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Abstract

This paper studies the asymptotic behavior of a one-dimensional directed polymer in a
random medium. The latter is represented by a Gaussian �eld BH on R+ �R with fractional
Brownian behavior in time (Hurst parameter H) and arbitrary function-valued behavior in
space. The partition function of such a polymer is

u (t) = Eb

�
exp

Z t

0

BH (dr; br)

�
:

Here b is a continuous-time nearest neighbor random walk on Z with �xed intensity 2�, de�ned
on a complete probability space Pb independent of BH . The spatial covariance structure of BH
is assumed to be homogeneous and periodic with period 2�. For H < 1

2 , we prove existence
and positivity of the Lyapunov exponent de�ned as the almost sure limit limt!1 t

�1 log u (t).
For H > 1

2 , we prove that the upper and lower almost sure limits lim supt!1 t
�2H log u (t) and

lim inft!1(t
�2H log t) log u (t) are non-trivial in the sense that they are bounded respectively

above and below by �nite, strictly positive constants. Thus, as H passes through 1=2, the
exponential behavior of u (t) changes abruptly. This can be considered as a phase transition
phenomenon. Novel tools used in this paper include sub-Gaussian concentration theory via the
Malliavin calculus, detailed analyses of the long-range memory of fractional Brownian motion,
and an almost-superadditivity property.

MSC (2000): primary 60K37; secondary 60G18, 60H07, 60H15, 82D60.
Keywords: polymer, random media, Lyapunov exponent, Malliavin derivative, partition func-

tion, fractional Brownian motion, Gaussian �eld, long memory, Anderson model.

1 Introduction

1.1 The model

This article is concerned with a one-dimensional directed polymer in a fractional Brownian-type
random environment in R. Such a model can be described as follows. Initially, in the absence of
any random medium, the polymer itself is modeled as a standard random walk b = fbt : t � 0g,
de�ned on a complete �ltered probability space

�

b;Fb;

�
Fbt
�
t�0 ; (P

x
b )x2R

�
, where Pxb stands for

the law of the simple (nearest-neighbor) symmetric random walk on Z indexed by t 2 R+, starting
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from the initial condition x. The corresponding expected value is denoted by Exb , or simply by Eb
when x = 0.

The random environment is represented by a Gaussian �eld BH indexed on R+�R, de�ned on
another independent complete probability space (
;F ;P). Denote by E the expected value with
respect to P. The covariance structure of BH is given by

E [BH (t; x)BH (s; y)] = RH (s; t)Q (x� y) ; (1)

where

RH (s; t) = 2H

Z s^t

0
(t� r)H�

1
2 (s� r)H�

1
2 dr;

and Q : R ! R is a given homogeneous covariance function satisfying some regularity conditions
that will be speci�ed later on. In particular, for every �xed t 2 R, the process x ! t�HBH (t; x)
is a homogeneous centered Gaussian �eld on R with covariance function Q. For �xed x 2 R,
the process t ! [Q (0)]�1=2BH (t; x) is a so-called Riemann�Liouville fractional Brownian motion
with Hurst parameter H. We refer the reader to the Appendix (Section 7) for properties of this
process, particularly Subsection 7.1 for de�nitions, and Subsection 7.3 for relations to the standard
fractional Brownian motion. Henceforth we refer to the Riemann-Liouville fBm simply as fractional
Brownian motion (fBm) with Hurst parameter H. The two versions of fBm have very similar
properties: see [3], [4], [20], or Subsection 7.3. The reason for using the Riemann-Liouville version
of fBm as opposed to standard fBm is to simplify some calculations; our results hold identically in
the standard fBm case, but the calculation are denser, and we decided to avoid presenting these
for the sake of clarity.

Once b and BH are de�ned, we can de�ne the polymer measure in the following way: for any
t > 0, the energy of a given path (or con�guration) b on [0; t] is given via the Hamiltonian

Hx
t (b) = �

Z t

0
BH (dr; br + x) :

The completely rigorous meaning for this integral can be found in the next section. Notice that for
any �xed path b, Hx

t (b) is a centered Gaussian random variable. Based on this Hamiltonian, for
any �xed x 2 R and a given constant � (interpreted as the inverse temperature of the system) we
can de�ne our random polymer measure as the Gibbs measure

dP̂xt (b) =
e��H

x
t (b)

u (t; x)
dPxb (b) ; (2)

with
u (t; x) = Exb

h
e��H

x
t (b)
i
: (3)

The function u (t; x) is referred to as the partition function. It obviously ensures that the polymer
measure is a probability measure. It plays an important role in understanding the entire measure.
This Gibbs measure, and its partition function, are random, as they depend on the randomness of
BH . In the nomenclature of mathematical physics, statements about the law of the con�guration b
formulated using averages with respect to P (with respect to the randomness of BH) are annealed
statements, while statements formulated almost surely with respect to P are quenched statements.
In this article, we are concerned primarily with quenched results, and more speci�cally with the
almost-sure exponential rate of growth for large time of the partition function u given in (3). To
dispel any possible confusion, we note here that the phrase �almost surely�systematically denotes
statements that hold with P-probability 1.
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1.2 The problem, and related works

When the Hurst parameter H in the model is equal to 1=2, the polymer�s random environment
is Brownian in time: its time-di¤erential is white noise. This type of model has been studied
extensively. [2] and [8] established the links between martingale theory and directed polymers in
Brownian random environment, and over the last few years, several papers have studied di¤erent
types of polymer models: the case of random walks in discrete potential is treated in [10], the case
of Gaussian random walks in [19], [24], and the case of Brownian polymer in a Poisson potential is
considered in [15]. Recently, [7] studied the wandering (superdi¤usive) exponent for the continuous
space Brownian polymer in a Brownian environment; its partition function was studied extensively
in the recent works [18] and [26], while further work for small temperature is being investigated in
[9].

The model u in (3) is also, up to a time reversal, equal to the so-called stochastic Anderson
model, which is the solution of a linear multiplicative stochastic heat equation driven by the random
environment BH as its potential. The time-white noise case H = 1=2 has been a highly popular
model for quite some time, introduced by the Russian mathematical physics school as a non-trivial
basic model for more complex problems (see the review paper [21]). Its large-time asymptotics were
�rst studied in discrete space Zd in [12]. Properties of these discrete and continuous-space models
were further investigated in a number of articles since then. We refer to the sharpest results know
to date in continuous space in [18], and references therein.

When H is any number in (0; 1) other than 1=2, the time-covariance structure of the random
environment becomes non-trivial: instead of independent increments, we have long-range depen-
dence (medium or long memory, in the language of time series, when H 2 (0; 1=2) and H 2 (1=2; 1)
respectively) due to the fractional Brownian behavior. The resulting polymer model is more compli-
cated. To the best of our knowledge no work has been devoted to it. One reason which is typically
quoted for such lack of study is that fBm is neither a martingale nor a Markov process, making
the standard artillery of probabilistic tools inapplicable. However, in modeling terms, the case of
independent time-increments (H = 1=2) can only be considered as idealized. Real data typically
exhibits correlations. This is becoming increasingly clear in such areas as �nancial econometrics
and communications networks, where medium and long memory data seem to be the norm. These
cases, which contrast sharply with the case of independent increments, are thus a good place to
start investigating correlations for polymers and Anderson models. One point deserves clari�cation:
the issue of spatial correlations has already been well understood (see [18]); our emphasis here is
to introduce time correlations for the �rst time.

In this article we study the almost-sure large-time exponential behavior of the random Gibbs
measure u�s partition function when H 6= 1=2. Because our main thrust is to show that the
di¢ culties inherent in the random medium�s fBm behavior can be overcome, we consider a situation
which is otherwise relatively simple, while still using an in�nite-dimensional noise term, to obtain
non-trivial results, and in particular ones which do not coincide with the case H = 1=2; in particular
we will prove that a clear phase transition occurs as H passes through the value 1=2 (see detailed
description of results in the next subsection). We assume the inverse temperature � = 1 and the
continuous-time nearest-neighbor random walk b on Z has intensity 2�, where for some results
(H < 1=2) the di¤usion constant � will need to be small. Moreover, we require in our model that
the homogeneous covariance function Q in (1) be periodic with period 2�. This implies that our
model is then identical to one in which b is the continuous-time nearest-neighbor random walk with
unit step size, restricted to the unit circle, where the point on the unit circle is identi�ed with its
angle.
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This model, as described above, has the interesting feature that, since 2� =2 Q, the random walk
will visit in�nitely many points on the unit circle. In this situation, the smoothness of Q will play a
visible role in some of our results, despite the fact our polymer steps only discretely in space: some
of our proofs essentially require that Q be twice di¤erentiable, which is equivalent to requiring BH

to be spatially di¤erentiable almost surely (Assumption 1 on page 10).
All of our results also hold if we modify the random walk b by changing its step size to a rational

fraction of 2�; in that case, it visits only �nitely many points on the circle, making it unnecessary to
de�ne the medium�s spatial covariance Q on more than this �nite set; the smoothness assumption
on Q can be achieved automatically by interpolation outside of this �nite set. We do not comment
on this point further.

The periodicity of Q was chosen to ensure that the polymer stays in e¤ect in a bounded domain.
The size of this domain does not play a role in our results; they would remain true in the case of
a circle with arbitrarily large radius, and are easily extended to this case; we do not comment on
this point further herein.

According to (3), since the covariance function Q is homogeneous, it follows that for every
x 2 Z, u (t; x) is identical to u (t; 0) in distribution. Because of this fact we will only need to
consider the partition function

u (t) := u (t; 0) = Eb

�
exp

Z t

0
BH (dr; br)

�
: (4)

Our object is to study the existence of the almost-sure limit of 1t log u (t) when t!1 and t 2 N.
We restrict t to being an integer in order to apply Borel-Cantelli-type arguments easily. The proper
notation for limits as t tends to in�nity is thus limt!1;t2N. In many cases, we will omit the notation
t 2 N, writing only limt!1.

When the limit of 1t log u (t) exists and is �nite, we will show it is positive. When the limit
is in�nite, we will investigate the proper scale needed to recuperate a �nite positive limit instead.
The former situation relates to H < 1=2, and is quantitatively similar to the case H = 1=2
which has been studied extensively in the aforementioned references, although the proofs require
new concepts and tools. The latter case is when H > 1=2, and provides us with entirely new
quantitative behaviors, including a clear phase transition when H passes through the value 1=2.

1.3 Structure of the article and summary of results

After some preliminaries and tools presented in Sections 2 and 3, we begin our study by looking
at properties of the expectation of log u (t), denoted by U (t). Section 4 shows that under the
assumption that @

@xBH (t; x) exists almost surely for any �xed t and x, U (t) is almost superadditive
when H 2 (0; 1), a property de�ned and studied in that section. When H = 1

2 , this property of
almost superadditivity becomes the property of superadditivity, which had been studied recently
in [18] and [26].

Section 5 studies the case of H < 1
2 . In Subsection 5.1 it is shown that U (t) grows at most

linearly, that is,
�
t�1U (t)

	
t2N is bounded. This property, together with the almost superadditiv-

ity, gives the existence, �niteness, and nonnegativity of limt!1 t�1U (t). Subsection 5.3 connects
log u (t) and U (t) via a concentration theory, which implies that

lim
t!1

�
1

t
log u (t)� 1

t
U (t)

�
= 0; a.s. (5)
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Combining all of these results we obtain that under spatial homogeneity of BH ,

� := lim
t!1

1

t
log u (t)

exists almost surely and � is a deterministic, �nite, non-negative real number. This is called
the almost sure Lyapunov exponent of u. In Subsection 5.2, positivity of � is obtained when
H 2 (H0; 1=2] and � � �0, where H0; �0 are values depending only on Q, and assuming that Q is
not identically constant (for instance, the case of discrete spatial white noise, i.e.

�
BH (�; x)

	
x
IID,

is covered, since it is Q (0) > 0 and Q (x) = 0 for all x 6= 0).
Section 6 deals with the case of H > 1

2 . In this case,
�
t�1U (t)

	
t2N is unbounded, which

indicates that t�1 log u (t) blows up as well. Therefore we try to �nd a deterministic function L (t)
such that limt!1 L (t)

�1 log u (t) exists almost surely. If such a function L can be found so that this
limit is �nite and non-zero, we call this L the exponential rate function of u (t). Subsection 6.1 gives
the concentration result (5) which also holds when H > 1

2 , but for slightly di¤erent reasons than
when H < 1

2 . Subsection 6.2 shows that
�
t�2HU (t)

	
t2N is bounded. This, plus the concentration

result, gives that

lim sup
t!1

1

t2H
log u (t) � ��; a.s.

for some deterministic, �nite, positive real number ��. In Subsection 6.3, we perform a detailed
analysis of the Hamiltonian�s covariance structure, and combine it with time discretization tech-
niques similar to those used in [14] and [29] to get the lower bound on L (t). We obtain that

lim inf
t!1

�
t2H

log t

��1
log u (t) � ��; a.s.

for some deterministic, �nite, positive real number ��. In particular we get lower and upper bounds
on L (t), if it exists, when H > 1=2:

t2H

log t
� L (t) � t2H :

We can summarize these results as follows. Let

� := lim
t!1

log log u (t)

log t
:

There exist non-random constants H0 2 (0; 1=2) and �0 > 0 such that

1) when H 2 (H0; 12 ] and � 2 (0; �0], � = 1;

2) when H 2 (1=2; 1) for all � > 0, � = 2H.

