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Additive Lévy Processes:
Capacity and Hausdorff Dimension

Davar Khoshnevisan and Yimin Xiao

Abstract. This is a survey on recently-developed potential theory of additive
Lévy processes and its applications to fractal geometry of Lévy processes.

Additive Lévy processes arise naturally in the studies of the Brownian
sheet, intersections of Lévy processes and so on. We first summarize some
recent results on the novel connections between an additive Lévy process X in
R

d, and a natural class of energy forms and their corresponding capacities. We
then apply these results to study the Hausdorff dimension of the range and
self-intersections of an ordinary Lévy process, solving several long-standing
problems in the folklore of the theory of Lévy processes. We also list several
open problems in this area.
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1. Introduction

Classical potential theory has been very useful in studying the sample path proper-
ties of Markov processes, especially those of Brownian motion and Lévy processes.
An important connection between classical potential theory and fractals is the fun-
damental result of Frostman (1935) [cf. Kahane (1985a) or Khoshnevisan (2002)]
which states that the capacity dimension and the Hausdorff dimension [which will
be denoted by dimH ] are the same. Hence, in order to prove dimH E ≥ β, it is
sufficient to show that E has positive capacity with respect to the Bessel-Riesz
kernel f(x) = ‖x‖−β. Taylor (1953, 1955) applied this idea to determine the Haus-
dorff dimension of the range and graph of a Brownian motion in R

d. Since then,
this method has become one of the standard tools in obtaining lower bounds for
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the Hausdorff dimension of random sets. We refer to the survey papers of Fristedt
(1974), Taylor (1986) and Xiao (2003) for further information about the results
and techniques for Lévy processes, and extensive lists of references.

There have been much effort in extending the potential theory for Markov
processes to multiparameter processes of the forms X(t) = X1(t1) + · · ·+ XN (tN )
or Y (t) = (X1(t1), . . . , XN (tN )) (t ∈ R

N
+ ), where X1, . . . , XN are independent

Markov processes; see e.g., Evans (1987a, b), Fitzsimmons and Salisbury (1989),
Hirsch (1995), Hirsch and Song (1995a, b), Khoshnevisan (2002), Khoshnevisan
and Xiao (2002, 2003a, b), Khoshnevisan, Xiao and Zhong (2003a). Besides of
importance and interest in its own right, the potential theory of such multipa-
rameter processes has found various applications in studying the fractal properties
of ordinary Lévy processes, as well as their multiparameter analogue – the Lévy
sheets.

The objective of this paper is to give a survey on the recently-developed
potential theory of additive Lévy processes and its applications to fractal geometry
of ordinary Lévy processes. In Section 2, we first recall the definition of Lévy
processes and then introduce the definition of additive Lévy processes. We give
two examples to show the close connections of additive Lévy processes to the Lévy
sheets and ordinary Lévy processes. In Section 3, we summarize systematically
the recent results on potential theory of additive Lévy processes. In Section 4, we
show how the results in Section 3 can be applied to solve several long-standing
problems about the ordinary Lévy processes. At the end of Sections 3 and 4, we
list some open problems in the areas.

In the rest of this section, we give some general notation that will be used
throughout. The underlying parameter space is R

N , or R
N
+ = [0,∞)N . A typical

parameter, t ∈ R
N is written as t = (t1, . . . , tN ), sometimes also written as 〈tj〉,

or 〈c〉, if t1 = · · · = tN = c ∈ R.
There is a natural partial order, “�”, on R

N . Namely, s � t if and only if
sj ≤ tj for all j = 1, . . . , N . When it is the case that s � t, we define the interval,
[s, t] =

∏N
j=1 [sj , tj ].

We will let A denote the class of all N -dimensional intervals I ⊂ R
N of the

form I = [s, t]. We always write λm for Lebesgue’s measure on R
m, no matter

the value of the integer m. The state space, R
d, is endowed with the �2 Euclidean

norm ‖ · ‖, and the corresponding dot product 〈x, y〉 =
∑d

j=1 xjyj (x, y ∈ R
d).

We write P(F ) for the collection of all Borel-regular probability measures on
a given Borel space F . Given a Borel measurable function f : R

d → [0,∞], we
define the ‘f -energy’ (of some µ ∈ P(Rd)) and ‘f -capacity’ (of some measurable
G ⊂ R

d) as follows:

Ef (µ) :=
∫∫

f(x − y) µ(dx) µ(dy), Cf (G) :=
[

inf
µ∈P(G)

Ef (µ)
]−1

. (1.1)

We refer to such a function f as a gauge function.
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Given a number β > 0, we reserve Cβ and Eβ for Cf and Ef respectively,
where the gauge function f is f(t) := ‖t‖−β. Cβ and Eβ are respectively the
(β-dimensional) Bessel–Riesz capacity and energy to which some references were
made earlier. More information about the Bessel–Riesz capacity and its connection
to fractals can be found in Falconer (1990), Mattila (1995), Kahane (1985a), and
Khoshnevisan (2002).

