρ2ST + (θ∗)2LT − 2θ∗ρPT ),

JT =
1

θ2
(2ρST + 2θ∗LT − 2(θ + 2ρ)PT ),

KT =
1

θ2
(ST + LT − 2PT ).

Thus,
L̂T (ρ̂T − ρ∗) = IVT + (θ̂T − θ∗)(JV

T + (θ̂T − θ∗)KV
T )

where

IVT = −
∫ T

0
V̂tδV̂t − ρ∗IT = − V̂

2
T

2
+ αH

∫ T

0

∫ t

0
DsV̂t(t− s)2H−2dsdt− ρ∗IT ,

JV
T = −ρ∗JT , and KV

T = −ρ∗KT .

On the other hand, using the formula (A-1) we obtain





ST = −X2
T

2θ∗ + 1
θ∗

∫ T
0 XsdB

H
s − ρθ

2θ∗Σ
2
T ,

PT = −XT VT

θ∗ + 1
θ∗

∫ T
0 XsdB

H
s +

V 2
T

2θ∗ ,

LT = −V 2
T

2ρ + 1
ρ

∫ T
0 VsdB

H
s .

Furthermore, using the relation between Young and Skorohod integrals,





ST = −X2
T

2θ∗ + 1
θ∗

∫ T
0 XsδB

H
s + αH

θ∗

∫ T
0

∫ t
0 DsXt(t− s)2H−2dsdt− ρθ

2θ∗Σ
2
T ,

PT = −XTVT

θ∗ + 1
θ∗

∫ T
0 XsδB

H
s + αH

θ∗

∫ T
0

∫ t
0 DsXt(t− s)2H−2dsdt+

V 2
T

2θ∗ ,

LT = −V 2
T

2ρ + 1
ρ

∫ T
0 VsδB

H
s + αH

ρ

∫ T
0

∫ t
0 DsVt(t− s)2H−2dsdt.

(30)

Setting

λT := αH

∫ T

0

∫ t

0
e−(t−s)(t− s)2H−2dsdt
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we can write

λXT := αH

∫ T

0

∫ t

0
DsXt(t− s)2H−2dsdt =

1

ρ− θ

(
ρ2−2H − θ2−2H

)
λT

λVT := αH

∫ T

0

∫ t

0
DsVt(t− s)2H−2dsdt = ρ1−2HλT

λΣT := αH

∫ T

0

∫ t

0
DsΣt(t− s)2H−2dsdt =

1

θ
(λVT − λXT ) =

1

ρ− θ

(
θ1−2H − ρ1−2H

)
λT

λV̂T := αH

∫ T

0

∫ t

0
DsV̂t(t− s)2H−2dsdt = λXT + θ̂Tλ

Σ
T + J1,T − J2,T

= λXT + θ∗λΣT + (θ̂T − θ∗)λΣT + J1,T − J2,T .

The last equality comes from the fact that DsV̂t = DsXt + θ̂TDsΣt +ΣtDsθ̂T .
Since

λXT + θ∗λΣT =
ρ∗

θ2

(
−ρ

2

θ∗
λXT − (θ∗)2

ρ
λVT + 2ρλXT

)

we can write

IVT = − V̂
2
T

2
+ λV̂T − ρ∗IT

= (θ̂T − θ∗)λΣT − ρ∗

θ2

[
(−2ρ+

ρ2

θ∗
)

∫ T

0
XsδB

H
s +

(θ∗)2

ρ

∫ T

0
VsδB

H
s

]
+RT

where

RT =
−V̂ 2

T

2
+ J1,T − J2,T − ρ∗

θ2

[
ρ2(−X

2
T

2θ∗
− ρθ

2θ∗
Σ2
T − (θ∗)2

V 2
T

2ρ
− 2θ∗ρ(

−XTVT
θ∗

+
V 2
T

2θ∗
)

]
.

Combining previous estimations we obtain

L̂T (ρ̂T − ρ∗) = cρT I2(f
ρ
T ) + cθT I2(f

θ
T ) +

Rθ
T√
T

(
λΣT + JV

T + (θ̂T − θ∗)KV
T

)
+RT

where

cρT =
−ρλΣT

(ρ− θ)ST
− ρρ∗(−2ρ+ ρ2

θ∗ )

θ2(ρ− θ)
− ρ∗(θ∗)2

ρθ2
− ρJV

T

(ρ− θ)ST
− ρ(θ̂T − θ∗)KV

T

(ρ− θ)ST

−→ cρ =
−ρλΣ

(ρ− θ)ηX
− ρρ∗(−2ρ+ ρ2

θ∗ )

θ2(ρ− θ)
− ρ∗(θ∗)2

ρθ2
− ρλJ

(ρ− θ)ηX
(31)

almost surely as T −→ ∞, and

cθT =
θλΣT

(ρ− θ)ST
+
θρ∗(−2ρ+ ρ2

θ∗ )

θ2(ρ− θ)
− ρ∗(θ∗)2

ρθ2
+

θJV
T

(ρ− θ)ST
+
θ(θ̂T − θ∗)KV

T

(ρ− θ)ST

−→ cθ =
θλΣ

(ρ− θ)ηX
+
θρ∗(−2ρ+ ρ2

θ∗ )

θ2(ρ− θ)
− ρ∗(θ∗)2

ρθ2
+

θλJ

(ρ− θ)ηX
(32)
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almost surely as T −→ ∞. These last two convergences come from the fact that

λΣT /T −→ λΣ =
2HΓ(2H)

ρ− θ

[
θ1−2H − ρ1−2H

]

and

JV
T /T −→ λJ =

2

θ2
[
θ∗ηX −HΓ(2H)θ∗ρ−2H

]

almost surely as T −→ ∞, because λT /T −→ 2HΓ(2H) as T −→ ∞.
Thus

√
T (ρ̂T − ρ∗) =

1√
T

(
cρT I2(f

ρ
T ) + cθT I2(f

θ
T )
)

L̂T

T

+Rρ
T (33)

where as T −→ ∞

Rρ
T = Rθ

T

(
λΣT + JV

T + (θ̂T − θ∗)KV
T

)

