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1. Introduction

The study of sample path properties of Brownian motion, and more generally
of stable Lévy processes on Rd has been one of the most interesting subjects in
probability theory. Hausdorff dimension and Hausdorff measure have been very
useful tools for such studies since the pioneering work of Lévy (1953) and Taylor
(1953, 1955, 1967). There have been several excellent comprehensive survey papers
on sample path properties of Lévy processes, e.g., Taylor (1973), Fristedt (1974),
Pruitt (1975), Taylor (1986a), as well as the books of Bertoin (1996, 1999) and Sato
(1999), from which I have benefited greatly.

The birth of fractal geometry, due in great measure to the work of Benoit
Mandelbrot, has brought many new ideas and new geometric tools [such as packing
dimension and packing dimension profiles, average densities, multifractals] into the
studies of fine properties of stochastic processes. In the past decade, not only many
new delicate results have been discovered for Brownian motion and stable Lévy
processes [see Lawler (1999) for a nice survey on the fractal properties of Brownian
motion], but there has also been tremendous interest in studying other Markov
processes such as diffusions on fractals, and Feller processes related to pseudo-
differential operators; see the monographs of Barlow (1998), Jacob (1996) and the
references therein for more information.

The object of this paper is to give an expository account of fractal properties
of Markov processes. In the historical development of the studies of sample path
properties of Markov processes, results have usually been obtained for Brownian
motion first, then for symmetric stable processes of index α (0 < α < 2), and then
for general Lévy processes or Markov processes. At each stage of generalization,
some special properties of the processes are used. Due to its importance in the
general theory on Markov processes, in most parts of this paper, we will concentrate
on recent results for the sample paths of Lévy processes, with an emphasis on
methods that are applicable to more general Markov processes. Whenever possible,
we will give a unified treatment for several classes of Markov processes.

Let X = {X(t), t ∈ R+} be a Markov process with values in a metric space
(S, ρ). Throughout this paper, we are interested in the sample path properties of
X, that is, properties of the function X(t) = X(t, ω) for fixed ω ∈ Ω. When we say
that sample paths of the process X have property P almost surely (with positive
probability, resp.), we mean that the set {ω ∈ Ω : X(·, ω) has property P} is an
event and has probability 1 (positive probability, respectively). The following are
some examples of random sets generated by X:

Range (Image): X([0, 1]) =
{
x ∈ S : x = X(t) for some t ∈ [0, 1]

}
;

Graph set: GrX([0, 1]) =
{
(t,X(t)) ∈ [0, 1]× S : t ∈ [0, 1]

}
;

Level set: X−1(x) =
{
t ∈ R+ : X(t) = x

}
, x ∈ S; or more generally,

Inverse image: X−1(F ) =
{
t ∈ R+ : X(t) ∈ F

}
, where F ⊂ S.

This paper is organized as follows. In Section 2, we collect several classes of
Markov processes whose sample path properties will be discussed. We recall their
definitions and some basic properties that will be used in the sequel.

In Section 3, we recall the definitions and properties of various tools from fractal
geometry; these include Hausdorff measure and dimension, packing measure and
dimension, packing dimension profile, capacity, average densities and multifractals.
While most of the materials can be found in the books of Falconer (1990, 1997),



RANDOM FRACTALS AND MARKOV PROCESSES 3

Mattila (1995), some of them such as packing dimension profiles and multifractal
spectrum for functions are more recent, see Falconer and Howroyd (1997) and
Jaffard (1999, 2001).

Section 4 studies the Hausdorff dimension and packing dimension of the range of
Markov processes. We prove some general formulae for dimHX([0, 1]), dimPX([0, 1])
and dimHX(E) in terms of the transition function of X, which extend the well-
known results of Pruitt (1969), Taylor (1986b) and so on.

Section 5 is about the exact Hausdorff measure and packing measure of the
range X([0, 1]). Some useful techniques for evaluating Hausdorff and packing mea-
sures are discussed.

Sections 6 and 7 concern the fractal properties of level sets and inverse im-
ages. Potential theory plays an important role in this section. The existence and
regularity of local times are also discussed.

Section 8 concerns the uniform Hausdorff and packing dimension results for the
range and inverse image of a Markov process. These results [when they exist] are
stronger than those described in Sections 4–7 and they can be applied to derive
fractal dimension or measure results involving random index sets. For example, the
Hausdorff dimension of the set of multiple points or collision points of a Markov
process can be obtained from the Hausdorff dimension of the level set of certain
related processes.

Section 9 is on the existence of multiple points of a Markov process or the
intersections of independent Markov processes, and on the fractal properties of the
set of multiple points and multiple times when they are not empty. Several different
approaches for the intersection problem are discussed.

Some exact capacity estimates for the range and the inverse image are given in
Section 10. Capacities are also natural tools in studying self-intersections of X(t)
when t is restricted to compact sets.

Section 11 summarizes recent results on average densities and tangent measure
distributions of the occupation measures of Brownian motion.