2. Additive Lévy processes

We first recall briefly the definition of a Lévy process and refer to Bertoin (1996)
and Sato (1999) for the general theory. A stochastic process Z = {Z(t), t ≥ 0},
with values in R

d, is called a Lévy process, if it has stationary and independent
increments, and such that t 
→ Z(t) is continuous in probability. It is well known
that for t ≥ s ≥ 0, the characteristic function of Z(t) − Z(s) is given by

E
[
ei〈ξ,Z(t)−Z(s)〉] = e−(t−s)Ψ(ξ),

where, by the Lévy-Khintchine formula,

Ψ(ξ) = i〈a, ξ〉 +
1
2
〈ξ, Σξ

′〉 +
∫

Rd

[
1 − ei〈x,ξ〉 +

i〈x, ξ〉
1 + ‖x‖2

]
L(dx), ∀ξ ∈ R

d,

and a ∈ R
d is fixed, Σ is a non-negative definite, symmetric, (d × d) matrix, and

L is a Borel measure on R
d \ {0} that satisfies

∫

Rd

‖x‖2

1 + ‖x‖2
L(dx) < ∞.

The function Ψ is the Lévy exponent of Z, and L is the corresponding Lévy measure.
There are several different characterizations for the exponent Ψ. Note that Ψ(0) =
0 and that by Bochner’s theorem the function ξ 
→ e−tΨ(ξ) is continuous and
positive definite for each t ≥ 0 since it is the Fourier transform of a probability
measure. Hence, the Lévy exponent Ψ is a continuous negative definite function.
See Berg and Frost (1975) for a systematic account on negative definite functions.

A Lévy process Z is symmetric if −Z and Z have the same finite dimensional
distributions. It is clear that Z is symmetric if and only if Ψ(ξ) ≥ 0, for all ξ ∈ R

d.
In particular, if the Lévy exponent Ψ is of the form

Ψ(ξ) = −σα‖ξ‖α ∀ ξ ∈ R
d, (2.1)

where α ∈ (0, 2] and σ > 0 are constants, then Z is called an isotropic stable Lévy
process of index α.

An N -parameter, R
d-valued, additive Lévy process X =

{
X(t), t ∈ R

N
+

}
is

a multiparameter stochastic process defined by

X(t) =
N∑

j=1

Xj(tj), t ∈ R
N
+ , (2.2)
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where X1, . . . , XN denote independent Lévy processes that take their values in
R

d and Xj(0) = 0 for j = 1, . . . , N . Using tensor notation, we will often write
X = X1⊕· · ·⊕XN for brevity. If Xj has Lévy exponent Ψj , then Ψ = (Ψ1, . . . , ΨN )
is called the Lévy exponent of X. When X1, . . . , XN are isotropic stable processes
in R

d of index α ∈ (0, 2], then X is called an additive stable process. The case α = 2
yields the additive Brownian motion. Similarly, one can define an multiplicative
Lévy process X = X1 ⊗ · · · ⊗ XN by X(t) = (X1(t1), . . . , XN (tN )).

In the following we give two examples to show that additive Lévy processes
arise naturally in the analysis of multiparameter processes such as Lévy’s sheets
and in the analysis of ordinary Lévy processes. As such, the potential theory of
additive Lévy processes can also be used as a powerful tool to study the Hausdorff
dimension and capacity of random fractals determined by Lévy processes.

Example 2.1 [The Lévy sheets and Brownian sheet] A Lévy sheet is a multipa-
rameter extension of an ordinary Lévy process. For any given negative definite
function Ψ in R

d, there is a random field Z = {Z(t), t ∈ R
N
+} taking values in R

d

such that

(i) for any choice of disjoint intervals Qj ∈ A (n = 1, . . . , n), the increments
Z(Q1), . . . , Z(Qn) are independent; and

(ii) for each Q ∈ A, the characteristic function of Z(Q) is given by

E

[
exp

(
i〈ξ, Z(Q)〉)

]
= exp

( − λN (Q)Ψ(ξ)
)
, (2.3)

where Z(Q) is the increment of Z on Q = [s, t] which is defined by

Z(Q) =
∑

r∈{0,1}N

(−1)N−∑
� r�Z

(〈sj + rj(tj − sj)〉
)
.

A random field Z = {Z(t), t ∈ R
N
+} taking values in R

d that is continuous
in probability and satisfies the above conditions (i) and (ii) is called an (N, d)-
Lévy sheet with exponent Ψ. Some general properties of Lévy sheets can be found
in Adler et al. (1983), Dalang and Walsh (1992), as well as in Ehm (1981) and
Vares (1983). When the Lévy exponent Ψ is given by (2.1), Z is called an isotropic
stable sheet. In particular, when α = 2 and σ = 1/

√
2, then Z is the N -parameter

Brownian sheet in R
d and is usually denoted by W = {W (t), t ∈ R

N
+}. We

should mention that the Brownian sheet arises naturally in the stochastic partial
differential equations and in statistical analysis [cf. Walsh (1986), Dalang (2003)]
and is one of the most fundamental Gaussian random fields. By (2.1), we see that
the components W1, . . . , Wd of W are independent, centered Gaussian random
fields in R with the covariance function E

[
W1(s)W1(t)

]
=

∏N
j=1 sj ∧ tj , where

a ∧ b = min{a, b}.
It follows from the conditions (i) and (ii) that a Lévy sheet Z has independent

and stationary increments. Along lines which are parallel to the axes, Z is an
ordinary Lévy process in R

d with a constant speed. More precisely, for any fixed
a = 〈aj〉 ∈ R

N
+ and every k = 1, . . . , N , the process Xk = {Xk(tk), tk ∈ R+}
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defined by

Xk(tk) = Z(a1, . . . , ak−1, ak + tk, ak+1, . . . , aN ) − Z(a)

is a Lévy process in R
d with exponent Ψk(ξ) =

( ∏
j �=k aj

)
Ψ(ξ). This leads to the

following very useful decomposition of Z:

Z(a + t) = Z(a) +
N∑

k=1

Xk(tk) + Z̃(t), t ∈ R
N
+ , (2.4)

where Z̃ is a Lévy sheet in R
d with exponent Ψ, and all the processes on the right

hand side of (2.4) are independent.
For many purposes such as in the studies of fractal properties of Z, the effects

of Z̃ can sometimes be neglected. Hence the Lévy sheet Z can be approximated
locally by the additive Lévy process X = X1⊕· · ·⊕XN which is easier to analyze.
This approach has been exploited by Ehm (1981), Vares (1983), Rosen (1984),
Zhong and Xiao (1995), Khoshnevisan, Xiao and Zhong (2003b) to study the local
times and self-intersection local times of Lévy sheets; by Dalang and Mountford
(1996, 1997, 2001, 2002, 2003), Dalang and Walsh (1993a, b) and Khoshnevisan
(1995) to study the level sets, excursions and points of increase of the Brownian
sheets [see also Dalang (2003)]; and by Khoshnevisan and Shi (1999), Khoshnevisan
(1999) to establish the connection between hitting probabilities of the Brownian
sheet and the Bessel-Riesz capacity.

Example 2.2 [Intersections of independent Lévy processes] Let X1, . . . , Xk be in-
dependent Lévy processes in R

d. It has been of interest to study whether their
sample paths can intersect and, when they do, the fractal properties of the set of
intersections; see Taylor (1986a), Xiao (2003) for further information. We say that
the sample paths of X1, . . . , Xk intersect if

∃ distinct points t1, . . . , tk ∈ R+ such that X1(t1) = · · · = Xk(tk). (2.5)

Define the multiparameter process Z = {Z(t), t ∈ R
k
+} by

Z(t) =
(
X2(t2) − X1(t1), . . . , Xk(tk) − Xk−1(tk−1)

)
. (2.6)

Then (2.5) is equivalent to Z−1(0) �= ∅, where Z−1(0) =
{
t ∈ R

k
+ : Z(t) = 0

}

is the zero set of Z. Rearranging the components of Z, it is easy to see that Z
is an additive Lévy process with values in R

(k−1)d. Hence the potential theory of
additive Lévy processes can be applied; see Theorem 3.6 below.

3. Potential theory for additive Lévy processes

Potential theory of multiparameter Markov processes have been studied by Evans
(1987b), Fitzsimmons and Salisbury (1989) for multiplicative Markov processes
and by Hirsch (1995), Hirsch and Song (1995a, b) [see also the recent book of
Khoshnevisan (2002) for a systematic account on the earlier results], Khoshnevisan
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and Xiao (2002, 2003a, b), Khoshnevisan, Xiao and Zhong (2003a) for additive
Lévy processes in R

d.
The following are some natural questions that the potential theory of X seeks

to answer.

(a) Given a Borel set F ⊆ R
d, when can P{X(RN

+ ) ∩ F �= ∅} > 0?
(b) For any fixed a ∈ R

d and a Borel set E ⊂ R
N
+ , when can P{X−1(a) ∩ E �=

∅} > 0?
(c) When can the range of X, X(RN

+ ) [or more generally X(E), where E ⊂ R
N
+ ],

have positive Lebesgue measure?

For additive Lévy processes, the following lemma from Khoshnevisan and
Xiao (2003b) shows that the above questions are closely related. For N = 1, it is
due to Kahane (1972).

Lemma 3.1. Let X be an N-parameter additive Lévy process in R
d. We assume

that, for every t ∈ (0,∞)N , the distribution of X(t) is mutually absolutely contin-
uous with respect to λd. Then for any Borel sets E ⊂ (0,∞)N and F ⊂ R

d, the
following are equivalent:

1. With positive probability, E ∩ X−1(F ) �= ∅;
2. With positive probability, F ∩ X(E) �= ∅;
3. With positive probability, λd(F � X(E)) > 0,

where A � B := {x − y : x ∈ A, y ∈ B}.
Under some mild conditions, Questions (a), (b) and (c) are answered in

Khoshnevisan, Xiao and Zhong (2003a), and Khoshnevisan and Xiao (2002, 2003a,
b). In this section, we summarize some of their results.
Let X be an additive Lévy process in R

d with Lévy exponent Ψ = (Ψ1, . . . , ΨN ). It
induces an energy form EΨ that can be described as follows: For all finite measures
µ on R

d, and/or all integrable functions µ : R
d → R,

EΨ(µ) = (2π)−d

∫

Rd

|µ̂(ξ)|2
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)

dξ, (3.1)

where ̂ denotes the Fourier transform normalized as f̂(ξ) =
∫

Rd eiξ·xf(x) dx [f ∈
L1(Rd)].

Under the assumption that there exists a positive constant ϑ > 0 such that

Re
( N∏

j=1

1
1 + Ψj(ξ)

)

≥ ϑ

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)

, (3.2)

Khoshnevisan, Xiao and Zhong (2003a) have proved the following theorem.