L̂T

+
RT /

√
T

L̂T

T

−→ 0 (34)

almost surely.
Finally, with the expressions (28) and (33) on hand, and the almost-sure negligibility of their
corresponding lower-order terms as proved in (29) and (34), we get

√
T
(
θ̂T − θ∗, ρ̂T − ρ∗

)
=

1√
T

(
I2(f

θ
T ), I2(f

ρ
T )
)( θ

ρ−θ
T
ST

cθT
T
L̂T

ρ
θ−ρ

T
ST

cρT
T
L̂T

)
+
(
Rθ

T , R
ρ
T

)

where as T −→ ∞ (
θ

ρ−θ
T
ST

cθT
T
L̂T

ρ
θ−ρ

T
ST

cρT
T
L̂T

)
−→ P :=

(
θ

ρ−θ
1
ηX

cθ

ηL̂
ρ

θ−ρ
1
ηX

cρ

ηL̂

)
(35)

almost surely. Now, applying Slutsky’s lemma and Theorem 22 combined with the above
convergences, the proof is complete.

4 Discrete observation

Assume that the process X is observed equidistantly in time with the step size ∆n: ti =
i∆n, i = 0, . . . , n, and Tn = n∆n denotes the length of the ‘observation window’. The goal
of this section is to construct two estimators θ̌n and ρ̌n of θ and ρ respectively based on the
sampling data Xti , i = 0, . . . , n, and study their strong consistency and asymptotic normality.
We also want to define estimators in such a way that consistency and normality results proved

in Section 3 for the continuous-data estimators
(
θ̂T , ρ̂T

)
can be used to good effect in the

discrete case. The basic strategy for this is therefore to look for ways of discretizing the MLE
studied in Section 3. It turns out that the most efficient way of implementing this strategy
is to define several intermediate estimators, starting with ones where only the denominators

in
(
θ̂T , ρ̂T

)
are discretized, and then using an algebraic asymptotic interpretation of the

numerators to avoid a direct discretization of the corresponding Young or Skorohod integrals.
This method allows a rather direct use of the asymptotic normality Theorem 8 in Section
3, while for the strong consistency results, some of the almost-sure convergences proved in
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Section 3 are used directly, and additional ones are newly established early on in this section.
See Section 1.2 for other details about the heuristics which explain the choices made below in
this Section.

For any given process Z, define

Qn(Z) :=
1

n

n∑

i=1

(Zti−1)
2

The following well-known direct consequence of the Borel-Cantelli Lemma (see e.g. [18]), will
allows us to turn convergence rates in the p-th mean into pathwise convergence rates. This is
particularly efficient when working with sequences in Wiener chaos.

Lemma 9 Let γ > 0 and p0 ∈ N. Moreover let (Zn)n∈N be a sequence of random variables.
If for every p > p0 there exists a constant cp > 0 such that for all n ∈ N,

(E|Zn|p)1/p 6 cp · n−γ ,

then for all ε > 0 there exists a random variable ηε such that

|Zn| 6 ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|ηε|p <∞ for all p > 1.

As before we assume that ∆n = tk+1 − tk is a function of n only. Of some importance,
particularly for the purpose of proving normal convergence theorems, is the case n−α with a
given α ∈ R. The case α > 0 implies that the observation frequency must increase even as the
horizon itself also increases. The case of α = 0 is of special importance because it corresponds
to a setup where the observation frequency is fixed ( ∆n = 1, no in-fill asymptotics, only
increasing horizon), which may be desirable in some applications. We will see that for some
almost-sure convergence results, we may even take a time step ∆n which grows with n. In
other words, this allows for very sparse observations. We will also see that most almost-sure
results are valid for the entire range H ∈ (12 , 1), while normal convergence results require
H ∈ (12 ,

3
4). We begin by recording and proving some important technical estimates.

Lemma 10 Define δn(X) :=
√
Tn

(
Qn(X) − STn

Tn

)
. Then

E
[
δ2n(X)

]
6 c(H, θ, ρ)min


n∆2H+1

n ,
1

n∆n
+∆H+1

n +∆4H−3
n

n∑

j=1

j4H−4


 . (36)

In particular, if ∆n 6 nα for some α ∈ (−∞, 1/H), then

Qn(X) −→ ηX (37)

almost surely as n→ ∞.

Proof. The points 3) and 6) of Lemma 21 lead to

E
[
δ2n(X)

]
=

1

Tn

n∑

i,j=1

∫ ti

ti−1

∫ tj

tj−1

E
[(
X2

t −X2
ti−1

)(
X2

s −X2
tj−1

)]
dsdt

6 c(H, θ, ρ)n∆2H+1
n .
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On the other hand, we have

E
[
δ2n(X)

]

=
1

Tn

n∑

i,j=1

∫ ti

ti−1

∫ tj

tj−1

E
(
X2

t −X2
ti−1

)
E
(
X2

s −X2
tj−1

)
dsdt

+
1

Tn

n∑

i,j=1

∫ ti

ti−1

∫ tj

tj−1

E
[(
Xt −Xti−1

) (
Xs −Xtj−1

)]
E
[(
Xt +Xti−1

) (
Xs +Xtj−1

)]
dsdt

+
1

Tn

n∑

i,j=1

∫ ti

ti−1

∫ tj

tj−1

E
[(
Xt −Xti−1

) (
Xs +Xtj−1

)]
E
[(
Xt +Xti−1

) (
Xs −Xtj−1

)]
dsdt

:=
1

Tn

n∑

i,j=1

(D1(i, j) +D2(i, j) +D3(i, j)) .