Finally, Section 12 discusses the multifractal structure of the sample paths of X
as well as the random measures induced by X, where X is either a Brownian motion
or a more general Lévy process. Limsup type random fractals play important roles
in these studies.

Throughout this paper, we will use K to denote unspecified positive and finite
constants which may differ from line to line. Some specific constants are denoted
by K1, K2, . . . . The Euclidean metric and the ordinary scalar product in Rd are
denoted by | · | and 〈·, ·〉, respectively. The Lebesgue measure in Rd is denoted by
λd. Given two functions g and h on Rd, g ³ h means that there exists a positive
and finite constant K ≥ 1 such that K−1h(x) ≤ g(x) ≤ Kh(x) for all x ∈ Rd. We
use A=̂B to indicate that A is defined by B.

2. Markov processes

In this section, we first briefly recall the definition of some basic notions about
Markov processes and related properties. Then we will describe several classes of
Markov processes whose sample functions will be studied later in the paper. For
the general theory of Markov processes, we refer to Blumenthal and Getoor (1968),
Sharpe (1988) and Khoshnevisan (2002).
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Let (S, ρ) be a locally compact separable complete metric space with Borel
σ-algebra S. We assume that there is a Radon measure µ on S which plays the
role of a reference measure. Recall that a Radon measure is a σ-finite Borel regular
measure on (S,S) which is finite on compact sets.

A family of functions {Ps,t(x,A) : 0 ≤ s < t}, where Ps,t(x, A) : S × S → R+,
is called a transition function system on S if the following conditions are satisfied:

(i) for all 0 ≤ s < t and for each fixed x ∈ S, Ps,t(x, ·) is a probability
measure on (S,S);

(ii) for all 0 ≤ s < t and for all A ∈ S, Ps,t(x, A) is a measurable function of
x;

(iii) for all 0 ≤ s < t < u, x ∈ S and all A ∈ S,

(2.1) Ps,u(x,A) =
∫

S

Ps,t(x, dy)Pt,u(y, A).

The relationship (2.1) is the Chapman–Kolmogorov equation. If, in addition, the
transition function Ps,t(x,A) satisfies

Ps,t(x,A) = Ps,t(0, A− x)

for all 0 ≤ s < t < u, x ∈ S and all A ∈ S, then we say that the transition
function Ps,t(x, A) is spatially homogeneous (or translation invariant). In the above,
A− x = {y − x : y ∈ A}.

A transition function Ps,t(x,A) is said to be temporally homogeneous if there
exists a family of functions {Pt(x,A), t > 0} such that Ps,t(x, A) = Pt−s(x,A) for
all 0 ≤ s < t. In this case, the Chapman–Kolmogorov equation can be written as

(2.2) Ps+t(x,A) =
∫

S

Ps(x, dy)Pt(y, A).

Later, we will also write P (t, x, A) for Pt(x,A).
A stochastic process X = {X(t),M,Mt, θt,Px} with values in (S,S) is called

a Markov process with respect to a filtration {Mt : t ≥ 0} [i.e., Mt is a σ-algebra
for each t ≥ 0 and Ms ⊆ Mt for all 0 ≤ s < t] having Ps,t(x,A) as transition
function provided

(i) X is adapted to {Mt}, i.e., X(t) is measurable with respect to Mt for
all t ≥ 0;

(ii) for all 0 ≤ s < t and all bounded measurable function f on (S,S),

(2.3) E
{
f(X(t)) | Ms

}
= Ps,tf(X(s)),

where

Ps,tf(x) =
∫

S

f(y)Ps,t(x, dy).

By letting f = 1lA and taking conditional expectation with respect to X(s) in (2.3),
we see that Ps,t(x, ·) is the conditional distribution of X(t), given X(s) = x.

If the transition function Ps,t(x,A) is temporally homogeneous, then X is
called a temporally homogeneous Markov process with respect to {Mt}. When
Mt=̂σ{X(s) : s ≤ t} for all t ≥ 0, we will write X = {X(t), t ∈ R+,Px, x ∈ S} or
simply X = {X(t), t ∈ R+}.

We assume throughout that X is a Hunt process so that its sample functions
X(·, ω) are right continuous and have finite left limit [or cadlag], the augmented
filtration {Ft, t ≥ 0} is right continuous [i.e., Ft = Ft+ = ∩s>t Fs] and that X
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has the strong Markov property. Except in Section 2.2, we will always consider
temporally homogeneous Markov processes.

Let Bb(S) be the space of all bounded measurable functions from S to R.
Corresponding to the (temporally homogeneous) transition function Pt(x,A), we
define the transition operator Tt on Bb(S) by

Ttf(x) =
∫

S

f(y)Pt(x, dy) for t > 0 and f ∈ Bb(S)

and T0f(x) = f(x). Then the Chapman–Kolmogorov equation (2.2) implies that
{Tt, t ≥ 0} is a semigroup of bounded linear operators on Bb(S), i.e., Ts ◦Tt = Ts+t

for all s, t ≥ 0.
We say that a Markov process X is symmetric if for all f, g ∈ Cc(S),

(2.4)
∫

S

f(x)Ttg(x)µ(dx) =
∫

S

g(x)Ttf(x)µ(dx),

where Cc(S) denotes the space of all continuous functions on S with compact sup-
port.