Theorem 3.2. Consider any d-dimensional additive Lévy process X, whose Lévy
exponent Ψ satisfies (3.2). Then, given any nonrandom compact set F ⊂ R

d,
E{λd(X(RN

+ ) ⊕ F )} > 0 if and only if F carries a finite measure of finite energy.
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The proof of Theorem 3.2 consists of two parts. The sufficiency is established
by using the Paley-Zygmund inequality [cf. Kahane (1985a,), p.8] and second mo-
ment estimates of the occupation measure of X. However the proof of the necessity
is much harder and relies on developing a kind of multiparameter martingale the-
ory in measure-spaces where the underlying measure has infinite mass.

By letting F = {0}, Theorem 3.2 gives the following answer to Question (c)
for X(RN

+ ), which extends the remarkable results of Kesten (1969) and Bretagnolle
(1971) for N = 1.

Corollary 3.3. Let X be an additive Lévy process in R
d with Lévy exponent

(Ψ1, . . . , ΨN ), and suppose that Condition (3.2) holds. Then,

E
{
λd(X(RN

+ ))
}

> 0 ⇐⇒
∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)

dξ < +∞.

It is known that the positiveness of E{λd(X(RN
+ ))} is closely related to the

existence of local times of X. The precise connection for additive Lévy processes
has been established by Khoshnevisan, Xiao and Zhong (2003b): under the condi-
tion (3.2),

X has local times if and only if E
{
λd(X(RN

+ ))
}

> 0.

They have also proved results on the joint continuity, local and uniform Hölder
conditions for the local times of additive Lévy processes, extending the results of
Ehm (1981) and Vares (1983) for Lévy sheets.

More generally, for every compact E ⊂ R+, a necessary and sufficient con-
dition in terms of the Lévy exponent (Ψ1, . . . , ΨN ) for E{λd(X(E))} > 0 has
been given by Theorem 2.1 in Khoshnevisan, Xiao and Zhong (2003a). A different
condition in terms of the gauge function is given by Theorem 3.6 below.

Applying Lemma 3.1 and Theorem 3.2 to additive stable Lévy processes, we
have the following result which improves the earlier results of Hirsch (1995), Hirsch
and Song (1995a, b), Khoshnevisan (2002).

Corollary 3.4. Suppose X = X1 ⊕ · · · ⊕ XN is an additive stable process in R
d of

index α ∈ (0, 2]. Then for any Borel set F ⊂ R
d, the following are equivalent:

(i) Cd−Nα(F ) > 0;
(ii) P

{
λd{F ⊕ X(RN

+ )} > 0
}

> 0;
(iii) F is not polar for X in the sense that P

{
F ∩ X(RN

+ ) �= ∅} > 0.

Remark 3.5. Upon varying d, N ∈ N, and α ∈ (0, 2], we see that this theorem asso-
ciates an additive Lévy process to any Bessel–Riesz capacity, including those with
dimension > 2. This connection is very useful in calculating the Hausdorff dimen-
sion of the range X(RN

+ ) and various random fractals related to Lévy processes,
via the co-dimension argument; see Section 4.

Note that, under the assumptions of Lemma 3.1, the conditions (3.2) and
∏N

j=1 Re
(
1+Ψj(ξ)

)−1 ∈ L1(Rd) imply that X hits points, i.e. P
{
X−1(a) �= ∅} > 0
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for all a ∈ R
d. In this case, it is natural to consider Question (b) and study

the hitting probability of the level set X−1(a) for a fixed a ∈ R
d. Moreover,

when X satisfies the conditions of Lemma 3.1, Question (b) is equivalent to the
question (c) for X(E). This latter problem for Brownian motion was considered
by Hawkes (1977) and Kahane (1983, 1985a, b), and for additive Lévy processes
by Khoshnevisan, Xiao and Zhong (2003a, Theorem 2.1). For symmetric additive
Lévy processes, Question (b) is answered by the following theorem of Khoshnevisan
and Xiao (2002, 2003a). Recall that the additive Lévy process X is absolutely
continuous if for each t ∈ (0,∞)N , the function ξ 
→ exp

{ − ∑N
j=1 tjΨj(ξ)

} ∈
L1(Rd). In this case, for every t ∈ (0,∞)N , X(t) has a density function p(t; •) that
is given by the formula

p(t; x) = (2π)−d

∫

Rd

e−i〈ξ,x〉 exp
(
−

N∑

j=1

tjΨj(ξ)
)

dξ, x ∈ R
d.

The function Φ defined by

Φ(s) = p(s, 0) s ∈ R
N , (3.3)

where s = 〈|sj |〉 ∈ R
N
+ , is called the gauge function for X. Khoshnevisan and Xiao

(2002, Theorem 2.9) have shown that Φ ∈ L1
loc(R

N ) is equivalent to X−1(a) �= ∅.
Theorem 3.6. Let X1, . . . , XN be N independent symmetric Lévy processes on R

d

and let X = X1 ⊕ · · · ⊕ XN . Suppose X is absolutely continuous with the gauge
function Φ. Then for all a ∈ R

d, c > 0 and for all compact sets E ⊂ [c,∞[N ,

A1CΦ(E) ≤ P

{
X−1(a) ∩ E �= ∅

}
≤ A2CΦ(E) , where

A1 = κ−22−d
{
Φ(〈c〉)}−1

I2
E(a), A2 = κ325d+3NΦ(〈c〉) and IE(a) = infs∈E p(s; a).

Theorem 2.10 in Khoshnevisan and Xiao (2002) also gives a formula for
dimH X−1(0). In particular, when X is an additive stable process, we have

Corollary 3.7. Suppose X1, . . . , XN are independent isotropic stable Lévy processes
in R

d with index α ∈]0, 2] and X = X1 ⊕ · · · ⊕ XN . Then,
(i) P{X−1(0) �= ∅} > 0 if and only if Nα > d; and
(ii) if Nα > d, then P

{
dimH X−1(0) = N − d

α

}
= 1.