By using the points 2), 4) and 6) of Lemma 21 we obtain

1

Tn

n∑

i,j=1

D1(i, j) =
1

Tn

[
n∑

i=1

∫ ti

ti−1

E
(
X2

t −X2
ti−1

)
dt

]2

6
c(H, θ, ρ)

Tn

[
∆n

n∑

i=1

e−ti−1/2

]2

6
c(H, θ, ρ)

Tn

[
∆n

1− e−∆n/2

]2
,

1

Tn

n∑

i=1

(D2(i, i) +D3(i, i))

=
1

Tn

n∑

i=1

(∫ ti

ti−1

∫ ti

ti−1

[
2(E(XtXs))

2 + 2(E(X2
ti−1

))2 − 4(E(Xti−1Xs))
2
]
dsdt

)

6 c(H, θ, ρ)∆H+1
n ,

and

1

Tn

n∑

i 6=j=1

(D2(i, j) +D3(i, j))

=
2

Tn

n∑

i 6=j=1

(∫ ti

ti−1

∫ ti

ti−1

[
(E(XtXs))

2 − (E(Xti−1Xs))
2 − (E(Xti−1Xt))

2 + (E(Xti−1Xtj−1))
2
]
dsdt

)

6
c(H, θ, ρ)

Tn

n∑

i<j=1

∆4H−2
n |j − i− 1|4H−4

6 c(H, θ, ρ)∆4H−3
n

n∑

j=1

j4H−4.

Thus (36) is obtained. Now, using (13), Lemma 9 and (18) we will be able to assert the
convergence (37), and thus the entire lemma, as soon as we can show that the right-hand side
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of (36) divided by Tn converges to 0 as fast as some negative power of n. Thus we only need
to show that there exists ε > 0, such that as n→ ∞

qn := min


∆2H

n ,
1

(n∆n)
2 +

∆H
n

n
+

1

n
∆4H−4

n

n∑

j=1

j4H−4


 6 n−ε.

Let us concentrate first on the second part of the minimum defining qn. This is the sum of
the three terms (n∆n)

−2, ∆H
n /n, and n−1∆4H−4

n

∑n
j=1 j

4H−4. The first of these three terms

will tend to 0 like a negative power of n as soon as there exists ε1 > 0 such that ∆n > n−1+ε1 .
The second term will tend to 0 like a negative power of n as soon as there exists ε2 > 0 such
that ∆n 6 n1/H−ε2 . For the third term, we must separate the case H < 3/4 from the case
H > 3/4. When H < 3/4, the series

∑n
j=1 j

4H−4 is bounded, so the last term in the second
part of the min in qn will tend to 0 like a negative power of n as soon as there exists ε3 > 0
such that ∆n > n−1/(4−4H)+ε3 . When H > 3/4, the series is bounded above by a constant
times n4H−3, yielding a contribution of (∆n/n)

4H−4; so the last term in the second part of
the min in qn will tend to 0 like a negative power of n as soon as there exists ε4 > 0 such that
∆n > n−1+ε4 . The case H = 3/4 is done in the same fashion, with the same conclusion as
when H > 3/4. Thus we have proved that for each fixed n, if there exist ε1, ε2, ε3 > 0 such
that

max
(
n−1+ε1 , n−

1
4−4H

+ε3
)
6 ∆n 6 n1/H−ε2 (38)

then for some ε > 0,
qn 6 n−ε.

On the other hand notice that for every H ∈ (1/2, 1), there exist ε1, ε3 > 0 such that

max
(
n−1+ε1 , n−

1
4−4H

+ε3
)
6 n−1/2. (39)

Thus for each fixed n, if we have
∆n 6 n−1/2, (40)

using the first part of the min in the definition of qn, we get

qn 6 n−ε

with ε = H . To conclude, by (39), for each fixed n, we are either in the case (38) or (40), so
that qn 6 n−ε in all cases as soon as ∆n 6 n1/H−ε2 for some ε2 > 0. The proof of the lemma
is complete.

Lemma 11 Define δn(Σ) :=
√
Tn

(
Qn(Σ)− 1

Tn

∫ Tn

0 Σ2
tdt
)
. Then

E
[
δ2n(Σ)

]
6 c(H, θ, ρ)min


n∆2H+1

n ,
1

n∆n
+∆H+1

n +∆4H−3
n

n∑

j=1

j4H−4


 . (41)

In particular, if ∆n 6 nα for some α ∈ (−∞, 1/H), then

Qn(Σ) −→ ηΣ (42)
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almost surely as n→ ∞.
On the other hand if n1+α∆H+1

n → 0 for some α > 0,
∣∣∣Qn(Σ̂)−Qn(Σ)

∣∣∣ −→ 0 (43)

almost surely as n→ ∞, where

Σ̂n
ti = ∆n

i∑

j=1

Xtj−1 .

In addition, if n3∆2H+3
n → 0,

√
Tn

∣∣∣Qn(Σ̂)−Qn(Σ)
∣∣∣ −→ 0 (44)

in L2(Ω) as n→ ∞.

Proof. By using same arguments as in the proof of Lemma 10, (21) and (19), we obtain
(41) and (42).
Now, we prove the convergence (43). We can write

Qn(Σ)−Qn(Σ̂) =
−1

n

n∑

i=1

(
Σti−1 − Σ̂ti−1

)2
+

2

n

n∑

i=1

Σti−1

(
Σti−1 − Σ̂ti−1

)
.

Using the point 6) of Lemma 21

E

((
Σti−1 − Σ̂ti−1

)2)
=

i−1∑

j=1

i−1∑

k=1

∫ tj

tj−1

∫ tk

tk−1

E[(Xs −Xtj−1)(Xr −Xtk−1
)]drds

6 c(H, θ, ρ)




i−1∑

j=1

∫ tj

tj−1

|s− tj−1|H ds




2

6 c(H, θ, ρ)
(
n∆H+1

n

)2

Then, by Hölder inequality and the point 3) of Lemma 21 we obtain for every p > 1

(
E
[∣∣∣Qn(Σ)−Qn(Σ̂)

∣∣∣
p])1/p

6 c(H, θ, ρ)
[
n2∆2H+2

n + n∆H+1
n

]
.

Thus, by (13), Lemma 9 and that fact that n1+α∆H+1
n → 0 for some α > 0 the convergence

(43) is obtained.
Furthermore, it is also easy to see that the convergence (44) is satisfied.