It is notable that when H passes through 1
2 there is a phase transition for the order of the

exponential rate. When H � 1=2, the partition function has a Lyapunov exponent, just like in the
case H = 1=2, i.e. log u (t) is almost surely asymptotically linear; when H > 1=2, the Lyapunov
exponent is in�nite, and the correct rate of increase of log u (t) seems to be closest to t2H .
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2 Preliminary calculations

In this section we give the precise meaning of the partition function in (4). Since the covariance
function Q is homogeneous and periodic with period of 2�, we have a random Fourier series rep-
resentation for BH (t; x): there exists fqkgk2Z a sequence of non-negative real numbers such that
q�k = qk and

Q (x) =

1X
k=�1

qke
ikx;

and the Gaussian �eld BH can be written as a random Fourier series

BH (t; x) =
1X

k=�1

p
qk e

ikxBH;k (t)

where all BH;k�s, k 2 Z+, are i.i.d. complex-valued fBm�s with a common Hurst parameter H, and
BH;�k = BH;k. This last condition ensures that BH (t; x) is real-valued. The integral in (4) can
hence be written as Z t

0
BH (dr; br) =

1X
k=�1

p
qk

Z t

0
eikbrBH;k (dr) :

The Wiener integral with respect to fBm is discussed in Subsections 7.4 and 7.5 in the Appendix.
It follows that there exist i.i.d. standard complex-valued Wiener processes Wk, k � 0 such that,
with K�

H the standard transfer operator for our fBm (see its de�nition (54) in Subsection 7.4 of the
Appendix), for a �xed nearest neighbor path b,Z t

0
BH (dr; br) =

1X
k=�1

p
qk

Z t

0

h
K�
He

ikb�
i
(t; r)Wk (dr)

providedW�k =Wk. Therefore, the partition function u (t) can be expressed using random Fourier
series of Wiener integrals with respect to standard Wiener processes, as

u (t) = Eb

"
exp

( 1X
k=�1

p
qk

Z t

0

h
K�
He

ikb�
i
(t; r)Wk (dr)

)#
: (6)

Measurability and integrability of the expression inside the expectation Eb jointly in (b; !) 2 
b�

is a standard issue that can easily be resolved by L2 approximations: see for instance [14]; we do
not comment on this further.

Since b is a continuous-time nearest-neighbor random walk, we can look at the partition function
u (t) from another viewpoint to get a discrete representation, by decomposing the average Eb over
the jump times and jump positions of b. If a trajectory b is �xed, then between two jump times tj ,
tj+1 of r ! br, the value of that path is �xed, say at xj , and we see that

R tj+1
tj

BH (dr; br) is just
the increment BH (tj+1; xj)�BH (tj ; xj). Formula (4) hence becomes

u (t) = Eb
�
expX

�
~t; ~x
��

if we write ~t = (0 = t0 < t1 < t2 < � � � < tNt < tNt+1 = t) and ~x = (0 = x0; x1; x2; : : : ; xNt) for the
successive times and locations of the jumps of the path r ! br and set

X
�
~t; ~x
�
=

NtX
j=0

[BH (tj+1; xj)�BH (tj ; xj)] : (7)
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The number Nt of jumps of the path r ! br before time t, de�nes a Poisson process with intensity
2� so that:

p (t;m) := Pb (Nt = m) = e
�2�t (2�t)

m

m!
and given the value of Nt, the jump times tj are uniformly distributed between 0 and t, and the
location of the jumps, which are independent of the times of jumps, are all equally distributed,
that is, each nearest-neighbor path x1; x2; : : : ; xNt has equal probability 2

�Nt . Consequently, the
expectation giving the value of u (t) can be written in the discrete form

u (t) =
1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)dt1 � � � dtm (8)

Here Pm denotes the set of all nearest neighbor paths of length m, while S (t;m) is the simplex�
~t : 0 < t1 < t2 < � � � < tm < t

	
, so that m!tm dt1 � � � dtm is indeed the uniform distribution on S (t;m)

and Xm
�
~t; ~x
�
is the X

�
~t; ~x
�
de�ned in (7) with Nt = m.

Furthermore, for each �xed m, Xm
�
~t; ~x
�
can be written as a random Fourier series:

Xm
�
~t; ~x
�
:=

1X
k=�1

p
qk

mX
j=0

Z tj+1

tj

fm;
~t;~x

j (r)Wk (dr) (9)

with each fm;
~t;~x

j (r), j = 0; 1; : : : ;m, being de�ned by

fm;
~t;~x

j (r) =
p
2H

24eikxj (tj+1 � r)H� 1
2 +

mX
`=j+1

eikx`
h
(t`+1 � r)H�

1
2 � (t` � r)H�

1
2

i35 : (10)

To prove this formula, notice �rst that each increment in (7) has the random Fourier series repre-
sentation

BH (tj+1; xj)�BH (tj ; xj) =
1X

k=�1

p
qk e

ikxj [BH;k (tj+1)�BH;k (tj)] ;

From the Wiener integral representation of fBm (52) (in Appendix 7) we know that

BH;k (tj+1)�BH;k (tj)

=

Z tj+1

0

p
2H (tj+1 � r)H�

1
2 Wk (dr)�

Z tj

0

p
2H (tj � r)H�

1
2 Wk (dr) :

Now for each �xed k, it follows that
mX
j=0

eikxj [BH;k (tj+1)�BH;k (tj)]

=

mX
j=0

eikxj
�Z tj+1

0

p
2H (tj+1 � r)H�

1
2 Wk (dr)�

Z tj

0

p
2H (tj � r)H�

1
2 Wk (dr)

�

=

mX
j=0

Z tj+1

tj

eikxj
p
2H (tj+1 � r)H�

1
2 Wk (dr)

+
mX
j=0

j�1X
`=0

Z t`+1

t`

eikxj
p
2H
h
(tj+1 � r)H�

1
2 � (tj � r)H�

1
2

i
Wk (dr) :
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After exchanging the order of summation over j and ` and then summing over all k�s, we obtain
(9) and (10). These formula have the merit of decomposing Xm

�
~t; ~x
�
into a series of independent

noise terms. They also make the time dependence structure appear explicitly in Xm
�
~t; ~x
�
, since

the variance of each independent term is an explicit function of all the jump times of b, in contrast
to what would hold when H = 1=2, where the jth independent term depends only on the jth jump
time interval of b.

3 Two Tools

In this section we introduce two useful tools which will serve in the following sections. The �rst one
(see [1]) is the Dudley entropy upper bound often known as Dudley-Fernique theorem, for expected
suprema of Gaussian �elds. Let fYtgt2T be a separable Gaussian �eld on an arbitrary index set T ,
endowed with the canonical metric

� (t; s) =

r
E
h
(Yt � Ys)2

i
:

Theorem 3.1 (Dudley-Fernique) There exists a universal constant Kuniv > 0 such that

E

�
sup
t2T

Yt

�
� Kuniv

Z 1

0

p
N (") d" (11)

where N (") is the metric entropy of (T; �), i.e. the smallest number of balls of radius " in the
canonical metric � required to cover the set T .

The second tool is concerned with Malliavin derivatives. Let M be a white-noise measure
indexed on R+ � R, on a complete probability space (
;F ;P) where F is the �-�eld generated
by M , endowing R+ with the interpretation of a positive time axis. More precisely, M is a �-
additive Gaussian random measure in the sense of L2 (
), de�ned by saying that for any Borel sets
A 2 B (R+) and B 2 B (R), M (A�B) is Gaussian random variable N (0; jAj� (B)) where j�j is
the Lebesgue measure and � is a �-�nite measure on R, and moreover if A�B \A0�B0 = ; then
M (A�B) andM (A0 �B0) are independent. The �ltration generated byM is the sequence fFtgt�0
de�ned by setting Ft to be the �-�eld generated by all random variables M ([0; s]�B) where s � t
and B 2 B (R). For a random variable F in the space L2 (
;F ;P) of all square-integrable F1-
random variables, its Malliavin derivative DF with respect to M , if it exists, is a random �eld on
R+ �R in accordance with the usual de�nitions from the theory of abstract Wiener spaces. The
domain of Malliavin derivative D is de�ned as D1;2 (meaning that DF 2 L2 (R+ �R� 
)). One
may consult Chapter 1 in [22] for details. For our purpose, it is su¢ cient to notice the following
two important properties of the operator D.

1. Let f be a non-random function in L2 (R+ �R; ds� � (dx)) and de�ne

F =

Z
R+�R

f (s; x)M (ds; dx) :

Let g be a function in C1 (R) and g0 the usual derivative of g. The random variable G = g (F )
has the Malliavin derivative given by

Ds;xG = g
0 (F ) f (s; x)

provided that g (F ) ; g0 (F ) 2 L2 (
;F ;P). In particular, Ds;xF = f (s; x).
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2. If G has a Malliavin derivative and G is Ft-measurable for some t � 0, then for all x 2 R and
all s > t we have Ds;xG = 0.

Notice that if G 2 D1;2, then DG 2 L2 (
�R+ �R;P� ds� � (dx)), and we see immediately
that G described in the �rst property above is indeed in D1;2.

The following result estimates the centered moments of a random variable by using its Malliavin
derivative. We refer to a convenient place to �nd its statement and proof.

Lemma 3.2 (Lemma 10 in [18]) Let G be a centered random variable in the space L2 (
;F ;P).
Assume G 2 D1;2 and G is Ft�measurable. Then for every integer p � 0, there exists a constant
Cp which depends only on p such that

E
�
G2p

�
� Cp

�
E

�Z
R
� (dx)

Z t

0
(E [Ds;xG jFs ])2 ds

��p
: (12)

Remark 3.3 In particular, if M is indexed on R+ � Z and � is the uniform unit mass measure,
i.e., � (k) = 1 for all k 2 Z, then (12) becomes

E
�
G2p

�
� Cp

(
E

" 1X
k=�1

Z t

0
(E [Ds;kG jFs ])2 ds

#)p
: (13)

4 Almost Superadditivity

As denoted in Section 2, U (t) = E [log u (t)] is the expectation of log u (t). In the case of H = 1
2 ,

where BH (�; x) is Brownian motion for every �xed x, Rovira and Tindel [26] in the homogeneous
case, and more generally Florescu and Viens [18] show that fU (t)gt2N is superadditive. However,
when H 6= 1

2 , this property does not hold; instead, it turns out that the sequence fU (t)gt2N is a
so-called almost superadditive sequence. In this section, we establish this important property and
its basic consequences.

4.1 Almost Superadditivity and Convergence

We �rst give an important result about almost superadditive sequences of numbers.

De�nition 4.1 If ff (n)gn2N is a sequence of real numbers, and f� (n)gn2N a sequence of non-
negative numbers, such that

f (m+ n) � f (m) + f (n)� � (m+ n)

for anym;n 2 N, then we say ff (n)gn2N is an almost superadditive sequence relative to f� (n)gn2N.

Remark 4.2 In the above de�nition, if � (n) = 0 identically, then ff (n)gn2N is a superadditive
sequence in the usual sense.

It is well known that if ff (n)gn2N is a superadditive sequence, then the sequence ff (n) =ngn2N
either converges to its supremum (if it is �nite) or diverges properly to +1. For almost superaddi-
tive sequences, convergence to a supremum does not hold in general, but we do have the following
analogous result.

9



Theorem 4.3 Let ff (n)gn2N be an almost superadditive sequence relative to f� (n)gn2N and fur-
thermore, assume that

i) lim
n!1

� (n)

n
= 0; ii)

1X
n=1

� (2n)

2n
<1:

(1) If supn
f(n)
n <1, then limn!1 f(n)

n exists;

(2) If supn
f(n)
n =1, then

n
f(n)
n

o
diverges properly to 1.

The proof of this theorem is provided in the Appendix, Subsection 7.6, for completeness.

4.2 Almost Superadditivity of U (t)

It is trivial to see that U (t) � 0 for all t. Indeed this can be shown by using Jensen�s inequality
and Fubini theorem:

U (t) = E [log u (t)] = E

�
log

�
Eb

�
exp

Z t

0
BH (dr; br)

���
� EbE

�Z t

0
BH (dr; br)

�
= 0:

For H 6= 1=2, we need some spatial regularity of BH (t; x):

Assumption 1 (Spatial Regularity) For any �xed t and x, @BH@x (t; x) exists almost surely.

Remark 4.4 Assumption 1 is equivalent to
P1
k=�1 k

2qk <1. For convenience we denote

Q1 :=

 1X
k=�1

k2qk

! 1
2

:

Now we give the main result of this section:

Theorem 4.5 Under Assumption 1, for each H 2 (0; 1), there exists a positive constant ~CQ;H ,
depending only on Q and H, such that

U (t+ s) � U (t) + U (s)� ~CQ;H (s _ t)H : (14)

As a prelude to the proof, we recall the probability measure de�ned by the polymer�s law, with
a slightly more explicit notation than in (2) to emphasize the fact that its randomness depends on
that of BH .

De�nition 4.6 P̂b;BH ;t is a random probability measure on the same space as Pb such that

P̂b;BH ;t [A] = Eb

"
exp

R t
0 BH (dr; br)

u (t)
1A

#
: (15)

Denote by Êb;BH ;t the expected value with respect to P̂b;BH ;t.