Furthermore, for each M > 1, there exists a constant A > 1, such that simultane-
ously for all compact sets E ⊂ [M−1, M ]N , and for all a ∈ [−M, M ]d,

1
A

Cd/α(E) ≤ P

{
X−1(a) ∩ E

}
≤ A Cd/α(E).

Remark 3.8. In Theorem 1.1 of Khoshnevisan and Xiao (2002), it is proved that
(ii) in Corollary 3.7 holds with positive probability. It can be strengthened to a
probability 1 result by using the conditional Borel-Cantelli lemma.

There are several interesting open questions in this area. In the following, we
list some of them.
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Problem 3.9. Can the condition (3.2) be dropped from Theorem 3.2?
A positive resolution to this question would lead to the following:

(i) A complete resolution of a conjecture regarding intersection of independent
regenerative sets of J. Bertoin (1999, p. 49).

(ii) The computation of the Hausdorff dimension of the range of an arbitrary
additive Lévy process; see Theorem 4.1 below for a partial result.

A resolution of item (ii) would go a long way toward solving the corresponding
open problem for an arbitrary Lévy sheet (Straf 1972; Ehm 1981; Vares 1983).

Problem 3.10. Can the symmetry and absolute continuity assumptions be dropped
from Theorem 3.6?

A positive solution to Problem 3.10 will have interesting consequences on the
intersections of Lévy processes and on the Hausdorff dimension of the multiple
points.

Another natural question is to characterize the polar sets for the space-time
process {(t, X(t)); t ∈ R

N
+}:

Problem 3.11. Given Borel sets E ⊆ R
N
+ and F ⊆ R

d\{0}, find a necessary and
sufficient condition for P{X(E) ∩ F �= ∅} > 0?

In the case that N = 1 and X is a d-dimensional Brownian motion, the above
problem is equivalent to the polarity of the set E × F relative to the Dirichlet
problem for the full heat operator ∂t − 1

2∆; see Doob (1984, p. 637) and Watson
(1976, 1978). In particular, Watson has proven that a set G ⊂ R+ × R

d is polar
for the heat equation if and only if it has zero thermal capacity. See also Kaufman
and Wu (1982) and Taylor and Watson (1985) for further information.

A resolution of Problem 3.11 will contribute to developing a complete para-
bolic potential theory for various multiparameter Lévy processes. This is not only
interesting of itself, but will also solve a number of old problems in the theory of
one-parameter Markov processes (including one-dimensional Brownian motion).
For instance, problems about the Hausdorff dimension of the set B(E)∩F , where
E and F are, respectively, compact subsets of R+ and R

d \{0}. This later problem
was first considered by Kaufman (1972), who obtained upper and lower bounds.
Hawkes (1978a) has found an extension of Kaufman’s theorem to stable processes.
However, in general, the Hausdorff dimension of B(E) ∩ F is unknown even for
Brownian motion.

We remark that Problem 3.11 is intimately related to the existing potential
theory of additive Lévy processes. Indeed, in Khoshnevisan and Xiao (2002, 2003a),
we find a necessary and sufficient condition for P{X(E)∩{x0} �= ∅} to be positive
for an arbitrary symmetric additive Lévy process X that has a density for all
t > 0. On the other hand, Khoshnevisan, Xiao and Zhong (2003a) have derived a
necessary and sufficient condition for P{X(RN

+ ) ∩ F �= ∅} to be positive; see also
Khoshnevisan and Xiao (2003b). These results can all be considered as partial
solutions to Problem 3.11.
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We believe that once Problem 3.11 is solved, the methods of Khoshnevisan
and Xiao (2002, 2003a, 2003b) can be used to calculate the Hausdorff dimensions
of the random sets X(E)∩F and X−1(F )∩E not only for Brownian motion, but
also for a large class of Lévy processes.

There are many other difficult open problems of similar parabolic nature in
the literature. For example, let F (λ) denote the set of λ-fast points of Brownian
motion,

F (λ) =

{

t ∈ [0, 1] : lim sup
h→0+

|B(t + h) − B(t)|
√

2h| log h| ≥ λ

}

.

Then, given a Borel set E ⊂ R+, what is the Hausdorff dimension of the set
F (λ)∩E? See Orey and Taylor (1974), Kaufman (1975), Khoshnevisan, Peres and
Xiao (2000), and Khoshnevisan and Shi (2000) for some information. The same
question can be asked when F (λ) denotes the set of thick points of the occupation
measure of a Brownian motion in R

d (Dembo, Peres, Rosen and Zeitouni, 2000).
We believe that a sufficiently powerful connection to parabolic potential theory
may unravel some of these problems.

Finally, Khoshnevisan and Shi (1999) have proven that the (N, d)-Brownian
sheet W and the (N, d)-additive Brownian motion B = B1 ⊕ · · · ⊕ BN are inter-
section equivalent, i.e. for any compact set F ⊂ R

d,

P
{
W (RN

+ ) ∩ F �= ∅} > 0 ⇐⇒ P
{
B(RN

+ ) ∩ F �= ∅} > 0,

see Corollary 6.2 of Khoshnevisan and Shi (1999). It would be interesting to solve
the analogous problem for the (N, d)-stable sheets [cf. Ehm (1981)]. In particular,
we believe that

Conjecture 3.12. Corollary 3.4 holds for an (N, d)-stable sheet of type A.