4.1 Auxiliary estimators θ̃ and ρ̃

The first step in constructing a discrete-observation-based estimator for which the asymptotics

of
(
θ̂T , ρ̂T

)
studied in Section 3 can be helpful, is to consider the following two auxiliary

estimators θ̃n and ρ̃n of θ∗ and ρ∗ respectively, by leaving the numerators in
(
θ̂T , ρ̂T

)
alone,

and discretizing the denominators:

θ̃n = −
1
Tn

∫ Tn

0 XtδXt

Qn(X)
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and

ρ̃n(Σ) = −
1
Tn

∫ Tn

0 V̂ n
t δV̂

n
t

Qn(X) + (θ̃n)2Qn(Σ)
,

where
V̂ n
t = Xt + θ̂nΣt, 0 6 t 6 Tn. (45)

and we recall thatQn(Z) is a notation for the Riemann-sum rectangle approximation 1
n

∑n
i=1(Zti−1)

2.
We also consider the version of ρ̃n(Σ) based only on discrete observations of Σ:

ρ̃n(Σ̂) = −
1
Tn

∫ Tn

0 V̂ n
t δV̂

n
t

Qn(X) + (θ̃n)2Qn(Σ̂)
.

Combining Lemma 3 and the almost-sure convergence (37) we deduce the strong consis-
tency of θ̃n.

Theorem 12 Assume H ∈ (1/2, 1). If ∆n 6 nα for some α ∈ (−∞, 1/H), then

θ̃n −→ θ∗

almost surely as n→ ∞.

By Lemmas 6 and 11 it is easy also to deduce the strong consistency of ρ̃n(Σ) and ρ̃n(Σ̂).

Theorem 13 Assume H ∈ (1/2, 1). If ∆n 6 nα for some α ∈ (−∞, 1/H), then

ρ̃n(Σ) −→ ρ∗

almost surely as n→ ∞.
In addition, if n1+α∆H+1

n → 0 for some α > 0,

ρ̃n(Σ̂) −→ ρ∗

almost surely as n→ ∞.

To establish the asymptotic normality of
(
θ̃n, ρ̃n

)
, we can write

√
Tn

(
θ̃n − θ∗

)
=

STn

Tn

Qn

√
Tn(θ̂Tn − θ∗) +

θ∗
√
Tn(

STn

Tn
−Qn(X))

Qn(X)
.

Similarly,

√
Tn (ρ̃n − ρ∗) =

L̂Tn

Tn

Q̂n

√
Tn(ρ̂Tn − ρ∗) +

ρ∗
√
Tn(

L̂Tn

Tn
− Q̂n)

Q̂n

.

Theorem 8 provides the convergence of the last summands in each of the two lines above.
Combining this with the convergences we obtained in Lemmas 10 and 11, we obtain the
following result.
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Theorem 14 Let H ∈ (12 ,
3
4) and n∆H+1

n → 0. Then

√
Tn

(
θ̃n − θ∗, ρ̃n(Σ)− ρ∗

)
law−→ N

(
0,t P Γ P

)

In addition if n3∆2H+3
n → 0,

√
Tn

(
θ̃n − θ∗, ρ̃n(Σ̂)− ρ∗

)
law−→ N

(
0,t P Γ P

)

where P the matrix defined in (35).

4.2 X and Σ are observed

The problem with the auxiliary estimators θ̃n and ρ̃n is that they still contain Skorohod
integrals. In order to devise a further scheme that allows us to evaluate them, at least ap-
proximately, using discrete data only, we begin by using the discrete observations of X and
Σ, and recalling that, from Lemmas 3 and 6, we have

1

T

∫ T

0
XtδXt −→ −ρθ(ρ+ θ)ηX ,

1

T

∫ T

0
V̂tδV̂t −→ −ρθ(ρ+ θ)ηΣ

where ηX and ηΣ, which are also functions of H, θ, ρ, are given in Lemma 2. Since these
limits depend on the parameters we are trying to estimate, one strategy is to rewrite the
strong consistency results of Theorems 12 and 13 for θ̃n and ρ̃n(Σ) as implicit definitions of
new estimators, where the numerators in the definitions of θ̃n and ρ̃n(Σ) are replaced by their
limits recalled above, and each instance of θ and ρ therein are replaced by the new estimator
we are trying to define. The same substitution must be done with the expressions θ∗ and ρ∗,
since these are the limits of θ̃n and ρ̃n. In other words we consider only that the denominators
in θ̃n and ρ̃n contain data, and replace all other instances of (θ, ρ) in the limits in Theorems
12 and 13 by the pair of estimators we are trying to define. After some minor manipulations,
this leads to the following definition of a new pair of estimators

(
θ̌n, ρ̌n

)
as solution of the

system of the following two equations, if it exists:




θ̌n + ρ̌n = HΓ(2H)[(ρ̌n)2−2H−(θ̌n)2−2H ]

(ρ̌n−θ̌n)Qn(X)

(θ̌n)
2−(ρ̌n)

2

[
(θ̌n)2−2H−(ρ̌n)2−2H+(ρ̌n+θ̌n)

2
((ρ̌n)−2H−(θ̌n)−2H)

] = HΓ(2H)

Qn(X)+(θ̌n+ρ̌n)2Qn(Σ)

. (46)

We emphasize that the above is an implicit definition of
(
θ̌n, ρ̌n

)
. It is also rather opaque.

The system (46) can be simplified slightly using more elementary manipulations. We find that
the definition of

(
θ̌n, ρ̌n

)
is equivalent to the following:

F
(
θ̌n, ρ̌n

)
= (Qn(X), Qn(Σ))

where F is a positive function of the variables (x, y) in (0,+∞)2 defined by: for every (x, y) ∈
(0,+∞)2

F (x, y) = HΓ(2H)×
{ 1

y2−x2

(
y2−2H − x2−2H , x−2H − y−2H

)
if x 6= y(

(1−H)x−2H ,Hx−2H−2
)

if x = y.
(47)
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Interestingly, this shows that a good candidate for the discrete version of the least-squares
estimator of (θ, ρ) is none other than a type of generalized method of moments estimator

obtained via Lemma 2 after discretizing the expressions ST (X) := T−1
∫ T
0 X2

sds and ST (Σ) :=

T−1
∫ T
0 Σ2

sds. We now consider the question whether System (46) has a unique solution(
θ̌2n, ρ̌

2
n

)
, and how this may imply strong consistency for these estimators.