10



Proof. [Proof of Theorem 4.5]

Step 1. Setup and Strategy. Let s; t be �xed. Without loss of generality, assume t � s. Using
the probability measure P̂b;BH ;t in (15), we have

log u (t+ s)� log u (t)

= logEb

"
exp

R t
0 BH (dr; br)

u (t)
Eb

�
exp

Z t+s

t
BH (dr; br � bt + bt)

���� bt�
#

= log Êb;BH ;t

�
Eb

�
exp

Z t+s

t
BH (dr; br � bt + y)

���� bt = y�� : (16)

When y is �xed, from the representation of the Wiener integral it follows thatZ t+s

t
BH (dr; br � bt + y)

=
1X

k=�1

p
qk

Z t+s

0

h
K�
He

ik(b��bt+y)
i
(t+ s; r)Wk (dr)

�
1X

k=�1

p
qk

Z t

0

h
K�
He

ik(b��bt+y)
i
(t; r)Wk (dr)

=
1X

k=�1

p
qk

Z t+s

t

h
K�
He

ik(b��bt+y)
i
(t+ s; r)Wk (dr)

+

1X
k=�1

p
qk

Z t

0

nh
K�
He

ik(b��bt+y)
i
(t+ s; r)�

h
K�
He

ik(b��bt+y)
i
(t; r)

o
Wk (dr)

=: Y1 (y) + Y2 (y) : (17)

We will investigate the properties of Y1 (y) and Y2 (y). Let b0 be the process de�ned by b0r =
br+t� bt. It is clear that b0 is independent of bt, and identically distributed. The term involving Y1
is similar to u (s), modulo a shift by t into the future for both b andW ; using the stationarity of the
increments of both b andW in time, we will see that the term U (s) can be made to appear using Y1,
by injecting (17) into (16). The price to pay for this involves Y2; since Y1 and Y2 are independent
under P, it will be su¢ cient to study Y2 to �nd this price, which will yield the theorem�s �almost�
correction. It is also useful to note that Y1 (y) and Y2 (y) are functions of b0, and are therefore
independent of the path b up to time t.

Step 2. Calculating Y1. To calculate Y1 (y), we notice that for r 2 [t; t+ s], if r0 = r � t, thenh
K�
He

ik(b��bt+y)
i
(t+ s; r)

= KH (t+ s; r) e
ik(br�bt+y) +

Z t+s

r

�
eik(b��bt+y) � eik(br�bt+y)

� @KH
@�

(�; r) d�

= KH
�
s; r0

�
eik(br0+t�bt+y) +

Z s

r0

�
eik(b� 0+t�bt+y) � eik(br0+t�bt+y)

� @KH
@� 0

�
� 0; r0

�
d� 0

=
h
K�
He

ik(b�+t�bt+y)
i �
s; r0

�
=
h
K�
He

ik(b0�+y)
i �
s; r0

�
:

11



De�ne the shifted potential �tW by �tW (t0; x) = W (t+ t0; x) for all x 2 R and t0 � 0. Then we
get

Y1 (y) =

1X
k=�1

p
qk

Z s

0

h
K�
He

ik(b0�+y)
i
(s; r) �tWk (dr) :

As we said, �tW has the same distribution as W and b0 has the same distribution as b. Thus,
Eb0
�
eY1(y)

�
has the same distribution as u (s; y), and hence as u (s) because the random �eld u (s; x)

is spatially homogeneous.

Step 3. Estimating Y2. We now calculate Y2 (y). For r 2 [0; t), we can expressh
K�
He

ik(b��bt+y)
i
(t+ s; r)�

h
K�
He

ik(b��bt+y)
i
(t; r)

= KH (t+ s; r) e
ik(br�bt+y) +

Z t+s

r

�
eik(b��bt+y) � eik(br�bt+y)

� @KH
@�

(�; r) d�

�KH (t; r) eik(br�bt+y) �
Z t

r

�
eik(b��bt+y) � eik(br�bt+y)

� @KH
@�

(�; r) d�

= KH (t+ s; r) e
ik(br�bt+y) �KH (t; r) eik(br�bt+y)

+

Z t+s

t

�
eik(b��bt+y) � eik(br�bt+y)

� @KH
@�

(�; r) d�

=

Z t+s

t
eik(b��bt+y)

@KH
@�

(�; r) d�

=

Z t+s

t
eik(b

0
��t+y)@KH

@�
(�; r) d�:

Therefore we have

Y2 (y) =

1X
k=�1

p
qk

Z t

0

�Z t+s

t
eik(b

0
��t+y)@KH

@�
(�; r) d�

�
Wk (dr) :

For each �xed path b, fY2 (y) : y 2 [0; 2�]g is a Gaussian �eld indexed by [0; 2�], and is identical
to the same �eld indexed by all of R because 2� is the period of the covariance function Q. The
canonical metric � (y1; y2) of Y2 is de�ned by the formula

�2 (y1; y2) := E
h
(Y2 (y1)� Y2 (y2))2

i
=

1X
k=�1

qk

Z t

0

����Z t+s

t

�
eik(b

0
��t+y1) � eik(b0��t+y2)

� @KH
@�

(�; r) d�

����2 dr (18)

We estimate � as follows:

�2 (y1; y2) � jy1 � y2j2
 1X
k=�1

k2qk

!Z t

0
jKH (t+ s� r)�KH (t� r)j2 dr

= jy1 � y2j2Q21
Z t

0
2H
���(t+ s� r)H� 1

2 � (t� r)H�
1
2

���2 dr
= jy1 � y2j2Q21s2H

Z t
s

0
2H
���rH� 1

2 � (1 + r)H�
1
2

���2 dr
� jy1 � y2j2Q21s2H

Z 1

0
2H
���rH� 1

2 � (1 + r)H�
1
2

���2 dr: (19)
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Therefore we obtain an upper bound on �

� (y1; y2) � Q1LHsH jy1 � y2j (20)

with

LH :=

�Z 1

0
2H
���rH� 1

2 � (1 + r)H�
1
2

���2 dr� 1
2

: (21)

Applying the Dudley-Fernique Theorem 3.1, we can estimate a lower bound on Y2 (y). Let N (")
be the minimum number of "�balls covering the interval [0; 2�] (in the metric �). According to the
above estimate (20) on �, we can construct an "�net V" which covers the interval [0; 2�] and the
number of elements in V" is no more than

2�Q1LHs
H

" + 1. Also when " � 2�Q1LHsH =: "max it is
trivial that N (") = 1. We get

E

"
sup

y2[0;2�]
f�Y2 (y)g

#
� Kuniv

Z "max

0

����log 2�Q1LHsH"

����
1
2

d"

= 2�KunivQ1LHs
H

Z 1

0
2r2e�r

2
dr

=
p
�3KunivQ1LHs

H :

Here the inequality comes from (11) and the fact that �Y2 (y) has the same distribution as Y2 (y);
Kuniv is a positive universal constant. It follows that

E

�
inf

y2[0;2�]
Y2 (y)

�
= �E

"
sup

y2[0;2�]
f�Y2 (y)g

#
� �

p
�3KunivQ1LHs

H : (22)

This is one point where having b be limited to a compact set is crucial. If b were allowed to wander
in all of R, the above expectations would be in�nite.

Step 4. Putting the estimates together. Now go back to (16). As noted before, since b0 is
independent of bt, thus Y1 (y) and Y2 (y) are also independent of bt. Therefore

Eb

�
exp

�
Y1 (y) + inf

z2[0;2�]
Y2 (z)

����� bt = y�
= Eb0

�
exp

�
Y1 (y) + inf

z2[0;2�]
Y2 (z)

������
y=bt

;

where the notation Eb0 [� � � ] jy=bt means that �rst one takes the expectation with respect to b0 with
y �xed, and then one replaces y by bt. It follows that, to evaluate the last quantity in (16), we can
write

Êb;BH ;t

�
Eb

�
exp

Z t+s

t
BH (dr; br � bt + y)

���� bt = y��
=Êb;BH ;t [Eb fexp fY1 (y) + Y2 (y)gj bt = yg]

�Êb;BH ;t
�
Eb

�
exp

�
Y1 (y) + inf

z2[0;2�]
Y2 (z)

����� bt = y��
=Êb;BH ;t

"
Eb0

�
exp

�
Y1 (y) + inf

z2[0;2�]
Y2 (z)

������
y=bt

#

=Êb;BH ;t

�
Eb0

�
eY1(bt) exp

�
inf

z2[0;2�]
Y2 (z)

���
: (23)
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In the iterated expectation notation in the last line above, and below, a shorthand notation is
introduced: we replaced Y1 (y) in conjunction with the notation jy=bt , by the more compact notation
Y1 (bt); still, �rst bt is considered as a constant, while Eb0 is taken, and then it is replaced by bt
before the second expectation is taken.

We introduce another random probability measure ~Pb;BH ;t on the same space as Pb by

~Pb;BH ;t [A] = Êb;BH ;t

"
Eb0

"
eY1(bt)

Êb;BH ;tEb0
�
eY1(bt)

�1A## ;
and denote by ~Eb;BH ;t the corresponding expected value; thence we reexpress the last line in (23)
as

Êb;BH ;t

�
Eb0

�
eY1(bt) exp

�
inf

z2[0;2�]
Y2 (z)

���
=
�
Êb;BH ;t

h
Eb0
h
eY1(bt)

ii�
~Eb;BH ;t

�
exp

�
inf

z2[0;2�]
Y2 (z)

��
: (24)

Taking (16), (23) and (24) together yields the following estimation:

log u (t+ s)� log u (t)

= log Êb;BH ;t

�
Eb

�
exp

Z t+s

t
BH (dr; br � bt + y)

���� bt = y��
� log Êb;BH ;tEb0

�
eY1(bt) exp

�
inf

z2[0;2�]
Y2 (z)

��
= log Êb;BH ;tEb0

h
eY1(bt)

i
+ log ~Eb;BH ;t

�
exp

�
inf

z2[0;2�]
Y2 (z)

��
� Êb;BH ;t

h
logEb0

h
eY1(bt)

ii
+ ~Eb;BH ;t

�
inf

z2[0;2�]
Y2 (z)

�
:

Taking the expectation with respect to P, we get

U (t+ s)� U (t)

� E
�
Êb;BH ;t

h
logEb0

h
eY1(bt)

ii
+ ~Eb;BH ;t

�
inf

z2[0;2�]
Y2 (z)

��
= Êb;BH ;t

h
E
h
logEb0

h
eY1(bt)

iii
+ ~Eb;BH ;tE

�
inf

z2[0;2�]
Y2 (z)

�
:

As indicated before, Eb0
�
eY1(y)

�
has the same distribution as u (s). Therefore

Êb;BH ;t

h
E
h
logEb0

h
eY1(bt)

iii
= Êb;BH ;t [U (s)] = U (s) :

Combining this with the lower bound in (22) we get

U (t+ s)� U (t) � U (s)�
p
�3KunivQ1LHs

H :

The proof is therefore completed by setting

~CQ;H =
p
�3KunivQ1LH ; (25)

where the three constants Kuniv, Q1, and LH are given respectively in Theorem 3.1, Assumption
1, and equation (21).
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Remark 4.7 It follows from De�nition 4.1 and Theorem 4.5 that fU (t)gt2N is an almost super-
additive sequence relative to f� (t)g where

� (t) = ~CQ;Ht
H : (26)

Remark 4.8 From (21), when H ! 1
2 , we can see that LH ! 0 and therefore ~CQ;H ! 0. That

~CQ;H = 0 for H = 1=2 coincides with the fact that fU (t)g is a superadditive sequence when
H = 1=2, where the polymer is in a Brownian environment.

For � (t) given in (26), it is not hard to see that limt!1 t�1� (t) = 0; and furthermore,

1X
n=1

� (2n)

2n
= ~CQ;H

1X
n=1

2n(H�1) = ~CQ;H

�
2H�1

1� 2H�1

�
=

~CQ;H
21�H � 1 <1:

Therefore, by Theorem 4.3, if supt2N t
�1U (t) < 1, then limt!1 t�1U (t) exists and is �nite;

otherwise, limt!1 t�1U (t) diverges properly to 1.
We will see that when H < 1

2 ,
�
t�1U (t)

	
t2N is in fact bounded and thus converges, while when

H > 1
2 , the story is quite di¤erent:

�
t�1U (t)

	
t2N diverges to1 properly. We now study each case

separately.

5 Exponential Behavior when H < 1
2

In this section, we study the exponential behavior of u (t) when H < 1
2 . We prove that under

certain conditions, the Lyapunov exponent of u (t) exists almost surely and is strictly positive.

Assumption 2

C�Q;H :=

p
Q (0)�Q (2)
(H + 1)

p
�

�
p
�3KunivQ1LH
21�H � 1 > 0: (27)

Remark 5.1
p
�3KunivQ1LH is the constant ~CQ;H in Theorem 4.5. Recall that Kuniv, Q1, and

LH are given respectively in Theorem 3.1, Assumption 1, and equation (21).

Remark 5.2 As H ! 1=2, (21) shows that LH ! 0, which then means that there exists some
H0 < 1=2 such that when H > H0, Assumption 2 is equivalent to the nondegeneracy assumption

Q (0) > Q (2) : (28)

Remark 5.3 Condition (28), which can easily be weakened to Q (0) > Q (x) for some x 6= 0,
simply means that the random �eld BH (t; x) is not identically constant in x. Condition (28) is
thus satis�ed for all non-trivial potentials BH , including the case of spatial white noise (BH (t; x)
and BH (s; y) independent for all x 6= y, i.e. Q (0) > 0 and Q (x) = 0 for all x 6= 0).

The main result established in this section is the following.

Theorem 5.4 Let H 2
�
0; 12
�
and assume Assumptions 1 and 2 are satis�ed. Then there exists

�0 > 0 such that for any � < �0,

� := lim
t!1;t2N

1

t
log u (t)

exists almost surely, is deterministic, �nite, and positive.
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5.1 Sublinear Growth of U (t)

Recall from the preliminary notation and calculations in Section 2 that we have a summation
expression for u (t) given by

u (t) =
1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)dt1 � � � dtm; (29)

where

Xm
�
~t; ~x
�
:=

1X
k=�1

p
qk

mX
j=0

Z tj+1

tj

fm;
~t;~x

j (s)Wk (ds)

with each fm;
~t;~x

j (s), j = 0; 1; : : : ;m, being de�ned in (10).