4. Applications to fractal properties of Lévy processes

By Corollary 3.4 and the Frostman’s theorem [cf. Kahane (1985, p.133) or Khosh-
nevisan (2002, p.521)], we can use the range X(RN

+ ) as a tool to determine the
Hausdorff dimension of any Borel set F in R

d. The original idea goes back to
Taylor (1966), who showed that for any Borel set F ⊂ R

d with dimH F ≥ d − 2,

dimH F = d − inf
{
α > 0 : F is not polar for Xα

}
,

where Xα is an isotropic stable Lévy process in R
d of index α ∈ (0, 2]. With the

help of additive stable processes, the restriction on F can be removed. Corollary
3.4 implies that for any Borel set F ⊂ R

d,

dimH F = d − inf
{
Nα > 0 : F is not polar for Xα,N

}
,

where Xα,N denotes an N -parameter additive stable process in R
d of index α ∈

(0, 2]. Following Khoshnevisan and Shi (2000), this method for calculating dimH F
is called the co-dimension argument, which is specially effective for determin-
ing the Hausdorff dimension of a random set. See Hawkes (1981), Lyons (1990),
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Peres (1996, 1999), Khoshnevisan, Peres and Xiao (2000), Khoshnevisan (2002)
for related results.

4.1. Hausdorff dimension of the range

As an application of the co-dimension argument, we derive the Hausdorff dimension
of the range of an additive Lévy process, which is proved in Khoshnevisan, Xiao
and Zhong (2003a).

Theorem 4.1. Given an additive Lévy process X in R
d with Lévy exponent

(Ψ1, . . . , ΨN ) that satisfies (3.2),

dimH

(
X(RN

+ )
)

= d − η, P-a.s., (4.1)

where

η = sup
{

γ > 0 :
∫

ξ∈Rd: ‖ξ‖>1

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ

‖ξ‖γ
= +∞

}

.

Here sup ∅ = 0. In particular, if X is an additive stable process in R
d of index

α ∈ (0, 2], then dimH X(RN
+ ) = min{d, αN} a.s.

Sketch of Proof. We introduce an M -parameter additive stable process Y in R
d

with index α ∈ (0, 2]. The process Y is totally independent of X, and the constants
M and α will be chosen appropriately. Note that X ⊕Y is an (N +M)-parameter
additive Lévy process in R

d whose Lévy exponent Φ = (Φ1, . . . , ΦN+M ) is given
by

Φj(ξ) =

{
Ψj(ξ), if j = 1, . . . , N ,
1
2‖ξ‖α, if j = N + 1, . . . , N + M .

Then by Theorem 3.2, Corollary 3.4 and the zero-one law that P{Cβ

(
X(RN

+ )
)

>
0} ∈ {0, 1} for any β > 0 [whose proof will be given elsewhere], we have

Cd−Mα

(
X(RN

+ )
)

> 0 a.s. ⇐⇒
∫

ξ∈Rd: ‖ξ‖>1

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)

‖ξ‖−Mα dξ < ∞.

(4.2)
From this follows (4.1). �

When N = 1, i.e., when X is an ordinary Lévy process in R
d, Pruitt (1969)

has shown that the Hausdorff dimension of the range X(R+) is

γ = sup
{

α ≥ 0 : lim sup
r→0

r−α

∫ 1

0

P {|X(t)| ≤ r} dt < +∞
}

.

In general, this formula is not satisfying, since the above lim sup is not easy
to evaluate. Pruitt (1969, Theorem 5) addresses this issue by showing that if
Re Ψ(ξ) ≥ 2 log ‖ξ‖ (for all ‖ξ‖ large), then,

γ = sup
{

α < d :
∫

Rd

Re
(

1 − e−Ψ(ξ)

Ψ(ξ)

)
dξ

‖ξ‖d−α
< +∞

}

.
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See Fristedt (1974, 377–378) for further discussions on Pruitt’s work in this area.
Theorem 4.1 implies the following representation for the index γ in terms of

the Lévy exponent Ψ of X that holds under no restrictions, thus solving the above
mentioned problem of Pruitt (1969).

Corollary 4.2. If X denotes a Lévy process in R
d with Lévy exponent Ψ, then

dimH X([0, 1]) = sup
{

α < d :
∫

ξ∈Rd: ‖ξ‖>1

Re
(

1
1 + Ψ(ξ)

)
dξ

‖ξ‖d−α
< +∞

}

.

(4.3)

Formula (4.3) gives an analytic way to compute the Hausdorff dimension of
X(R+) for Lévy processes. Its usefulness is shown by the following result from
Khoshnevisan and Xiao (2003b).

Corollary 4.3. Let X = {X(t), t ∈ R+} be a Lévy process in R
d with Lévy exponent

Ψ. If Ψ satisfies the following condition: for any ε > 0, there exist positive constants
K1 and K2 such that

K1
∑d

j=1 |ξj |αj+ε
≤ Re

( 1
1 + Ψ(ξ)

)
≤ K2

∑d
j=1 |ξj |αj−ε

, ∀ξ ∈ R
d with min

1≤j≤d
|ξj | ≥ 1,

(4.4)
then almost surely,

dimH X(R+) =
{

α1 if α1 ≤ d1,
1 + α2

(
1 − 1/α1

)
otherwise. (4.5)

It is easily seen that the Lévy processes with independent stable components
[cf. Hendricks (1973, 1974)] satisfy (4.4). Meerchaert and Xiao (2003) have recently
shown that every operator stable Lévy process X in R

d with exponent B satis-
fies (4.4) with α1, . . . , αd being the real parts of the eigenvalues of B. Hence the
Hausdorff dimension of the range X(R+) is given by (4.5). This solves a problem
of Becker–Kern, Meerschaert and Scheffler (2003).