Since for every (x, y) ∈ (0,+∞)2 with x 6= y

JF (x, y) = Γ(2H+1)




(1−H)x1−2H(x2−y2)−x(x2−2H−y2−2H)
(x2−y2)2

(1−H)y1−2H(y2−x2)−y(y2−2H−x2−2H)
(x2−y2)2

Hx−2H−1(x2−y2)+x(x−2H−y−2H)
(x2−y2)2

Hy−2H−1(y2−x2)+y(y−2H−x−2H)
(x2−y2)2




the determinant of JF (x, y) is non-zero on in (0,+∞)2. So, F is a diffeomorphism in (0,+∞)2

and its inverse G has a Jacobian

JG (a, b) =
Γ(2H + 1)

detJF (x, y)




Hy−2H−1(y2−x2)+y(y−2H−x−2H)
(x2−y2)2

− (1−H)y1−2H(y2−x2)−y(y2−2H−x2−2H)
(x2−y2)2

−Hx−2H−1(x2−y2)+x(x−2H−y−2H)
(x2−y2)2

(1−H)x1−2H(x2−y2)−x(x2−2H−y2−2H)
(x2−y2)2


 ;

where (x, y) = G (a, b).
Hence, (37) and (42) lead to

(
θ̌n, ρ̌n

)
= G (Qn(X), Qn(Σ)) −→ G

(
ηX , ηΣ

)
= (θ, ρ)

almost surely as n→ ∞ as soon as ∆n 6 nα for some α ∈ (−∞, 1/H). Summarizing, we have
proved the following.

Theorem 15 Let H ∈ (1/2, 1) and assume that ∆n 6 nα for some α ∈ (−∞, 1/H). Then,
as n −→ ∞ (

θ̌n, ρ̌n
)
−→ (θ, ρ)

almost surely.

We may now prove a normal convergence result for
(
θ̌n, ρ̌n

)
based on Theorem 14. Note

that the second part of Theorem 14 is not needed here because we rely on fully observed Σ in
this section.

Theorem 16 Suppose that H ∈ (12 ,
3
4) and n∆H+1

n → 0. Then

√
Tn
(
θ̌n − θ, ρ̌n − ρ

) law−→ N (0,tM tP Γ P M)

where the matrices Γ, P and M are defined respectively in (A-5), (35) and (50).

Proof. We have

θ̃n = −
1
Tn

∫ Tn

0 XtδXt

Qn(X)
:=

Jθ
n(X)

Qn(X)

and

ρ̃n(Σ) = −
1
Tn

∫ Tn

0 V̂ n
t δV̂

n
t

Qn(X) + (θ̃n)2Qn(Σ)
:=

Jρ
n(V̂ )

Qn(X) + (θ̃n)2Qn(Σ)
.
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Then, we can write

√
Tn
(
θ̌n − θ, ρ̌n − ρ)

)

=
√
Tn

(
G

(
Jθ
n(X)

θ̃n
, (θ̃n)

−2

(
Jρ
n(V̂ )

ρ̃n(Σ)
− Jθ

n(X)

θ̃n

))
− (θ, ρ)

)

=
√
Tn

(
GoL

(
Jθ
n(X), Jρ

n(V̂ ), θ̃n, ρ̃n(Σ)
)
− (θ, ρ)

)

where L(r, s, u, v) =
(
r
u ,

s
u2v

− r
u3

)
.

On the other hand for any ε ∈ (0, 1)

1

T

∫ T

0

∫ t

0
r2H−2e−rdrdt = Γ(2H − 1) + o(

1

T ε
)

because

1

T 1−ε

∫ T

0

∫ ∞

t
r2H−2e−rdrdt 6

1

2T 1−ε
(1− e−T/2)

∫ ∞

0
r2H−2e−r/2dr

→ 0.

Combining this together with (23) and the point 5) of Lemma 21 we can write

Jθ
n(X) = (ρ+ θ)ηX + o(

1√
Tn

) (48)

where o( 1√
Tn

) denotes a random variable such that
√
Tno(

1√
Tn

) converges to zero almost surely

as Tn → ∞.
Similar argument leads to

Jρ
n(V̂ ) = ρθ(ρ+ θ)ηΣ + o(

1√
Tn

). (49)

Since
GoL

(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, θ∗, ρ∗

)
= (θ, ρ)

we can write

√
Tn
(
θ̌n − θ, ρ̌n − ρ)

)

=
√
Tn

(
GoL

(
Jθ
n(X), Jρ

n(V̂ ), θ̃n, ρ̃n(Σ)
)
−GoL

(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, θ∗, ρ∗

))

=
√
Tn

[
GoL

(
Jθ
n(X), Jρ

n(V̂ ), θ̃n, ρ̃n(Σ)
)
−GoL

(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, θ̃n, ρ̃n(Σ)

)

+ GoL
(
(ρ+ θ)ηX ,−ρθ(ρ+ θ)ηΣ, θ̃n, ρ̃n(Σ)

)
−GoL

(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, θ∗, ρ∗

)]

:= sn + rn.

From (48) and (49) we obtain sn −→ 0 almost surely as n→ ∞.
On the other hand, by Taylor’s formula

rn =
√
Tn

(
θ̃n − θ∗, ρ̃n(Σ)− ρ∗

)
M + dn
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where

M =

(
∂h1
∂u (θ∗, ρ∗) ∂h2

∂u (θ∗, ρ∗)
∂h1
∂v (θ∗, ρ∗) ∂h2

∂v (θ∗, ρ∗)

)
(50)

with

h(u, v) = (h1, h2)(u, v) = GoL
(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, u, v

)
.

We can write

h(u, v) = (G1, G2) og (u, v)

where
g(u, v) = (g1, g2)(u, v) = L

(
(ρ+ θ)ηX , ρθ(ρ+ θ)ηΣ, u, v

)
.