Lemma 5.5 For each �xed m and each �xed path b =
�
~t; ~x
�
, the variance of Xm

�
~t; ~x
�
is bounded

from above by
E
�
X2
m

�
~t; ~x
��
� 4Q(0) (m+ 1)1�2H t2H : (30)

Proof. For each �xed m, ~t and ~x, Xm
�
~t; ~x
�
is a centered Gaussian random variable with variance

E
�
X2
m

�
~t; ~x
��
=

1X
k=�1

qk

mX
j=0

Z tj+1

tj

���fm;~t;~xj (s)
���2 ds:

We can estimate the bound for each fm;
~t;~x

j (s) by

���fm;~t;~xj (s)
��� = p2H

������eikxj (tj+1 � s)H� 1
2 +

mX
`=j+1

eikx`
h
(t`+1 � s)H�

1
2 � (t` � s)H�

1
2

i������
�
p
2H

8<:(tj+1 � s)H� 1
2 +

mX
`=j+1

h
(t` � s)H�

1
2 � (t`+1 � s)H�

1
2

i9=;
=
p
2H
h
2 (tj+1 � s)H�

1
2 � (t� s)H�

1
2

i
� 2

p
2H (tj+1 � s)H�

1
2 : (31)

Therefore one obtains

E
�
X2
m

�
~t; ~x
��
� 4

1X
k=�1

qk

mX
j=0

Z tj+1

tj

2H (tj+1 � s)2H�1 ds

= 4Q (0)

mX
j=0

(tj+1 � tj)2H :

Since
Pm
j=0 (tj+1 � tj) = t and H < 1

2 , we get that
Pm
j=0 (tj+1 � tj)

2H attains its maximum
when tj+1 � tj = t

m+1 for j = 0; 1; : : : ;m. This translates as the conclusion of the lemma.

Thanks to this lemma, we are able to prove that the growth rate of U (t) is at most linear.
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Theorem 5.6 When H 2
�
0; 12
�
, there exists a constant CQ;H;�, depending only on Q, H and �,

such that
U (t)

t
� CQ;H;�; t 2 N:

Proof. In this proof, c1, c2, etc. denote universal constants unless indicated otherwise.
First note that Jensen�s inequality yields

U (t) = E [log u (t)] � logE [u (t)] : (32)

It follows from (29) that

E [u (t)] =

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
E
h
eXm(

~t;~x)
i
dt1 � � � dtm:

Since Y is a centered Gaussian random variable, we get

E
h
eXm(

~t;~x)
i
= exp

�
1

2
E
�
X2
m

�
~t; ~x
���

� exp
n
2Q (0) (m+ 1)1�2H t2H

o
for each m, thanks to Lemma 5.5. It therefore follows that

E [u (t)] �
1X
m=0

p (t;m) exp
n
2Q (0) (m+ 1)1�2H t2H

o
: (33)

Here p (t;m) is the probability that a Poisson process with parameter 2� has exactly m jumps
before time t. It is known that p (t;m) attains its maximum when m � �t for some constant � > 0
and decays exponentially when m is large. Therefore it is natural that the summation of all terms
up to m = �t will contribute the principal part of the above summation of series.

We now split the summation in (33) into two parts, at the point m = b�tc, where � is a positive
constant depending only on Q, H and �, which will be determined later; that is,

1X
m=0

p (t;m) exp
n
2Q (0) (m+ 1)1�2H t2H

o

=

0@b�tc�1X
m=0

+

1X
m=b�tc

1A p (t;m) expn2Q (0) (m+ 1)1�2H t2Ho :
Here bxc denotes the greatest integer less than or equal to x.

The �rst part in the summation can be controlled by

b�tc�1X
m=0

p (t;m) exp
n
2Q (0) (m+ 1)1�2H t2H

o
� exp

n
2Q (0) (�t)1�2H t2H

o
= exp

�
2Q (0)�1�2Ht

	
:

As for the second part in the summation, let us denote by Jm each term in it, for each integer
m � b�tc. Since p (t;m) = e�2�t (2�t)

m

m! , we have

Jm = e
�2�t (2�t)

m

m!
exp

n
2Q (0) (m+ 1)1�2H t2H

o
:
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From Stirling�s formula m! '
p
2�m+ o (m) e�mmm when m is large, we can control Jm from

above by

Jm �
c1 (2�t)

m e�2�tp
2�m e�mmm

exp
n
2Q (0) (m+ 1)1�2H t2H

o
:

If � is chosen such that 2Q (0) � �2H , then

Jm �
c1 (2�t)

m e�2�tp
2�m e�mmm

exp
n
(�t)2H (m+ 1)1�2H

o
� c1 (2�t)

m e�2�tp
2�m e�mmm

em+1

since m+ 1 � b�tc+ 1 > �t. Hence

Jm �
c1e

�2�t+1
p
2�

�
2�te2

m

�m
� c1e

�2�t+1
p
2�

�
2�te2

�t� 1

�m
:

If � is further chosen such that 2�te
2

�t�1 <
1
2 , then

1X
m=b�tc

Jm <

1X
m=b�tc

c1e
�2�t+1
p
2�

�
1

2

�m
<
c1ep
2�
:

Therefore by taking

� = �Q;H;� = max
�
(2Q (0))

1
2H ; 4�e2 + 1

�
; (34)

we obtain
E [u (t)] � exp

n
2Q (0) (�Q;H;�)

1�2H t
o
+
c1ep
2�
: (35)

It follows from (32) that

U (t) � logE [u (t)] � c2Q (0) (�Q;H;�)1�2H t:

Let
CQ;H;� = c2Q (0) (�Q;H;�)

1�2H ;

then the proof is �nished.

5.2 Positivity

We proved in the last Subsection that supt2N t
�1U (t) < 1. Since fU (t)gt2N is also an almost

superadditive sequence as a consequence of Theorem 4.5, Theorem 4.3 implies that

� := lim
t!1

U (t)

t

exists as long as Assumption 1 is satis�ed. In that case � is nonnegative because U (t) � 0.
Furthermore, if we can prove that � is strictly positive, then U (t) will grow at a linear rate
asymptotically; otherwise, U (t) would grow slower than linearly. In this Subsection we therefore
investigate the positivity of �.
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Let � (t) =
p
�3KunivQ1LHt

H and recall from Theorem 4.5 that we have U (t+ s) � U (t) +
U (s)� � (t+ s) for any s; t 2 N, under Assumption 1 .

Even though the limit of U (t) =t is not attained increasingly with our non-superadditive se-
quence, we can still use the exact form of our error term � (t+ s) to quantify precisely the maximum
distance that � might dip below U (t) =t for any given t. Speci�cally we have the following

Lemma 5.7 Under the hypotheses and notation of Theorem 4.5 and its proof, we have the existence
of � such that for any t � 0,

� = lim
t!1

U (t)

t
� 1

t

 
U (t)�

p
�3KunivQ1LHt

H

21�H � 1

!
:

Proof. The existence of � was established in the discussion above. Denote ~U (t) = U(t)
t and

~� (t) = �(t)
t . Now, let t be �xed; then

~U (2t) � ~U (t)� ~� (2t) ;

follows from almost superadditivity. We obtain that, by induction,

~U (2nt) � ~U (t)�
nX
i=1

~�
�
2it
�
:

Letting n!1, we obtain

� � ~U (t)�
1X
i=1

~�
�
2it
�
:

Furthermore, we calculate

1X
i=1

~�
�
2it
�
=
p
�3KunivQ1LHt

H�1
1X
i=1

2i(H�1) =

p
�3KunivQ1LHt

H�1

21�H � 1 :

The result of the lemma now follows.

A lower bound estimate on U (t) is in need here. Even though the next lemma is not particularly
di¢ cult to establish, it does represent the speci�c technical reason we are able to prove positivity
for our polymer Lyapunov exponent.

Lemma 5.8 For any t, it holds that

U (t) � �2�t+ log (2�t)� log 2 +
 p

Q (0)�Q (2)
(H + 1)

p
�

!
tH :

Proof. In order to obtain a lower bound on U (t), we need consider no more than the path b with
exactly one jump before time t. Then, ignoring all other terms in (8),

U (t) � E
"
log

 
p (t; 1)

Z t

0

ds

t

eX1(s;+1) + eX1(s;�1)

2

!#
;
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where

X1 (s; j) =

Z s

0
BH (dr; 0) +

Z t

s
BH (dr; j) ; j = �1:

Since a+ b � max (a; b) when a; b � 0, we therefore have

U (t) � E
"
log

 
p (t; 1)

Z t

0

ds

t

max
�
eX1(s;+1); eX1(s;�1)

�
2

!#

= E

�
log

�
p (t; 1)

2

Z t

0

ds

t
exp fmax (X1 (s;+1) ; X1 (s;�1))g

��
:

It follows from Jensen�s inequality that

U (t) � log p (t; 1)� log 2 +
Z t

0

ds

t
E [max (X1 (s;+1) ; X1 (s;�1))]

= �2�t+ log (2�t)� log 2 +
Z t

0

ds

t
E [max (X1 (s;+1) ; X1 (s;�1))] :

Note that max (a; b) = (a+ b+ ja� bj) =2. Since X1 (s; 1) and X1 (s;�1) are centered Gaussian
random variables, we have

E [max (X1 (s; 1) ; X1 (s;�1))] =
1

2
E [jX1 (s; 1)�X1 (s;�1)j] =

� (s)p
2�

with

� (s) =
p
V ar [X1 (s; 1)�X1 (s;�1)]

=

r
2 [Q (0)�Q (2)]E

h
(BH (t)�BH (s))2

i
�
p
2 [Q (0)�Q (2)] (t� s)H :

For the last inequality, see Section 7.3 in the Appendix. Therefore, we get the conclusion of the
lemma.

Our positivity result can now be easily established.

Theorem 5.9 Let H 2
�
0; 12
�
and assume Assumptions 1 and 2 are satis�ed. Then there exists

�0 > 0 such that for any � < �0,

� := lim
t!1;t2N

U (t)

t

exists, is �nite, and positive.

Proof. As proved before, � exists, is �nite, and nonnegative under Assumption 1. Furthermore,
in Lemma 5.7, we have shown that for any t,

� � 1

t

 
U (t)�

p
�3KunivQ1LHt

H

21�H � 1

!
:
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We therefore get

� � 1

t

"
�2�t+ log (2�t)� log 2 +

 p
Q (0)�Q (2)
(H + 1)

p
�

�
p
�3KunivQ1LH
21�H � 1

!
tH

#

by virtue of Lemma 5.8. Since Assumption 2 is also satis�ed, we have

� � 1

t

�
�2�t+ log (2�t)� log 2 + C�Q;HtH

�
with C�Q;H > 0.

Now assume � < 1
4 and choose t = t� = b

1
2�c, then

1 � 2�t� > 1� 2� >
1

2
:

Therefore
� � 1

t�

�
�1� 2 log 2 + C�Q;HtH�

�
:

Denote C0Q;H =
�
1+2 log 2
C�Q;H

� 1
H
and let �0 = min

�
1
4 ;

1
2(1+C0Q;H)

�
, then for any � < �0, we have

t� > C
0
Q;H and consequently,

� � 1

t�

�
�1� 2 log 2 + C�Q;HtH�

�
> 0:

Remark 5.10 When all the assumptions in Theorem 5.9 are satis�ed, there further exists �1 > 0
such that for any � < �1,

� � 1

t�

�
�1� 2 log 2 + C�Q;HtH�

�
� 1

2
C�Q;Ht

H�1
� � 1

2
C�Q;H (2�)

1�H :

This gives a lower bound on how fast � may decrease as the di¤usion constant � goes to 0. We see
that the largest lower bounds are obtained for H close to 1=2, i.e. for BH that is more regular in
time. This contrasts sharply with results such as in [18], where the dependence of a similar � on �
shows a larger lower bound when H is smallest, but for a random medium with fractional Brownian
behavior in space, not time. Memory length in space and in time seem to have opposite e¤ects.
This question will be investigated further in a separate article.

5.3 Concentration Theory

So far we have studied the properties of U (t). In this Subsection, we will show an important
relation between the asymptotic behavior of U (t) and that of u (t).

Theorem 5.11 When H 2
�
0; 12
�
, it holds almost surely that

lim
t!1;t2N

�
1

t
log u (t)� 1

t
U (t)

�
= 0:
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We will prove this theorem by applying the Malliavin derivative Lemma 3.2 to t�1 log u (t).
Since in the expression (29) for u (t), each Xm

�
~t; ~x
�
has a random Fourier series representation, we

must use the discrete version (13) of this lemma. It is therefore necessary to �nd a bound on the
Malliavin derivative Ds;k log u (t), for s � 0 and k 2 Z.

Lemma 5.12 There exists a positive constant CQ;H;�, depending only on Q, H and �, such that

E

" 1X
k=�1

Z t

0
(E [Ds;k log u (t)j Fs])2 ds

#
� CQ;H;�t:

Proof. Step 1. Setup. Since

u (t) =

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)dt1 � � � dtm;

we have

Ds;k log u (t) =
1

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)Ds;kXm
�
~t; ~x
�
dt1 � � � dtm

=: Êb;BH ;t [Y ] ;

where Êb;BH ;t is the expectation under the polymer measure, i.e. the probability measure P̂b;BH ;t
which we de�ned in (15). Here Y is a random variable de�ned as follows: for �xed m and �xed
~t 2 S (t;m) and ~x 2 Pm, conditionally on the event that Nt = m and the jump times and positions
of b are given by ~t and ~x, Y = Ds;kXm

�
~t; ~x
�
.