When X is a Brownian motion or a stable Lévy process in R
d, McKean

(1955) and Blumenthal and Getoor (1960) have demonstrated that for all Borel
sets E ⊂ R+,

dimH X(E) = d ∧ α dimH E, a.s., (4.6)
Blumenthal and Getoor (1961) extended (4.6) to a broad class of Lévy processes.
For this purpose, they introduced the upper index β and lower indices β′, β′′ of
a general Lévy process X and, in addition, the lower index σ of a subordinator.
Blumenthal and Getoor (1961, Theorems 8.1 and 8.5) established the following
upper and lower bounds for dimH X(E) in terms of the upper index β and lower
indices β′ and β′′ of X: For every E ⊂ R+, almost surely

dimH X(E) ≤ β dimH E, if β < 1, (4.7)

and

dimH X(E) ≥
{

β′ dimH E, if β′ ≤ d,

1 ∧ β′′ dimH E, if β′ > d = 1.
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They showed, in addition, that when X is a subordinator, then

σ dimH E ≤ dimH X(E) ≤ β dimH E, a.s. (4.8)

The restriction β < 1 of (4.7) was removed subsequently by Millar (1971, Theorem
5.1). Blumenthal and Getoor (1961, p.512) conjectured that, given a Borel set
E ⊂ [0, 1], there exists a constant λ(X, E) such that

dimH X(E) = λ(X, E), a.s. (4.9)

Except in the cases that X is a Lévy process with stable components [Hendricks
(1973)], or a subordinator [Hawkes (1978b)], the question whether the above con-
jecture holds or not had remained unanswered. Recently, by using potential of
additive Lévy processes, Khoshnevisan and Xiao (2003b) have verified the above
conjecture by proving the following theorem.

Theorem 4.4. Suppose X = {X(t); t ∈ R+} is a Lévy process in R
d, and denote

its Lévy exponent by Ψ. Then for any Borel set E ⊂ R+, a.s.

dimH X(E)

=sup
{

β ∈ (0, d) : inf
µ∈P(E)

∫

Rd

∫ ∫

e−|s−t|Ψ
(
sgn(s−t)ξ

)

‖ξ‖β−d µ(ds)µ(dt)dξ<+∞
}

.

(4.10)
If X is symmetric, then (4.10) is equivalent to the following:

dimH X(E) = sup
{
β ∈ (0, d) : Cfd−β

(E) > 0
}

, a.s., (4.11)

where fγ is defined as

fγ(x) :=
∫

Rd

e−|x|Ψ(ξ)‖ξ‖−γ dξ, ∀x ∈ R, γ ∈ (0, d).

Formula (4.10) shows that dimH X(E) may depend on other characteristics
of the set E than its Hausdorff dimension and it is not easy to use. Only in a few
cases, we can express dimH X(E) in terms of dimH E; see Blumenthal and Getoor
(1960), Hendricks (1973), Meerchaert and Xiao (2003).

After the Hausdorff dimension of X(R+) or X(E) is known, it is natural to
study its exact Hausdorff measure or exact capacity. The former problem has been
studied extensively; see Taylor (1986a) or Xiao (2003) for a survey. The latter
problem has been investigated by Kahane (1985b) and Hawkes (1998) for sym-
metric stable Lévy processes and subordinators, respectively. Applying potential
theory of additive Lévy processes, Khoshnevisan and Xiao (2003b) have recently
extended their results to general Lévy processes.

On the other hand, Pemantle, Peres and Shapiro (1996) have shown that the
range of Brownian motion B in R

d (d ≥ 3) is capacity equivalent to [0, 1]2. Rosen
(2000) extends their results to a class of Lévy processes and introduces the notion
of capacitary modulus. A function h(x) : R

d → R+ is called a capacitary modulus
for Λ ⊂ R

d if there exist constants 0 < K3 ≤ K4 < ∞ such that
[
K4

∫

Rd

f(|x|)h(x)dx
]−1

≤ Cf (Λ) ≤
[
K3

∫

Rd

f(|x|)h(x)dx
]−1
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for all non-increasing f : R+ → [0,∞]. Thus, the results of Pemantle, Peres and
Shapiro (1996) imply that the function

h(x) =
{ |x|−(d−2) if d ≥ 3

| log x| if d = 2
(4.12)

is a capacity modulus for B([0, 1]). It would be interesting to study capacitary
modulus for the range of an additive Lévy processes.