Moreover for i = 1, 2

∂hi
∂u

(u, v) =
∂Gi

∂a
(g(u, v))

∂g1
∂u

(u, v) +
∂Gi

∂b
(g(u, v))

∂g2
∂u

(u, v)

and
∂hi
∂v

(u, v) =
∂Gi

∂a
(g(u, v))

∂g1
∂v

(u, v) +
∂Gi

∂b
(g(u, v))

∂g2
∂v

(u, v).

On the other hand, dn converges in distribution to zero, because

‖dn‖ 6 c(H, θ, ρ)
√
Tn‖(ρ̃n(Σ)− θ∗, θ̃n − ρ∗)‖2.

It is elementary that if for any ω ∈ Ω there exists n0(ω) ∈ N such that Xn(ω) = Yn(ω) for all

n > n0(ω) and Xn
law−→ 0 as n→ ∞, then Yn

law−→ 0 as n→ ∞.
Combining this with Theorem 14 the proof is completed.

4.3 X is observed

In the previous section, we encountered theorems in which X and Σ are both assumed to be
fully observed in discrete time. Since Σ is the time-antiderivative of X, such an assumption
corresponds, for instance, to the physical situation where X is the velocity of a particle, and
Σ is its position.

In this section, we abandon such a framework, and assume instead that only X is observed

in discrete time. Thus we consider the following pair of estimators
(
θ̆n, ρ̆n

)
:

(
θ̆n, ρ̆n

)
= G

(
Qn(X), Qn(Σ̂)

)

where the deterministic explicit function G was identified in the previous section as the inverse

of the function F given in (47). Equivalently,
(
θ̆n, ρ̆n

)
is the solution of the system (46), or

its equivalent form (47), with Σ replaced by the process Σ̂, which relies only on observations
of X. Using same arguments as in Section 4.2 and Lemma 11, but relying now on the second
part of Theorem 13 (hence the stronger condition on ∆n for the strong consistency result)
and the second part of Theorem 14 (hence the stronger condition on ∆n for the convergence
in law result), we conclude the following.
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Theorem 17 If n1+α∆H+1
n → 0 for some α > 0,

(
θ̆n, ρ̆n

)
−→ (θ, ρ)

almost surely as n→ ∞.

Theorem 18 Let H ∈ (12 ,
3
4). If n3∆2H+3

n → 0, then, as n→ ∞
√
Tn

(
θ̆n − θ, ρ̆n − ρ

)
law−→ N (0,tM tP Γ P M)

where the matrices Γ, P and M are defined respectively in (A-5), (35) and (50).

4.4 X and V are observed

When both X and V are observed, the estimator of θ∗ based on continuous data is θ̂T given
in (9) but the estimator of ρ becomes the usual full-observation estimator of an fBm-driven
Ornstein-Uhlenbeck process as in [14], i.e.

ρT = −
∫ T
0 VtδVt∫ T
0 V 2

t dt
.

Following similar arguments as in the beginning of Section 4.2, the natural candidate for the

estimator based on discrete data of X and V is the pair
(
θn, ρn

)
defined as the solution of

the following system:




θn + ρ
n
=

HΓ(2H)
(ρ

n
−θn)

[(ρ
n
)2−2H−(θn)

2−2H ]

Qn(X)

ρ
n
=
(
HΓ(2H)
Qn(V )

) 1
2H
.

We see that ρ
n

is defined explicitly autonomously via the discrete-data-based statistic Qn(V ).
With ρ

n
now known, elementary manipulations yield that θn is precisely the solution of the

following simple equation

(θn)
2−2H −

(
Qn(X)

HΓ(2H)

)
(θn)

2 =
(
ρ
n

)2−2H
−
(
Qn(X)

HΓ(2H)

)(
ρ
n

)2
.

Define

F (x, y) = HΓ(2H)×
{ (

y2−2H−x2−2H

y2−x2 , y−2H
)

if x 6= y(
(1−H)x−2H , x−2H

)
if x = y.

Its Jacobian is given, for every (x, y) ∈ (0,+∞)2 such that x 6= y, by

JF (x, y) = Γ(2H+1)

(
(1−H)x1−2H(x2−y2)−x(x2−2H−y2−2H)

(x2−y2)2
(1−H)y1−2H(y2−x2)−y(y2−2H−x2−2H)

(x2−y2)2

0 −y−2H−1

)
.

Thus the Jacobian of is inverse G is as follows

JG (a, b) =
Γ(2H + 1)

detJF (x, y)


−y−2H−1 − (1−H)y1−2H(y2−x2)−y(y2−2H−x2−2H)

(x2−y2)2

0
(1−H)x1−2H(x2−y2)−x(x2−2H−y2−2H)

(x2−y2)2


 ; (x, y) = G (a, b) .

Using same arguments as in Section 4.2 we obtain
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Theorem 19 Assume that ∆n 6 nα for some α ∈ (−∞, 1/H). Then, as n −→ ∞
(
θn, ρn

)
−→ (θ, ρ)

almost surely.

Theorem 20 Suppose that H ∈ (12 ,
3
4) and n∆H+1

n → 0. Then, as n→ ∞
√
Tn
(
θn − θ, ρn − ρ

) law−→ N (0,tQ tP Γ P Q)

where Γ and P are defined respectively in (A-5) and (35), and where

Q =

(∂f1
∂u (θ

∗, ρ) ∂f2
∂u (θ

∗, ρ)
∂f1
∂v (θ

∗, ρ) ∂f2
∂v (θ

∗, ρ)

)

such that
(f1, f2)(u, v) = Gol (u, v)

with
l(u, v) = L

(
(ρ+ θ)ηX , ρ1−2H , u, v

)

and
L(r, s, u, v) :=

( r
u
,
s

v

)
.

5 Appendix

In this appendix, we present some calculations used in the paper.