From Jensen�s inequality for the probability measure P̂b;BH ;t it follows that

(Ds;k log u (t))
2

�Êb;BH ;t
�
Y 2
�

=
1

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) ��Ds;kXm �~t; ~x���2 dt1 � � � dtm: (36)

Step 2. The Malliavin derivative of log u (t). Note that for �xed m,

Xm
�
~t; ~x
�
:=

1X
k=�1

p
qk

mX
j=0

Z tj+1

tj

fm;
~t;~x

j (s)Wk (ds)

with each fm;
~t;~x

j (s), j = 0; 1; : : : ;m, is de�ned in (10). Therefore we can calculate Ds;kXm and use
the estimate (31) to get

��Ds;kXm �~t; ~x��� = pqk
������
mX
j=0

fm;
~t;~x

j (s)1[tj ;tj+1] (s)

������
� 2pqk

mX
j=0

p
2H (tj+1 � s)H�

1
2 1[tj ;tj+1](s): (37)

22



Denote

gm
�
~t; s
�
=

mX
j=0

p
2H (tj+1 � s)H�

1
2 1[tj ;tj+1] (s) :

Applying result (37) to inequality (36) we get

(Ds;k log u (t))
2

�4qk

 
1

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) ��gm �~t; s���2 dt1 � � � dtm! :
Step 3. The L2 norm of log u (t)�s Malliavin derivative. From the result of the previous step

we getZ t

0
E
h
(Ds;k log u (t))

2
i
ds

� 4qkE
"
1

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)
�Z t

0

��gm �~t; s���2 ds� dt1 � � � dtm# :
Since Z t

0

��gm �~t; s���2 ds = mX
j=0

Z tj+1

tj

2H (tj+1 � s)2H�1 ds =
mX
j=0

(tj+1 � tj)2H ;

we can control it by Z t

0

��gm �~t; s���2 ds � (m+ 1)1�2H t2H
because H < 1

2 and
Pm
j=0 (tj+1 � tj) = t. One then obtains thatZ t

0
E
h
(Ds;k log u (t))

2
i
ds

� 4qkE
"
t2H

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm

#
:

And we �nally obtain

E

" 1X
k=�1

Z t

0
(E fDs;k log u (t)j Fsg)2 ds

#

� E
" 1X
k=�1

Z t

0
E
n
(Ds;k log u (t))

2
���Fso ds#

=
1X

k=�1

Z t

0
E
h
(Ds;k log u (t))

2
i
ds

� 4Q (0)E
"
t2H

u (t)

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm

#
:
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Step 4. Dealing with the Poisson law. To �nd an upper bound on the expectation in the last
line above, we can use the same technique as in the proof of Theorem 5.6. We split the summation
in the expectation into two parts at the point m = b�tc:

1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm

=

0@b�tc�1X
m=0

+
1X

m=b�tc

1A p (t;m) X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm:

Here � is a constant depending only on Q, H and �; we will choose it later.
The �rst part of the expectation of the summation above is then bounded from above as

I := E

24 t2H
u (t)

b�tc�1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm

35
� E

24 t2H
u (t)

(�t)1�2H
b�tc�1X
m=0

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x)dt1 � � � dtm

35
� �1�2Ht:

Meanwhile, we can control the second part of the expected summation as

J := E

24 t2H
u (t)

1X
m=b�tc

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
eXm(

~t;~x) (m+ 1)1�2H dt1 � � � dtm

35
= t2H

1X
m=b�tc

p (t;m)
X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
E

"
eXm(

~t;~x)

u (t)

#
(m+ 1)1�2H dt1 � � � dtm

� t2H
1X

m=b�tc
p (t;m)

X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
(m+ 1)1�2H

�
�
E
h
e2Xm(

~t;~x)
i� 1

2
�
E
h
(u (t))�2

i� 1
2
dt1 � � � dtm:

We �rst have

E
h
e2Xm(

~t;~x)
i
= exp

�
2E
�
X2
m

�
~t; ~x
��	

� exp
n
8Q (0) t2H (m+ 1)1�2H

o
;

thank to result (30). Notice that function � (x) = x�2 is convex on R+n f0g. Therefore we also
have

E
h
(u (t))�2

i
= E

"�
Eb

�
exp

�Z t

0
BH (ds; bs)

����2#

� EEb
�
exp

�
�2
Z t

0
BH (ds; bs)

��
:
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Let ~BH be a fractional Brownian motion with spatial covariance ~Q = 4Q, then for any �xed path b,
�2
R t
0 BH (ds; bs) has the same distribution as

R t
0
~BH (ds; bs). Applying the result (35), with �4Q;H;�

as de�ned in (34),

EEb

�
exp

�
�2
Z t

0
BH (ds; bs)

��
� exp

n
8Q (0) (�4Q;H;�)

1�2H t
o
+
c1ep
2�

� exp
n
8c2Q (0) (�4Q;H;�)

1�2H t
o
:

Therefore,

J � t2H
1X

m=b�tc
p (t;m)

X
~x2Pm

1

2m

Z
~t2S(t;m)

m!

tm
(m+ 1)1�2H dt1 � � � dtm

� exp
n
4Q (0) t2H (m+ 1)1�2H + 4c2Q (0) (�4Q;H;�)

1�2H t
o

� t2H
1X

m=b�tc

c1 (2�t)
m e�2�tp

2�m e�mmm
(m+ 1)1�2H

� exp
n
4Q (0) t2H (m+ 1)1�2H + 4c2Q (0) (�4Q;H;�)

1�2H t
o

where Stirling�s formula is used.
Step 5. Optimizing over �. If � is chosen such that 4Q (0) � �2H and 4c2Q (0) (�4Q;H;�)1�2H �

�, then

J � t2H
1X

m=b�tc

c1 (2�t)
m e�2�tp

2�m e�mmm
(m+ 1)1�2H e2(m+1)

� t2H
1X

m=b�tc

c1e
�2�t+2
p
2�

�
2�te4

�t� 1

�m
:

Let � be further chosen such that 2�te
4

�t�1 <
1
2 . Then

J � t2H
1X

m=b�tc

c1e
�2�t+2
p
2�

�
1

2

�m
�
�
c1e

2

p
2�

�
t2H :

By taking

� = ~�Q;H;� := max
�
(4Q (0))

1
2H ; 4c2Q (0) (�4Q;H;�)

1�2H ; 4�e4 + 1
�
;

we �nally obtain

E

" 1X
k=�1

Z t

0
(E [Ds;k log u (t)j Fs])2 ds

#
� 4Q (0) (I + J)

� 4Q (0)
�
(~�Q;H;�)

1�2H t+
c1e

2

p
2�

t2H
�
� CQ;H;�t:
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Here the constant is given by

CQ;H;� = 4Q (0)

�
(~�Q;H;�)

1�2H +
c1e

2

p
2�

�
:

Now we can complete the proof of Theorem 5.11.
Proof. [Proof of Theorem 5.11]

We apply Lemma 3.2 to G = t�1 log u (t). For every p � 1

E
h
(G�E [G])2p

i
� Cp

(
1

t2
E

" 1X
k=�1

Z t

0
(E [Ds;k log u (t)j Fs])2 ds

#)p

� Cp
�
CQ;H;�
t

�p
=:
CQ;H;�;p
tp

:

Here the last inequality comes from Lemma 5.12. Therefore by Chebyshev�s inequality, for �xed
integer t, for any constant C (t) > 0,

P

�����1t log u (t)� 1t U (t)
���� > C (t)� � CQ;H;�;p

tp [C (t)]2p
:

Let tp [C (t)]2p = t� , that is, C (t) = t�(p��)=(2p). By choosing � > 1 but close to 1 enough, we
only need to require p > 1 to guarantee that limt!1C (t) = 0, and then we are able to apply the
Borel-Cantelli lemma and obtain that, almost surely,

lim
t!1

�
1

t
log u (t)� 1

t
U (t)

�
= 0:

The main result of this section is now trivial.
Proof. [Proof of Theorem 5.4] Theorem 5.4 is a consequence of combining Theorems 4.5, 5.6,
5.9 and 5.11 together.

6 Exponential Behavior when H > 1
2

6.1 Concentration Theory

When H > 1
2 , we still have the concentration result just as in the case of H < 1

2 .

Theorem 6.1 When H 2 (1=2; 1), it holds almost surely that

lim
t!1;t2N

�
1

t
log u (t)� 1

t
U (t)

�
= 0:

This theorem extends Theorem 5.11 to all H 2 (0; 1). However, the Lyapunov exponent of u (t)
actually blows up in this case because

lim
t!1

1

t
U (t) = +1; a.s.
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This fact is not straightforward: it is implied by the lower bound result in Subsection 6.3 (Theorem
6.7) below. Because of this we seek instead the almost-sure existence of limt!1 1

L(t) log u (t) for
some deterministic function L (t) which grows faster than linearly. Independent of the existence of
such a function L (t), we have the following immediate corollary to Theorem 6.1.

Corollary 6.2 For any deterministic function L (t) which grows faster than t, by which we mean
that limt!1 t�1L (t) = +1, it follows immediately that almost surely,

lim inf
t!1;t2N

1

L (t)
log u (t) = lim inf

t!1;t2N

1

L (t)
U (t) ; a.s.

and
lim sup
t!1;t2N

1

L (t)
log u (t) = lim sup

t!1;t2N

1

L (t)
U (t) ; a.s.:

Notice that both a.s.-lim inft!1 1
L(t) log u (t) and a.s.-lim supt!1

1
L(t) log u (t) are deterministic

real numbers since U (t) is deterministic.

De�nition 6.3 We call a deterministic function L (t) the exponential rate function of u (t) if the
following non-trivial limits hold almost surely simultaneously:

lim inf
t!1;t2N

1

L (t)
log u (t) > 0 (38)

lim sup
t!1;t2N

1

L (t)
log u (t) <1: (39)

If the above two limits coincide, the common value �� is called the Lyapunov exponent with respect
to the exponential rate function L (t). If only (38) is known to be satis�ed, we say L (t) is a proper
lower bound on the exponential rate function of u (t); on the other hand, if only (39) is known to
be satis�ed, we say L (t) is a proper upper bound on the exponential rate function of u (t).

Remark 6.4 When H > 1
2 , the lower bound result of Subsection 6.3 (Theorem 6.7) implies that

with L (t) any lower bound on the exponential rate function of u (t), we must have limt!1 L (t) =t =
1:

Proof. [Proof of Theorem 6.1]
The proof applies Lemma 3.2 to G = t�1 log u (t), just as we had done in the case of H < 1=2.

The calculations here, however, are not the same; it turns out they are simpler. Recall that we
have the random Fourier series representation of u (t) as (6),

u (t) = Eb

"
exp

( 1X
k=�1

p
qk

Z t

0

h
K�
He

ikb�
i
(t; s)Wk (ds)

)#
:

When H > 1
2 , the operator K

�
H is more regular than when H < 1=2. Its action on eikb� can be

written as h
K�
He

ikb�
i
(t; s) =

Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr:
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Therefore we have

u (t) = Eb

"
exp

( 1X
k=�1

p
qk

Z t

0
Wk (ds)

�Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr

�)#
: (40)

We calculate that, for each k,

Ds;kG

=
1

t

1

u (t)
Eb

�
p
qk

�Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr

�
exp

�Z t

0
BH (ds; bs)

��
=
1

t
Êb;BH ;t

�
p
qk

Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr

�
when s � t; and Ds;kG = 0 when s > t. Here, Êb;BH ;t is the expectation under the random measure
P̂b;BH ;t de�ned in (15). Since H > 1

2 , we can control Ds;kG by

jDs;kGj �
1

t
Êb;BH ;t

�
p
qk

Z t

s

p
2H

�
H � 1

2

�
(r � s)H�

3
2 dr

�
=

p
2Hqk (t� s)H�

1
2

t
:

Applying Lemma 3.2 for every p � 1, we get

E
h
(G�E [G])2p

i
� Cp

(
E

" 1X
k=�1

Z t

0
(E fDs;kG jFs g)2 ds

#)p

� Cp

(
1

t2

1X
k=�1

qk

Z t

0
2H (t� s)2H�1 ds

)p

=
Cp [Q(0)]

p

tp(2�2H)
=:

CQ;p

tp(2�2H)
:

What we have just proved is that for any t 2 N,

E

"�
1

t
log u (t)� 1

t
U (t)

�2p#
� CQ;p

tp(2�2H)
:

The remainder of the proof, using Chebyshev�s inequality and the Borel-Cantelli lemma, is now
identical to the same arguments in the proof of Theorem 5.11 with the exception that one uses
C (t) = t[��p(2�2H)]=(2p) and that we thus only need to require p > 1

2�2H .

6.2 Exponential Rate Function: Upper Bound

One straightforward fact about U (t) is that t�2HU (t) is bounded. To see this, we consider the
formula (40) in the proof of the last theorem. Let Y be de�ned by u (t) = Eb [expY (t)], i.e.

Y (t) :=

1X
k=�1

p
qk

Z t

0
Wk (ds)

�Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr

�
:
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Then for each �xed path b, Y (t) is a centered Gaussian random variable and its variance is

E
�
Y 2 (t)

�
=

1X
k=�1

qk

Z t

0

����Z t

s

p
2H

�
H � 1

2

�
eikbr (r � s)H�

3
2 dr

����2 ds
=

1X
k=�1

qk

Z t

0

����Z t

s

p
2H

�
H � 1

2

�
(r � s)H�

3
2 dr

����2 ds
= Q (0) t2H :

Then with Jensen�s inequality and Fubini theorem we get

U (t) = E [log u (t)] � logEbE
h
eY (t)

i
� 1

2
Q (0) t2H :

Therefore we have t�2HU (t) � Q (0) =2. This fact plus the concentration result of Corollary 6.2,
yield the following.