4.2. Existence and Hausdorff dimension of multiple points

Let X = {X(t), t ∈ R+} be a d-dimensional Lévy process. The existence of k-
multiple points of X has been solved by LeGall et al. (1989), Evans (1987a),
Fitzsimmons and Salisbury (1989). In this subsection, we show that the potential
theory of additive Lévy processes can be applied to study the existence of self-
intersections of X(t) when t is restricted to disjoint compact subsets E1, E2, . . . , Ek

of R+ (k ≥ 2). This problem was originally considered by Kahane (1983) who
showed that if X is a symmetric stable Lévy process in R

d of index α and k = 2,
then

Cd/α(E1×E2) > 0 ⇒ P
{
X(E1)∩X(E2) �= ∅} > 0 ⇒ λd/α(E1×E2) > 0. (4.13)

Kahane (1983, p. 90) conjectured that Cd/α(E1×E2) > 0 is necessary and sufficient
for P

{
X(E1) ∩ X(E2) �= ∅} > 0. This conjecture was verified by Khoshnevisan

(1999) for Brownian motion. The following theorem of Khoshnevisan and Xiao
(2003b) establishes a necessary and sufficient condition for P{X(E1)∩· · ·∩X(Ek) �=
∅} > 0 and implies that Kahane’s conjecture is true for all symmetric stable Lévy
processes.

Theorem 4.5 (Kahane’s Problem). Let X be a symmetric Lévy process in R
d with

Lévy exponent Ψ. If the distribution of X(t) is equivalent to λd for all t > 0, then
for any disjoint compact sets E1, . . . , Ek ⊂ R+, P{X(E1) ∩ · · · ∩ X(Ek) �= ∅} > 0
if and only if Cf (E1 × E2 × · · · × Ek) > 0, where

f(x) :=
∫

Rd(k−1)
exp

(
−

k∑

j=1

|xj |Ψ(ξj−1 − ξj)
)

dξ, x ∈ R
k, ξ0 = ξk = 0.

To prove Theorem 4.5, it suffices to consider k independent Lévy processes
X1, . . . , Xk in R

d with exponent Ψ and define an additive Lévy process Z by
(2.6). Then by Lemma 3.1, we need to find a necessary and sufficient condition for
E

{
λd(k−1)(Z(E1 ×· · ·×Ek))

}
> 0. This is done by Theorem 2.1 of Khoshnevisan,

Xiao and Zhong (2003a) [see also Theorem 3.6, under some extra conditions].
Now we consider the fractal properties of the set M

(d)
k of k-multiple points

and the set L
(d)
k of k-multiple times of X defined by

M
(d)
k =

{
x ∈ R

d : x = X(t1) = · · · = X(tk) for distinct t1, . . . , tk ∈ R+

}

and

L
(d)
k =

{
(t1, · · · , tk) ∈ R

k
+, t1, . . . , tk are distinct and X(t1) = · · · = X(tk)

}
,
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respectively.
The Hausdorff dimension dimH M

(d)
k has been determined by Taylor (1966),

Fristedt (1967), Hendricks (1974), Hawkes (1978c), Shieh (1998) for stable Lévy
processes, operator stable Lévy processes and certain isotropic Lévy processes,
respectively. However, the following problem is still open:

Problem 4.6. Given a general d-dimensional Lévy process X, compute dimH M
(d)
k

and dimP M
(d)
k explicitly in terms of the Lévy exponent of X, where dimP denotes

packing dimension.
Note that Corollary 4.2 computes the Hausdorff dimension of M1. In order to

understand the fine structure of Mk for k > 1, we need to appeal to the potential
theory for multiplicative Lévy processes X = X1 ⊗ · · · ⊗ Xk. Prefatory results,
along these lines, have been developed earlier in Evans (1987a, b), Fitzsimmons
and Salisbury (1989), Peres (1999), and Khoshnevisan (2002).

Very little is known about the packing dimension aspect of Problem 4.6,
and completely new ideas are needed. For k = 1, Taylor (1986b) has proven that
dimP X(R+) is equal to a certain exponent γ′ a.s., but γ′ seems, in general, in-
computable. It would be desirable to represent γ′ in terms of the Lévy exponent
Ψ.

For the Hausdorff dimension of L
(d)
k , Rosen (1983) has shown that if X is a

d-dimensional Brownian motion (d = 2, 3), then

dimH L
(3)
2 =

1
2

and dimH L
(2)
k = 1 for all k ≥ 2. (4.14)

The following more general result is derived from Theorem 2.10 in Khoshnevisan
and Xiao (2002) [see also Khoshnevisan and Xiao (2003a)]:

Theorem 4.7. If X is a symmetric Lévy process in R
d with exponent Ψ such that

ξ 
→ e−tΨ(ξ) is in L1(Rd). Then

dimH L
(d)
k = sup

{
b > 0 :

∫

[0,1]k

1
|s|b Φ(s) ds < ∞

}
,

where Φ is the gauge function on R
k defined by

Φ(s) = (2π)−d

∫

R(k−1)d

exp
(

−
k∑

j=1

|sj |Ψ (ξj − ξj−1)
)

dξ for s = 〈sj〉 ∈ R
k.

In particular, if X is a symmetric stable Lévy processes in R
d with index

α ∈ (0, 2] and such that αk > (k − 1)d [i.e., L
(d)
k �= ∅], then

dimH L
(d)
k = k − (k − 1)d

α
.

This extends Rosen’s result (4.14).
The conditions of Theorem 4.7 are quite restrictive. It would be interesting

to solve the following:
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Problem 4.8. Find dimH L
(d)
k and dimP L

(d)
k for a general Lévy process X in R

d.
Except for Brownian motion, there is no knowledge on the exact Hausdorff

and packing measure functions of Mk and Lk. These problems have to be studied
by using other methods than potential theory of additive Lévy processes, and
hence will not be discussed here. We refer to Xiao (2003b, section 9) for more
information.
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