Fix T > 0. Let f, g : [0, T ] −→ R be Hölder continuous functions of orders α ∈ (0, 1) and
β ∈ (0, 1) respectively with α+ β > 1. Young [29] proved that the Riemann-Stieltjes integral

(so-called Young integral)
∫ T
0 fsdgs exists. Moreover, if α = β ∈ (12 , 1) and φ : R2 −→ R is

a function of class C1, the integrals
∫ .
0

∂φ
∂f (fu, gu)dfu and

∫ .
0

∂φ
∂g (fu, gu)dgu exist in the Young

sense and the following chain rule holds:

φ(ft, gt) = φ(f0, g0) +

∫ t

0

∂φ

∂f
(fu, gu)dfu +

∫ t

0

∂φ

∂g
(fu, gu)dgu, 0 6 t 6 T. (A-1)

As a consequence, if H ∈ (12 , 1) and (ut, t ∈ [0, T ]) is a process with Hölder paths of order

α ∈ (1−H, 1), the integral
∫ T
0 usdB

H
s is well-defined as a Young integral. Suppose moreover

that for any t ∈ [0, T ], ut ∈ D1,2, and

P

(∫ T

0

∫ T

0
|Dsut||t− s|2H−2dsdt <∞

)
= 1.

Then, by [1], u ∈ Domδ and for every t ∈ [0, T ],

∫ t

0
usdB

H
s =

∫ t

0
usδB

H
s +H(2H − 1)

∫ t

0

∫ t

0
Dsur|s − r|2H−2drds. (A-2)

31



In particular, when ϕ is a non-random Hölder continuous function of order α ∈ (1−H, 1), we
obtain ∫ T

0
ϕsdB

H
s =

∫ T

0
ϕsδB

H
s = BH(ϕ). (A-3)

In addition, for all ϕ, ψ ∈ |H|,

E

(∫ T

0
ϕsdB

H
s

∫ T

0
ψsdB

H
s

)
= H(2H − 1)

∫ T

0

∫ T

0
ϕ(u)ψ(v)|u − v|2H−2dudv.

Lemma 21 Let m,m′ > 0 and let Xm be the process defined in (15). Then,

1) λ(m,m′) := H(2H−1)
∫∞
0

∫∞
0 e−mse−m′r|s−r|2H−2drds = HΓ(2H)

m+m′

(
m1−2H +m′1−2H

)
,

2) 0 6 λ(m,m′)− E(Xm
t X

m′

t ) 6 c(H,m,m′)e−t/2,

3) supt>0E[|Xm
t |p] 6 c(H,m, p) <∞,

4) 0 6 E(Xm
t X

m′

s ) 6 c(H,m,m′)|t− s|2H−2,

5) For every ε > 0,
Xm

T

T ε → 0 almost surely as T → ∞,

6) E(|Xm
t −Xm

s |p) 6 c(H,m, p)|t− s|pH .

Proof. To prove equality 1), we just write

λ(m,m′) = H(2H − 1)

∫ ∞

0

∫ ∞

0
e−mse−m′r|s− r|2H−2drds

= H(2H − 1)

∫ ∞

0
dse−ms

∫ s

0
dre−m′r|s− r|2H−2

+H(2H − 1)

∫ ∞

0
dse−ms

∫ ∞

s
dre−m′r|s− r|2H−2

=
HΓ(2H)

m+m′

(
m1−2H +m′1−2H

)
.

For the point 2) see [15]. For 3) and 6) we refer to [16], and for 4) and 5) see [14, Lemma 5.2
and Lemma 5.4]

Theorem 22 Let H ∈ (12 ,
3
4). Define for m > 0

fmT (u, v) :=
1

2
e−m|u−v|

11⊗2
{[0,T ]}(u, v).

Then, as T −→ ∞,

1√
T

(
I2(f

θ
T ), I2(f

ρ
T )
)

law−→ N (0,Γ) (A-4)

where Γ is a symmetric nonnegative definite matrix which has the following explicit expression

Γ = ηH

(
l1 l3
l3 l2

)
(A-5)
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where l1 = θ1−4H , l2 = ρ1−4H , l3 =
2ρθ

(4H−1)(ρ2−θ2)

[
θ1−4H − ρ1−4H

]
and

ηH = H2(4H − 1)

[
Γ(2H)2 +

Γ(2H)Γ(3 − 4H)Γ(4H − 1)

Γ(2− 2H)

]
.

Proof. Notice that for (A-4) to hold it suffices that prove that for every a, b ∈ R,

GT := aI2(f
θ
T ) + bI2(f

ρ
T )

converges in law to N
(
0, (a, b)Γt(a, b)

)
as T −→ ∞.

Fix a, b ∈ R. Since GT is a multiple integral, by the isometry property of double stochastic
integral I2, we get the variance of GT as follows

EG2
T =

α2
H

2

(
a2
I1T
T

+ b2
I2T
T

+ 2ab
I3T
T

)
,

where

I1T =

∫

[0,T ]4
e−θ|t−s|e−θ|u−v||t− u|2H−2|s− v|2H−2dtdsdudv,

I2T =

∫

[0,T ]4
e−ρ|t−s|e−ρ|u−v||t− u|2H−2|s− v|2H−2dtdsdudv,

I3T =

∫

[0,T ]4
e−ρ|t−s|e−θ|u−v||t− u|2H−2|s− v|2H−2dtdsdudv.

Using the same argument as in the proof of [14, Theorem 3.4], we have as T → ∞

limT→∞
α2
H

2

I1T
T

= ηH l1

and

limT→∞
α2
H

2

I2T
T

= ηH l2.

Now, let us estimate I3T . We have

dI3T
dT

= 2

[∫

[0,T ]3
e−ρ(T−s)e−θ|u−v|(T − u)2H−2|s− v|2H−2dsdudv

]

+2

[∫

[0,T ]3
e−ρ|t−s|e−θ(T−v)(T − t)2H−2|s− v|2H−2dsdudv

]

:= AT (ρ, θ) +AT (θ, ρ).

Making the change of variables T − s = x , T − u = y and T − v = z

AT (ρ, θ) = 2

∫

[0,T ]3
e−ρxe−θ|y−z|y2H−2|z − x|2H−2dxdydz.