Theorem 6.5 When H 2
�
1
2 ; 1
�
, there exits a deterministic, �nite real number �� � Q(0)

2 such
that

lim sup
t!1;t2N

1

t2H
log u (t) � ��; a.s.

Remark 6.6 We cannot say the function L+ (t) := t2H is the exponential rate function of u (t)
because it is not clear whether lim inft!1 1

t2H
U (t) is strictly positive or not. But in either case

L+ (t) is a proper upper bound on the exponential rate function.

6.3 Exponential Rate Function: Lower Bound

The proof of our main result in this subsection is technical because it deals very speci�cally with
the long-term correlation structure of the increments of fBm. Thanks to our concentration result,
the basic problem we need to tackle can be summarized by seeking to maximize Xm

�
~t; ~x
�
over all

possible paths
�
~t; ~x
�
of length m, assuming these paths are allowed to depend on the randomness

of BH , and then �nding that maximum�s expectation. Even when H = 1=2, it is not known what
the form of such a maximizing path is. A technique proposed early on in the case H = 1=2 in [12],

before it was known that concentration inequalities make it useful to evaluate E
h
sup~t;~xXm

�
~t; ~x
�i

for any lower bound estimation, was to restrict ~t to jump at fairly regularly spaced intervals,
and then to choose each increment of ~x in such a way as to maximize the corresponding term
in the analogue of Xm

�
~t; ~x
�
, in a step-by-step way. This work was greatly facilitated by the

independence of the increments in Xm
�
~t; ~x
�
. We have decided to combine this original strategy

with the concentration result, in our case. To deal with the dependence of our increments, we
single out a representative term among the series that forms each increment, and base our random
maximization of the corresponding increment of ~x on it. This means that we then have to investigate
the e¤ect of our choice for ~x on all the other terms of the said series; this is where a detailed
understanding of how the correlations play out is necessary.

Theorem 6.7 Assume Q (0) > Q (2). When H 2
�
1
2 ; 1
�
, there exits a deterministic, positive real

number �� such that

lim inf
t!1;t2N

�
t2H

log t

��1
log u (t) � ��; a.s.
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Proof. Step 1. Initial strategy and remarks. De�ne the �ltration notation

FW(u;v] := � fW (r; x)�W (u; x) : u < r � v; x 2 Zg ; FWu := FW[0;u]:

We write

BH ([u; v] ; x) := BH (v; x)�BH (u; x)

=

Z v

u
KH (v; r)W (dr; x) +

Z u

0
(KH (v; r)�KH (u; r))W (dr; x)

=: IH (u; v;x) + JH (u; v;x) ;

where KH (u; r) =
p
2H (u� r)H�

1
2 . This is a way to single out the �innovations� part of the

increment BH ([u; v]; x), denoted by IH (u; v;x) above, which is measurable with respect to FW(u;v];
therefore it is independent of the other part of the increment, denoted above by JH (u; v;x), because
the latter is measurable with respect to FWu . We will perform the maximization mentioned above
on the innovations parts only, and then investigate its e¤ects on the other parts.

Our goal is to maximize Xm
�
~t; ~x
�
over possible random (BH -dependent) choices of ~x 2 Pm,

where, with �xed m and �xed simplex of jump times ~t 2 S (t;m),

Xm
�
~t; ~x
�
=

mX
j=0

BH ([tj ; tj+1] ; xj) :

In fact, we will only look at calculating the expectation E
�
Xm

�
~t; ~x�

��
for a speci�c choice of ~x�; this

will of course yield a lower bound on a maximized E
�
sup~xXm

�
~t; ~x
��
. We introduce the shorthand

notation IH (tj ; tj+1;xj) =: Ij (xj), and JH (tj ; tj+1;xj) =: Jj (xj). Thus

Xm
�
~t; ~x
�
=

mX
j=0

Ij (xj) +
mX
j=1

Jj (xj) :

We choose the speci�c ~x� by maximizing the terms Ij (xj) step by step. This maximization is
not su¢ cient to obtain our �nal theorem if we then ignore the role of Jj (xj), but it turns out that
the choices made to maximize Ij (xj) are also bene�cial to making Jj (xj) large. This unexpected
bonus only works because of the positivity of increment correlations when H > 1

2 . When H < 1
2 ,

none of these arguments are needed because the correct exponential scale is L (t) = t, which works
in conjunction with our almost superadditivity result.

Step 2. The maximizing path ~x�. First we de�ne x�0 = 0 (we have no choice there) and for
all j � 0, assuming we have de�ned x�j as measurable with respect to FWtj+1 , let x

�
j+1 be the value

among the pair
n
x�j + 1; x

�
j � 1

o
which maximizes max

n
Ij+1

�
x�j + 1

�
; Ij+1

�
x�j � 1

�o
.

We claim the fact that W is spatially homogeneous implies that we can write x�j+1 = x
�
j + "

�
j+1

where "�j+1 is measurable with respect to FW(tj+1;tj+2], and thus is independent of F
W
tj+1 , and therefore

of x�j . Indeed, �rst, by de�nition, "
�
j+1 = argmax

n
Ij+1

�
x�j + z

�
: z 2 f�1;+1g

o
:Consider now

the two-dimensional random vector
�
Ij+1

�
x�j + 1

�
; Ij+1

�
x�j � 1

��
. We claim that this vector is

jointly Gaussian and independent of the random variable x�j . Let f; g be two test functions. Since
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the random �eld fIj+1 (z) ; z 2 Zg depends only on FW(tj+1;tj+2], we have, by conditioning on x
�
j

which is independent of FW(tj+1;tj+2],

E
�
f
�
Ij+1

�
x�j + 1

��
g
�
Ij+1

�
x�j � 1

���
= E

h
E
h
f
�
Ij+1

�
x�j + 1

��
g
�
Ij+1

�
x�j � 1

��
jFWtj+1

ii
= E

h
E [f (Ij+1 (z + 1)) g (Ij+1 (z � 1))]jz=x�j

i
= E [f (Ij+1 (+1)) g (Ij+1 (�1))] ;

where in the last equality we used the spatial homogeneity ofW . Since the pair (Ij+1 (+1) ; Ij+1 (�1))
is jointly Gaussian, this proves that the pair

�
Ij+1

�
x�j + 1

�
; Ij+1

�
x�j � 1

��
is also jointly Gaussian

with the same law. It also proves that "�j+1 has the same law as argmax fIj+1 (z) : z 2 f�1;+1gg.
On the other hand, the conditional part of the calculation above can be repeated as

E
h
f
�
Ij+1

�
x�j + 1

��
g
�
Ij+1

�
x�j � 1

��
jFWtj+1

i
= E [f (Ij+1 (z + 1)) g (Ij+1 (z � 1))]jz=x�j
= E [f (Ij+1 (+1)) g (Ij+1 (�1))] ;

this proves that
�
Ij+1

�
x�j + 1

�
; Ij+1

�
x�j � 1

��
is independent of FWtj+1 , and thus so is "

�
j+1.

Summarizing this step, we have proved that with the sequence x� de�ned by

x�j+1 = x
�
j + "

�
j+1

where x�0 = 0 and
"�j+1 = argmax

�
Ij+1

�
x�j + z

�
: z 2 f�1;+1g

	
;

then "�j+1 is measurable with respect to FW(tj+1;tj+2], is independent of F
W
tj+1 , and has the same

distribution as argmax fIj+1 (z) : z 2 f�1;+1gg.
Step 3. A special expression for the non-innovation terms. A �rst analysis of the J terms

evaluated at ~x�, using again W�s spatial homogeneity, reveals a very interesting property. For any
�xed j, we can further decompose such terms as follows:

Jj
�
x�j
�
=

j�1X
k=0

Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W
�
dr; x�j

�
=

j�1X
k=0

Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W
 
dr; x�k +

jX
`=k+1

"�`

!
:

Note that to evaluate E
�
Xm

�
~t; ~x�

��
, the contribution of the term Jj

�
x�j

�
is simply its expectation.

We claim that we have

E
�
Jj
�
x�j
��

=

j�1X
k=0

E

"Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W
 
dr; x�k +

jX
`=k+1

"�`

!#
(41)

=

j�1X
k=0

E

�Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W (dr; x�k)

�
: (42)
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The elimination of the terms
Pj
`=k+1 "

�
` when going from (41) to (42) above holds because of the

following facts (similar to the argument in Step 2). As noted in Step 2,
Pj
`=k+1 "

�
` is measurable

with respect to _j`=k+1FW(t`;t`+1], and thus is independent of F
W
tk+1

. To calculate the expectation E

in (41), we can calculate �rst the expectation E conditioned on the value of sum
Pj
`=k+1 "

�
` . This

value then vanishes because of homogeneity of W in space. To be precise, we have the following
expression for each term in the sum over k in (41):

E

"Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W
 
dr; x�k +

jX
`=k+1

"�`

!#

= E

264E(Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W (dr; x�k + c)

�����
jX

`=k+1

"�` = c

)�����
c=
Pj
`=k+1 "

�
`

375
= E

"
E

(Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W (dr; x�k)

�����
jX

`=k+1

"�` = c

)#

= E

�Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W (dr; x�k)

�
;

(42) is thus proved.
Step 4. Evaluating the maximized expectation. Introducing the notation

Jj;k (x) =

Z tk+1

tk

(KH (tj+1; r)�KH (tj ; r))W (dr; x) ;

we thus only need to calculate

E
�
Xm

�
~t; ~x�

��
=

mX
j=0

E
�
Ij
�
x�j
��
+

mX
j=0

j�1X
k=0

E [Jj;k (x
�
k)] :

Step 4.1. Simplifying the dependence on x�. For any �xed x, Jj;k (x) 2 FW(tk;tk+1], and Jj;k is
homogeneous in x, so that since x�k can be decomposed as the sum x�k�1 + "

�
k where "

�
k 2 F(tk;tk+1]

and x�k�1 is independent of FW(tk;tk+1], using the same argument as in the previous two steps, the
expectation E [Jj;k (x�k)] is actually equal to E [Jj;k ("

�
k)]. In fact, by the same token, in this last

formula, "�k can simply be understood (has the same distribution) as the value +1 or �1 which
maximizes max fIk (z) : z 2 f�1;+1gg. This is of course the same argument used in Step 2 to prove
that "�j has the same distribution as

"�j = argmax fIj (z) : z 2 f�1;+1gg ;

and we will abusively use the same notation "�j for both of these, because we will only need to refer
to their common law. Again, this coincidence of laws, homogeneity, and independence, imply that

E
h
Ij

�
x�j

�i
can also be written as E

h
Ij

�
"�j

�i
= E [max fIj (z) : z 2 f�1;+1gg]. Thus our task is

only to evaluate

E
�
Xm

�
~t; ~x�

��
=

mX
j=0

E
�
Ij
�
"�j
��
+

mX
j=0

j�1X
k=0

E [Jj;k ("
�
k)] :
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Step 4.2. Covariance structure evaluation. In order to perform such an evaluation, Step 4.1
proves that we only need to investigate, for each �xed j � m; and k � j�1, the covariance structure
of the 4-dimensional Gaussian vector

�
Z+k ; Z

�
k ; Z

+
j;k; Z

�
j;k

�
where Z+k = Ik (+1), Z

�
k = Ik (�1),

Z+j;k = Jj;k (+1), and Z
�
j;k = Jj;k (�1). Indeed, for example, we have

E
�
Ij
�
"�j
��
= E

h
Z
"�j
j

i
= E

�
Z
argmaxfZ"j :"=�1g
j

�
and

E [Jj;k ("
�
k)] = E

h
Z
"�k
j;k

i
= E

�
Z
argmaxfZ"k:"=�1g
j;k

�
;

where we abusively confuse the notation Z+ with Z+1, and Z� with Z�1.

We note that E
h�
Z+k
�2i

= E
h�
Z�k
�2i

and E
h
Z+k Z

+
j;k

i
= E

h
Z�k Z

�
j;k

i
, since the pair

�
Z+k ; Z

+
j;k

�
has the same distribution as

�
Z�k ; Z

�
j;k

�
by homogeneity. We then �rst calculate the covariance

�j;k = E
h
Z+k Z

+
j;k

i
= E

h
Z�k Z

�
j;k

i
and get

�j;k = E
h
Z+k Z

+
j;k

i
= Q (0)

Z tk+1

tk

KH (tk+1; r) (KH (tj+1; r)�KH (tj ; r)) dr

= Q (0)

Z tk+1

tk

2H (tk+1 � r)H�
1
2

�
(tj+1 � r)H�

1
2 � (tj � r)H�

1
2

�
dr: (43)

On the other hand we can calculate trivially that

�2k = E
h�
Z+k
�2i

= E
h�
Z�k
�2i

= Q (0)

Z tk+1

tk

2H (tk+1 � r)2H�1 dr

= Q (0) (tk+1 � tk)2H : (44)

Let
�j;k =

�j;k
�2k
; (45)

which is obviously positive. Then we can represent Z+j;k using a centered Gaussian random variable
Y +j;k which is independent of Z

+
k , as follows,

Z+j;k = �j;kZ
+
k + Y

+
j;k:

We can do the same for Z�j;k and get

Z�j;k = �j;kZ
�
k + Y

�
j;k: (46)

In order to express the correlation between the �+� r.v.�s and the ��� r.v.�s, it is su¢ cient
to note that if we have two Gaussian random variables Z+ and Z� identically expressed using
increments from W (�;+1) and W (�;�1) respectively, because of the tensor-product structure of
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W , we immediately get that there exists a random variable �Z independent of Z+ and distributed
identically to Z+, such that

Z� =
Q (2)

Q (0)
Z+ +

R (2)

Q (0)
�Z;

where R (2) =
p
Q2 (0)�Q2 (2). Therefore we can rewrite (46) as

Z�j;k = �j;k

�
Q (2)

Q (0)
Z+k +

R (2)

Q (0)
�Zk

�
+ Y �j;k;

where �Zk and Z
+
k are independent and identically distributed.

We are now in a position to prove the non-obvious fact that Y +j;k, which is independent of Z
+
k

by de�nition, is also independent of Z�k . Indeed,

E
h
Y +j;kZ

�
k

i
=

1

Q (0)
E
h
Y +j;k

�
Q (2)Z+k +R (2)

�Zk
�i

= 0 +
R (2)

Q (0)
E
h�
Z+j;k � �j;kZ

+
k

�
�Zk

i
= 0 +E

�
Z+j;k

�
Z�k �

Q (2)

Q (0)
Z+k

��
� 0

= E
h
Z+j;kZ

�
k

i
� Q (2)
Q (0)

E
h
Z+j;kZ

+
k

i
= 0:

The last equality comes from the tensor-product structure ofW�s distribution, again. Independence

follows from the jointly Gaussian property of
�
Z+k ; Z

�
k ; Z

+
j;k; Z

�
j;k

�
. Similarly, Y �j;k is independent of

both Z�k and Z
+
k .

From these independence properties, since "�k depends by de�nition only on Z
+
k and Z�k , we

conclude that "�k is independent of Y
+
j;k and of Y

�
j;k. Putting these facts together, we obtain the

following calculation:

E [Jj;k ("
�
k)] = E

h
Z
"�k
j;k

i
= E

h
1"�k=+1

�
�j;kZ

+
k + Y

+
j;k

�i
+E

h
1"�k=�1

�
�j;kZ

�
k + Y

�
j;k

�i
= �j;kE

h
1"�k=+1Z

+
k

i
+ �j;kE

h
1"�k=�1Z

�
k

i
= �j;kE

h
Z
"�k
k

i
: (47)
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Step 4.3. Calculation of the entire maximized expectation. We can now evaluate E
�
Xm

�
~t; ~x�

��
.

Applying (47) we �rst get

E
�
Xm

�
~t; ~x�

��
=

mX
j=0

E
�
Ij
�
"�j
��
+

mX
j=0

j�1X
k=0

E [Jj;k ("
�
k)]

=

mX
j=0

E
h
Z
"�j
j

i
+

mX
j=0

j�1X
k=0

�j;kE
h
Z
"�k
k

i

�
m�1X
k=0

E
h
Z
"�k
k

i
+
m�1X
k=0

mX
j=k+1

�j;kE
h
Z
"�k
k

i

=

m�1X
k=0

E
h
Z
"�k
k

i0@1 + mX
j=k+1

�j;k

1A : (48)

The inequality used above is a minor modi�cation, where some small positive terms are thrown
out in order to get a more tractable expression; it is not of any fundamental importance. Now we
notice that for each k � m,

E
h
Z
"�k
k

i
= E

�
max

�
Z+k ; Z

�
k

��
=

1p
2�

r
E
h�
Z+k � Z

�
k

�2i
= �k

s
1

�

�
1� Q (2)

Q (0)

�
;

and meanwhile, (43) and (45) yield

1 +

mX
j=k+1

�j;k =
1

�2k

0@�2k + mX
j=k+1

�j;k

1A
=
Q (0)

�2k

Z tk+1

tk

2H (tk+1 � r)H�
1
2 (t� r)H�

1
2 dr:

Therefore (48) becomes

E
�
Xm

�
~t; ~x�

��
� Q (0)

s
1

�

�
1� Q (2)

Q (0)

� m�1X
k=0

1

�k

Z tk+1

tk

2H (tk+1 � r)H�
1
2 (t� r)H�

1
2 dr

!

= 2H

r
Q (0)�Q (2)

�

 
m�1X
k=0

(tk+1 � tk)�H
Z tk+1

tk

(tk+1 � r)H�
1
2 (t� r)H�

1
2 dr

!
where we used (44). We can manipulate the integral in each term in the above sum further with a
change of variable, and getZ tk+1

tk

(tk+1 � r)H�
1
2 (t� r)H�

1
2 dr

= (tk+1 � tk)2H
Z 1

0
rH�

1
2

�
t� tk+1
tk+1 � tk

+ r

�H� 1
2

dr

�
�
H +

1

2

��1
(tk+1 � tk)H+

1
2 (t� tk+1)H�

1
2 :
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The �nal result for this step is therefore

E
�
Xm

�
~t; ~x�

��
� 2H

H + 1
2

r
Q (0)�Q (2)

�

 
m�1X
k=0

(tk+1 � tk)
1
2 (t� tk+1)H�

1
2

!
:

Step 5. Restricting the time intervals. It is clear at this point that the lower bound on any
maximization of E

�
Xm

�
~t; ~x
��
will be a¤ected greatly by the time intervals between jumps. We

now de�ne Va (t;m) to be a subset of S (t;m), consisting of all ~t such that the jump time tj�s are
quite evenly distributed: let

Va (t;m) =

�
~t 2 S (t;m) : jt

m
� at
m
� tj �

jt

m
; j = 1; 2; : : : ;m

�
with 0 < a < 1. For any ~t 2 Va (t;m), m > 1, we have from the conclusion of Step 4

E
�
Xm

�
~t; ~x�

��
� 2H

H + 1
2

r
Q (0)�Q (2)

�

r
(1� a) t
m

 
m�1X
k=0

�
t� (k + 1) t

m

�H� 1
2

!

=
2H

H + 1
2

r
(Q (0)�Q (2)) (1� a)

�

 
tHm�H

mX
k=1

(m� k)H�
1
2

!

� 2H

H + 1
2

r
(Q (0)�Q (2)) (1� a)

�

�
tHm�H

Z m

1
(m� r)H�

1
2 dr

�
� H�

H + 1
2

�2
r
(Q (0)�Q (2)) (1� a)

�

�
tH
p
m
�
: (49)

The last inequality above gives a lower bound on E
�
Xm

�
~t; ~x�

��
which is uniform on the speci�c

set Va (t;m). We can calculate the probability of the set Va (t;m) under Pb given Nt = m:

pa = Pb [Va (t;m) jNt = m]

=

Z
~t2Va(t;m)

m!

tm
dt1 � � � dtm

=
m!

tm

 Z t
m

t
m
�at
m

dt1

! Z 2t
m

2t
m
�at
m

dt2

!
� � �
 Z t

t�at
m

dtm

!
=
amm!

mm
:

Step 6. Lower bound on U . We may now obtain a lower bound on U (t) by using the lower
bound (49) on the set Va (t;m): we only need to throw out all paths such that ~t is not in Va (t;m),
and keep only the single trajectory ~x�. We do this for a single value of m, discarding all other
choices. De�ne the constant CQ;H = H

�
H + 1

2

��2
��1=2

p
Q (0)�Q (2). We thus have

U (t) � E
"
log

"
p (t;m)

X
~x2Pm

1

2m

Z
~t2S(t;m)

eXm(
~t;~x)m!

tm
dt1 � � � dtm

##

� E
"
log

"
1

2m
p (t;m) pa

Z
~t2Va(t;m)

eXm(
~t; ~x�) m!

patm
dt1 � � � dtm

##

� log
�
1

2m
p (t;m) pa

�
+ CQ;H

p
1� a tH

p
m:
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The last inequality is true because m!
patm

dt1 � � � dtm is indeed a probability measure on the set
Va (t;m), and therefore we can use Jensen�s inequality and Fubini theorem to obtain

E

"
log

Z
~t2Va(t;m)

eXm(
~t; ~x�) m!

patm
dt1 � � � dtm

#
� E

"Z
~t2Va(t;m)

Xm
�
~t; ~x�

� m!

patm
dt1 � � � dtm

#
� CQ;H

p
1� a tH

p
m

while adopting the inequality (49).
Since p (t;m) = e�2�t (2�t)

m

m! and pa = amm!
mm , we therefore have

U (t) � �2�t+m (log (a�) + log t� logm) + CQ;H
p
1� a tH

p
m: (50)

Step 7. Choosing an optimal m; conclusion. Now choose a = 3
4 (this choice is somewhat

arbitrary) and choose m =
l
�2t2H

(log t)2

m
for some �. This implies that m logm � 1

4CQ;Ht
Hpm for

large t. By calculating

�tH

log t
(2 log�+ 2H log t� 2 log log t) � 1

4
CQ;Ht

H ;

we are in a position to choose an optimal � = ��: it su¢ ces to choose �� > CQ;H
8H but close to CQ;H

8H .
It follows that with m being chosen this way, we have 2�t � tH

p
m and m

�
log
�
3
4�
�
+ log t

�
�

tH
p
m for large t. Therefore we obtain a lower bound on U (t) for large t:

U (t) � 1

8
CQ;Ht

H

�
��tH

log t

�
=

�
��CQ;H
8

�
t2H

log t
: (51)

Now invoking the concentration result of Corollary 6.2, we have proved the theorem.

Remark 6.8 This theorem validates the fact we indicated at the beginning of this section, that is

lim
t!1

1

t
log u (t) = +1; a.s.

Remark 6.9 We cannot say the function L� (t) := t2H= log t is the exponential rate function of
u (t) since we do not know whether lim supt!1

�
t2H= log t

��1
U (t) is �nite or not. But in either

case L� (t) is a proper lower bound on the exponential rate function.

Remark 6.10 The lower bound given in (51) is sharp in the sense that its order cannot be improved
in the context of our arguments.

Indeed, we see in (50) there are two negative terms: �2�t, �m logm; and three positive terms:
m log (a�), m log t, CQ;H

p
1� a tH

p
m. When m � t2H= (log t)2, it is obvious that m logm �

m log t � m and m logm � tH
p
m for large t. Then the sum of all these negative and positive

terms gives us a negative lower bound of U (t), which is of no help since we know U (t) � 0. When
m� t2H= (log t)2, it is also easy to see that we get either a negative lower bound or a lower bound
smaller than t2H= log t. Therefore the sharp estimation on the lower bound of U (t) will be obtained
when m � t2H= (log t)2, just as we did above. For such m, we see that

m logm � m log t � tH
p
m � t2H

log t

for large t. This shows that the lower bound in (51) cannot be improved with our methods.
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6.4 Discussion

We realize that there is a gap between the lower bound and upper bound on the exponential rate
function of u (t). Unfortunately we have not found a way to make them coincide at this point.
However, the discrepancy here is quite small, in the sense that for any positive " close to 0,

lim
t!1

1

t2H�"
log u (t) =1; a.s.

Therefore, if L (t) is of the power form t� , � can only be 2H.
Recall that in Subsection 6.3, to estimate the lower bound of U (t), we construct an �optimal�

jump path ~x� for �xed jump number m and jump time ~t, which maximizes the innovations part
of the increments. This choice also turns out to be bene�cial for the non-innovations part of the
increments. Then we obtain formula (49), a lower bound on E

�
Xm

�
~t; ~x�

��
uniform over ~t in the

speci�c set Va (t;m), a subset of S (t;m), with approximately evenly spaced jump times. It is worth
pointing out that even if (49) held uniformly on the set of all jump time sequences, S (t;m), our
estimation of the lower bound of U (t), (51), would not be improved. The reason is that if (49)
holds for all ~t 2 S (t;m), we have

U (t) � E
"
log

"
p (t;m)

X
~x2Pm

1

2m

Z
~t2S(t;m)

eXm(
~t;~x)m!

tm
dt1 � � � dtm

##

� E
"
log

"
1

2m
p (t;m)

Z
~t2S(t;m)

eXm(
~t; ~x�)m!

tm
dt1 � � � dtm

##

� log
�
1

2m
p (t;m)

�
+ CQ;Ht

Hpm:

Since p (t;m) = e�2�t (2�t)
m

m! , using Stirling�s formula m! =
p
2�m+ o (m) e�mmm, we still only get

U (t) � �2�t+m (log (c�) + log t� logm) + CQ;HtH
p
m:

In other words, considering only those ~t 2 Va (t;m) is not a restriction.
There are two possible ways of getting a sharper lower bound estimation on U (t). 1) Instead

of taking only one term in the expression of u (t), take many terms, that is, consider many m�s
simultaneously. But for too many di¤erent m�s, the various behaviors of Xm

�
~t; ~x�

�
might deviate

from each other, and putting them together without using Jensen�s inequality would entail a di¢ cult
calculation involving their correlations. We may need other tools. 2) Use another construction of
the �optimal�path ~x� which can yield larger increments. However, in such a construction we may
lose the independence of the "j�s, which will make the covariance calculation extremely hard. It
may be that a better place to look for improving our work for H > 1=2 is in the upper bound.
However, one �rst needs some intuition as to which of the two rate functions t2H and t2H log�1 t is
closest to the truth, which is an entirely open issue at this stage.

7 Appendix: Riemann�Liouville Fractional Brownian Motion

In this section, we list some results about the Riemann�Liouville fractional Brownian motion, while
the very last subsection is the proof of our analytic almost-superadditive Theorem 4.3.
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7.1 RL-fBm: de�nition

De�nition 7.1 Let (
;P;W ) be a canonical Wiener space. A Riemann�Liouville fractional Brown-
ian motion (RL�fBm) BH with respect to (
;P;W ) is a centered Gaussian process on R+, de�ned
as a Wiener integral against the Wiener process W : for any t � 0,

BH (t) :=

Z t

0

p
2H (t� u)H�

1
2 W (du) (52)

where H 2 (0; 1) is called Hurst parameter. We also denote the integrand in (52) by

KH (t; s) = KH (t� s) :=
p
2H (t� s)H�

1
2 ; s � t:

Remark 7.2 When H = 1
2 , BH is a standard Brownian motion.