This implies

limT→∞AT (ρ, θ) = A∞(ρ, θ) = 2

∫

[0,∞]3
e−ρxe−θ|y−z|y2H−2|z − x|2H−2dxdydz.
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Making the change of variables z − x = w, we obtain

A∞(ρ, θ) = 2

[∫

[0,∞)2

∫ ∞

−x
e−ρxe−θ|y−w−x|y2H−2|w|2H−2dwdxdy

]

= 2

[∫

[0,∞)2

∫ y−x

−x
e−ρxe−θ(y−w−x)y2H−2|w|2H−2dwdxdy

]

+2

[∫

(0,∞)2

∫ ∞

y−x
e−ρxeθ(y−w−x)y2H−2|w|2H−2dwdxdy

]
.

Integrating in x we get

A∞(ρ, θ) =
2

(−ρ+ θ)

[∫ ∞

0

∫ +∞

−∞
(e(−ρ+θ)(y−w) − e(−ρ+θ)[(−w)∨0])1[(y−w)−((−w)∨0)]+

×e−θ(y−w)y2H−2|w|2H−2 dwdy

]

− 2

(−ρ− θ)

[∫ ∞

0

∫ +∞

−∞
e(−θ−ρ)[(y−w)∨0]eθ(y−w)y2H−2|w|2H−2dwdy

]

=
2

θ − ρ
A1(ρ, θ) +

2

ρ+ θ
A2(ρ, θ).

Furthermore

A1(ρ, θ) =

∫ ∞

0

∫ ∞

0
(e−ρ(y+w) − e−ρwe−θy)y2H−2w2H−2dwdy

+

∫ ∞

0

∫ y

0
(e−ρ(y−w) − e−θ(y−w))y2H−2w2H−2dwdy

=

(∫ ∞

0
y2H−2e−ρydy

)2

−
(∫ ∞

0
y2H−2e−θydy

)(∫ ∞

0
w2H−2e−ρwdw

)

+

∫ ∞

0

∫ ∞

w
(e−ρ(y−w) − e−θ(y−w))y2H−2w2H−2dydw

= Γ(2H − 1)2ρ1−2H
[
ρ1−2H − θ1−2H

]

+

∫ ∞

0

∫ ∞

0
(e−ρx − e−θx)(x+ w)2H−2w2H−2dxdw.

Using (x+ w)2H−2 = 1
Γ(2−2H)

∫∞
0 ξ1−2He−ξ(w+x)dξ, the term A1 becomes

A1(ρ, θ) = Γ(2H − 1)2ρ1−2H
[
ρ1−2H − θ1−2H

]

+
Γ(2H − 1)

Γ(2− 2H)

∫ ∞

0

∫ ∞

0
ξ2−4He−ξx(e−ρx − e−θx)(dξdx

= Γ(2H − 1)2ρ1−2H
[
ρ1−2H − θ1−2H

]

+
Γ(2H − 1)Γ(3− 4H)Γ(4H − 2)

Γ(2− 2H)

[
ρ2−4H − θ2−4H

]
.
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Similarly, we obtain

A2(ρ, θ) =

∫ ∞

0

∫ ∞

0
e−ρ(y+w)y2H−2w2H−2dwdy

+

∫ ∞

0

∫ y

0
e−ρ(y−w)y2H−2w2H−2dwdy

+

∫ ∞

0

∫ ∞

y
eθ(y−w)y2H−2w2H−2dwdy

= ρ2−4HΓ(2H − 1)2

+
Γ(2H − 1)Γ(3− 4H)Γ(4H − 2)

Γ(2− 2H)

[
ρ2−4H + θ2−4H

]
.

Thus, A∞(θ, ρ) is also obtained.
Consequently

limT→∞α
2
H

I3T
T

= α2
H(A∞(ρ, θ) +A∞(θ, ρ))

= 2ηH l3.

Finally, combining the above convegences we deduce that as T → ∞

EG2
T −→ (a, b) Γ t(a, b).

On the other hand

DsGT =
1√
T

(∫ s

0

(
ae−θ(s−t) + be−ρ(s−t)

)
δBt +

∫ T

s

(
ae−θ(t−s) + be−ρ(t−s)

)
δBt

)

:=
1√
T

(
Xa,b

s + Y a,b
s,T

)
.

Hence

‖DGT ‖2H =
αH

T

∫ T

0

∫ T

0

(
Xa,b

s + Y a,b
s,T

)(
Xa,b

r + Y a,b
r,T

)
|r − s|2H−2dsdr

=
αH

T

∫ T

0

∫ T

0

(
Xa,b

s Xa,b
r + 2Xa,b

r Y a,b
s,T + Y a,b

s,T Y
a,b
r,T

)
|r − s|2H−2dsdr

:=
αH

T

(
Aa,b

T +Ba,b
T + Ca,b

T

)
.

Since Xa,b
s belongs to the first Wiener chaos of BH ,

E

(∣∣∣Aa,b
T −EAa,b

T

∣∣∣
2
)

= 2

∫

[0,T ]4
E(Xa,b

s Xa,b
r )E(Xa,b

u Xa,b
v )|u− r|2H−2|v − s|2H−2dsdrdudv.

Using similar arguments as in [14, Lemma 5.4 of web-only Appendix],

E

(∣∣∣Aa,b
T −EAa,b

T

∣∣∣
2
)

6 c(H, θ, ρ)

∫

[0,T ]4
|s− r|2H−2|v − u|2H−2|u− r|2H−2|v − s|2H−2dsdrdudv

6
c(H, θ, ρ)

T 4−8H

∫

[0,1]4
|s− r|2H−2|v − u|2H−2|u− r|2H−2|v − s|2H−2dsdrdudv.

35



Using the same argument for Ba,b
T and Ca,b

T we conclude that

E
(∣∣‖DGT ‖2H − E‖DGT ‖2H

∣∣2
)

6
c(H, θ, ρ)

T 6−8H

∫

[0,1]4
|s− r|2H−2|v − u|2H−2|u− r|2H−2|v − s|2H−2dsdrdudv

−→ 0

as T −→ ∞, because H < 3
4 . This completes the proof of Theorem 22.
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