Remark 7.3 Unlike in the �rst 6 sections of this paper, we use the notation BH here to denote a
scalar RL-fBm, not an in�nite-dimensional one with spatial covariance Q.

The covariance structure of BH is given by

RH (s; t) := E [BH (s)BH (t)] = 2H

Z s^t

0
(t� r)H�

1
2 (s� r)H�

1
2 dr: (53)

Speci�cally, when t > s, it turns out thatRH (s; t) = 2H
H+ 1

2

tHsH
�
s
t

� 1
2
2F1

�
1
2 �H; 1;H + 1

2 ;
s
t

�
;where

2F1 is the hypergeometric function. In the next section, we �nd some much more tractable estima-
tions of the covariance structure of BH .

7.2 Increments of BH

De�ne the so-called squared canonical metric of BH as the variance of its increments, i.e. �2 (s; t) :=

E
h
(BH (t)�BH (s))2

i
. It is crucial to provide sharp bounds on �2 (s; t).

Proposition 7.4 For all H 2 (0; 1), with CH = 2H
R1
0

�
(1 + y)H�1=2 � yH�1=2

�2
dy,

(t� s)2H � �2 (s; t) � CH (t� s)2H :

Proof. We have

�2 (s; t) = E
h
(BH (t)�BH (s))2

i
= E

"�Z s

0
[KH (t� r)�KH (s� r)]W (dr) +

Z t

s
KH (t� r)W (dr)

�2#

=

Z s

0
[KH (t� r)�KH (s� r)]2 dr +

Z t

s
[KH (t� r)]2 dr

=

Z s

0
[KH (t� r)�KH (s� r)]2 dr + (t� s)2H :
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The lower bound of the proposition follows immediately. For the upper estimate, it su¢ ces to
write the additional term above as follows:Z s

0
[KH (t� r)�KH (s� r)]2 dr =

Z s

0

h
(t� r)H�1=2 � (s� r)H�1=2

i2
dr

= (t� s)2H
Z s=(t�s)

0

�
(1 + y)H�1=2 � yH�1=2

�
� C (t� s)2H :

7.3 Relation to Standard Fractional Brownian Motion

The standard fractional Brownian motion BfH can be written as a Wiener integral against W as

BfH (t) =

Z 0

�1

h
(t� u)H�

1
2 � uH�

1
2

i
W (du) +

Z t

0
(t� u)H�

1
2 W (du) :

This is called the moving average representation of BfH . We notice here that B
f
H (t) is the sum of

the RL-fBm and of a random process that is di¤erentiable. Another formula, similar to (52), also

holds for standard fBm, with, instead of the quantity
p
2H (t� u)H�

1
2 , a more complicated kernel

K (t; u); this is often called the kernel representation of fBm. See [23] for details. It is well-known
that BfH has stationary increments, that is, for any t; h 2 R+,

E

��
BfH (t+ h)�B

f
H (t)

�2�
= h2H :

The RL�fBm BH fails to have such a property. However, we can calculate by how much the
increments of BH fail to be stationary. Indeed, as shown in the previous Subsection, there exist
constants cH ; CH > 0 such that for all s; t; h 2 R+,

cHE

��
BfH (t+ h)�B

f
H (t)

�2�
� E

h
(BH (t+ h)�BH (t))2

i
� CHE

��
BfH (t+ h)�B

f
H (t)

�2�
:

This shows that the covariance structure of BH is commensurate with that of BfH . Therefore BH
shares the same regularity properties as BfH , and several other crucial properties; we list the most
important ones here:

(i) BH (0) = 0;

(ii) BH is not a martingale; BH is not a Markov process;

(iii) BH is adapted to a Brownian �ltration;

(iv) Almost every path of BH is ��Hölder continuous whenever � 2 (0;H); more precisely, f (r) =
rH
p
log r�1 is, up to a constant, an almost-sure uniform modulus of continuity for BH ;

(v) BH is self�similar with parameter H: for any constant a > 0, the law of fBH (at) : t 2 R+g
and the law of

�
aHBH (t) : t 2 R+

	
are identical.

Remark 7.5 Property (iv) indicates that BH is less (resp. more) regular than Brownian motion
when H 2

�
0; 12
�
(resp. H 2

�
1
2 ; 1
�
); the standard fractional Brownian motion is the only continuous

stochastic process with �nite variance that is self-similar with parameter H and has stationary
increments.
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7.4 Wiener Integral with respect to BH

Just as is done with regular Brownian motion, we can give a proper de�nition of the Wiener integral
with respect to BH .

Let BH be a RL�fBm with respect to the Wiener space (
;P;W ). Let ' be a deterministic
measurable function on R+. For any �xed T > 0, we de�ne the operator K�

H on ' by

[K�
H'] (T; s) := KH (T; s)' (s) +

Z T

s
(' (r)� ' (s)) @KH

@r
(r; s) dr (54)

if it exists. When H > 1=2, the actual domain of this operator can be extended beyond bona�de
functions, but for simplicity, and because we will not need to consider the action of K� on non-
functional elements, we de�ne the functional domain of K� as the set of functions ' such that
[K�

H'] (T; �) 2 L2 ([0; T ]). We denote this space of functions by jHj, and denote

k'kjHj = kK
�
H'kL2([0;T ]) =

Z T

0

����KH (T; s)' (s) + Z T

s
(' (r)� ' (s)) @KH

@r
(r; s) dr

����2 ds: (55)

This jHj is the so-called canonical functional Hilbert space of BH on [0; T ]. When H > 1=2, we note
that jHj contains all continuous functions: indeed, the singularity at r = s for @KH

@r in the Riemann
integral in the de�nition (54) has power H � 3=2 > �1. On the other hand, when H < 1=2, this
singularity is not integrable, and one can only guarantee existence of the said Riemann integral
if ' is itself su¢ ciently regular: we then see that jHj contains all functions which are �-Hölder-
continuous with � > 1=2�H. The reader may have already noticed that usage of the operator K�

made in this article is for functions ' which are di¤erentiable, so that they are in jHj for any H.
By integration by parts, it is easy to see that when H > 1

2 , exploiting its regularity, the operator
K�
H in (54) can be rewritten as

[K�
H'] (T; s) =

Z T

s
' (r)

@KH
@r

(r; s) dr:

For any function ' in jHj we de�ne the Wiener integral of ' with respect to BH on [0; T ] as
the centered Gaussian random variable given byZ T

0
' (r)BH (dr) =

Z T

0
[K�

H'] (T; r)W (dr) : (56)

7.5 Complex-Valued Processes

De�nition 7.6 We say BH is a complex valued RL�fBm on R+, with Hurst parameter H, if
BH =

1p
2
(BH;1 + iBH;2), where BH;1 and BH;2 are independent (real) RL�fBm�s on R+, with the

same Hurst parameter H. The covariance structure of BH is then given by

RH (s; t) := E
h
BH (s)BH (t)

i
= 2H

Z s^t

0
(t� r)H�

1
2 (s� r)H�

1
2 dr:

The de�nition of the Wiener integral can now be extended to complex-valued RL�fBm. We
�rst extend the Hilbert space jHj to a larger space consisting of all complex valued deterministic
functions ' = '1 + i'2 with '1; '2 2 jHj. Without ambiguity, we still denote the new space by
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jHj. It is notable that the operator K�
H de�ned in (54) can be extended to an operator on jHj,

denoted by K�
H again, given by

[K�
H'] (T; �) := [K�

H'1] (T; �) + i [K�
H'2] (T; �) :

The norm given in formula (55) is valid as well.

De�nition 7.7 Let BH = 1p
2
(BH;1 + iBH;2) be a complex-valued RL�fBm. For any ' 2 jHj, say

' = '1 + i'2, we de�ne the Wiener integral of ' with respect to BH on [0; T ] byZ T

0
' (r)BH (dr) :=

�Z T

0
'1 (r)BH;1 (dr)�

Z T

0
'2 (r)BH;2 (dr)

�
+ i

�Z T

0
'1 (r)BH;2 (dr) +

Z T

0
'2 (r)BH;1 (dr)

�
:

Let W1 and W2 be two independent Wiener processes such that

BH;j (t) =

Z t

0
KH (t; s)Wj (dr) ; j = 1; 2;

and let W = 1p
2
(W1 + iW2) which is a complex-valued Wiener process, then the above Wiener

integral can be written in exactly the same form as (56).

7.6 Proof of Theorem 4.3

Derriennic and Harchem [17] proved the �rst part while considering a general case where ff (n)gn2N
is an almost superadditive sequence of integrable functions. We follow their techniques here.

Let ~f (n) = f(n)
n and ~� (n) = �(n)

n . Assume supn
~f (n) <1. We �rst prove

n
~f (2n)

o
converges.

From the almost superadditivity we have

f
�
2n+i

�
� 2f

�
2n+i�1

�
� �
�
2n+i

�
;

which is equivalent to
~f
�
2n+i

�
� ~f

�
2n+i�1

�
� ~�
�
2n+i

�
;

by induction we therefore get

~f
�
2n+k

�
� ~f (2n)�

kX
i=1

~�
�
2n+i

�
:

As k " 1 (n �xed), it follows that

lim inf
k!1

~f
�
2k
�
= lim inf

k!1
~f
�
2n+k

�
� ~f (2n)�

1X
i=1

~�
�
2n+i

�
;

and then letting n " 1, we get

lim inf
k!1

~f
�
2k
�
� lim sup

n!1
~f (2n)
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since
P1
n=1 ~� (2

n) <1. Therefore limn!1 ~f (2n) exists and is �nite; we denote this limit as f�.

We claim that ff (n)gn2N is bounded from below. Indeed, since
n
~f (2n)

o
converges, it is

bounded from below; meanwhile, ~� (n) is bounded from above since limn!1 ~� (n) = 0. Let M be a
positive number such that ~f (2n) � �M and ~� (n) �M for all n 2 N. Then

f
�
2i + 2j

�
� f

�
2i
�
+ f

�
2j
�
� �
�
2i + 2j

�
= 2i ~f

�
2i
�
+ 2j ~f

�
2j
�
�
�
2i + 2j

�
~�
�
2i + 2j

�
� �2M

�
2i + 2j

�
:

Any integer n can be decomposed as a sum of powers of 2, say n =
P`
i=1 2

ki . Thus we get, by
induction,

f (n) � �2M
X̀
i=1

2ki = �2Mn:

Together with the assumption supn ~f (n) <1 we see
n
f� � ~f (n)

o
is bounded. Let

l+ := lim sup
n!1

�
f� � ~f (n)

�+
;

here x+ is the positive part of x, i.e., x+ = x _ 0. Obviously l+ is �nite. There exist two

sequences ftjg and fnjg such that l+ = limj!1
�
f� � ~f (tj)

�+
and 2nj � tj � 2nj+1. Noting that

1
2 �

2nj

tj
� 1, we may assume limj!1 2nj

tj
= � with 1

2 � � � 1; otherwise, we only need take a
subsequence. Since

f (tj) � f (2nj ) + f (tj � 2nj )� � (tj) ;

we obtain�
f� � ~f (tj)

�+
� 2nj

tj

�
f� � ~f (2nj )

�+
+

�
1� 2

nj

tj

��
f� � ~f (tj � 2nj )

�+
+ ~� (tj) :

Letting j !1 we then get l+ � (1� �) l+ and hence l+ = 0.
On the other hand, let

l� := lim sup
n!1

�
f� � ~f (n)

��
;

l� is �nite therefore. Here x� is the negative part of x, i.e., x� = (�x) _ 0. We can construct
two sequences fsjg and fmjg such that l� = limj!1

�
f� � ~f (sj)

��
, 2mj�1 � sj � 2mj and

limj!1
sj
2mj

= � with 1
2 � � � 1. Since

f (2mj ) � f (sj) + f (2mj � sj)� � (2mj ) ;

we obtain

sj
2mj

�
f� � ~f (sj)

��
�
�
f� � ~f (2mj )

��
+
�
1� sj

2mj

��
f� � ~f (2mj � sj)

�+
+ ~� (2mj ) :

Letting j !1 we then get �l� � (1� �) l+ = 0 and hence l� = 0.
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Note that
lim sup
n!1

���f� � ~f (n)
��� � l+ + l� = 0:

Therefore we have proved that
lim
n!1

~f (n) = f�:

Now, let us assume supn
f(n)
n =1. We can still get the inequality

lim inf
n!1

~f (2n) � lim sup
n!1

~f (2n) :

This is to say
n
~f (2n)

o
either converges or diverges properly to1. However, if

n
~f (2n)

o
converges,

say, f� = limn!1 ~f (2n) is �nite, then following the above arguments we will get l+ = l� = 0.
(Note that whether l� is �nite is not crucial in the arguments.) This implies ff (n)gn2N indeed

converges, hence is bounded, which is a contradiction. Therefore,
n
~f (2n)

o
diverges properly to1.

The claim that ff (n)gn2N is bounded from below is thus true. Let l� := lim infn!1 ~f (n),
�nite or in�nite, then l� > �1. Let ftjg and fnjg be two sequences such that l� = limj!1 ~f (tj),
2nj � tj � 2nj+1 and limj!1 2nj

tj
= � with 1

2 � � � 1. Since

~f (tj) �
2nj

tj
~f (2nj ) +

�
1� 2

nj

tj

�
~f (tj � 2nj )� ~� (tj) ;

we obtain

lim
j!1

~f (tj) � � lim
j!1

~f (2nj ) + (1� �) lim sup
j!1

~f (tj � 2nj )

� � lim
j!1

~f (2nj ) + (1� �) lim inf
n!1

~f (n) :

This implies l� =1, i.e., ff (n)gn2N diverges properly to 1.
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