Now, for simplicity, we assume S ⊆ Rd and let C0(Rd) be the Banach space of
continuous functions on Rd that tend to 0 at infinity, equipped with the uniform
norm ‖ · ‖.

Definition 2.1. A Markov process X = {X(t), t ∈ R+,Px, x ∈ S} is called a
Feller process if {Tt, t ≥ 0} is a Feller semigroup, i.e., for every f ∈ C0(Rd),

(i) Ttf ∈ C0(Rd) for every t ≥ 0;
(ii) limt→0 ‖Ttf − f‖ = 0.

Furthermore, if for every t ≥ 0, Tt maps Bb(S) into C0(Rd), then {Tt, t ≥ 0} is
called a strong Feller semigroup and the process X is called a strong Feller process.

The infinitesimal generator A of the semigroup {Tt, t ≥ 0} is defined by

Au = lim
t→0

Ttu− u

t
, ∀ u ∈ D(A),

where

D(A) =
{

u ∈ C0(Rd) : lim
t→0

Ttu− u

t
exists in ‖ · ‖

}

is called the domain of A. The operator (A,D(A)) is a densely defined closed
operator on C0(Rd) and determines {Tt, t ≥ 0} uniquely.

When the transition function Pt(x, ·) is absolutely continuous with respective
to the measure µ on (S,S), X has a transition density which will be denoted by
pt(x, y). Hence for all x ∈ S and A ∈ S,

Pt(x,A) =
∫

A

pt(x, y)dµ(y).

A sufficient condition for the existence of a transition density is that X has the
strong Feller property; see Hawkes (1979, Lemma 2.1).

Next we recall the definition of self-similar Markov processes, which was first
introduced and studied by Lamperti (1972) for Markov processes on [0,∞) under
the name “semi-stable”. Later, Graversen and Vuolle–Apiala (1986) considered
self-similar Markov processes on Rd or Rd\{0} and investigated the connections
between the multi-dimensional self-similar Markov processes and Lévy processes.
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We assume that (S,S) is Rd, Rd\{0} or Rd
+ with the usual Borel σ-algebra. Let

∆ be a point attached to S as an isolated point and let H > 0 be a given constant.
A temporally homogeneous Markov process X = {X(t), t ∈ R+,Px, x ∈ S} with
state space S ∪ {∆} is called an H-self-similar Markov process if its transition
function P (t, x, A) satisfies:

(2.5) P (0, x, A) = 1lA(x) for all x ∈ S, A ∈ S
and

(2.6) P (t, x,A) = P (at, aHx, aHA) for all t > 0, a > 0, x ∈ S, A ∈ S,

where for any c ∈ R, cA=̂{cx : x ∈ A}. The constant H is called the self-similarity
index of X. The conditions (2.5) and (2.6) are equivalent to

(2.7)
{
X(t), t ∈ R+, Px, x ∈ S

} d=
{
a−HX(at), t ∈ R+, PaHx, x ∈ S

}
,

where X
d= Y denotes that the two processes X and Y have the same finite dimen-

sional distributions. If (2.6) only holds for some constant a > 1, then X is called
semi-self-similar with index H. Such a constant a > 1 is called an epoch of the
process X [cf. Sato (1999, p.74)] and it is often useful in proving limiting theorems
for X. See, e.g., Fukushima et al. (1999), Bass and Kumagai (2000), Wu and Xiao
(2002b).

In Sections 2.1 and 2.2 below, we will discuss several important classes of self-
similar Markov processes including Brownian motion, strictly stable Lévy processes
and processes of Class L. More examples of self-similar Markov processes and related
references can be found in Xiao (1998), Liu and Xiao (1998). Examples of semi-self-
similar Markov processes include Brownian motion on nested fractals, see Section
2.5.

2.1. Lévy processes. Lévy processes form a very important class of Markov
processes. Besides Brownian motion, there has been tremendous interest in study-
ing general Lévy processes, both in theory and in applications. For more informa-
tion, we refer to the recent books of Bertoin (1996) and Sato (1999) for the general
theory and to Bertoin (1999) for the study of the subordinators. Moreover, many
properties of more general Markov processes can be obtained by comparing them
with appropriate Lévy processes. See, for example, Schilling (1996, 1998a, b).

A stochastic process X = {X(t), t ≥ 0} on a probability space (Ω,M,P),
with values in Rd, is called a Lévy process, if for every s, t ≥ 0, the increment
X(t + s)−X(t) is independent of the process {X(r), 0 ≤ r ≤ t} and has the same
distribution as X(s) [i.e., X has stationary and independent increments], and such
that t 7→ X(t) is continuous in probability. In particular, P{X(0) = 0} = 1.

For every x ∈ Rd, the law of the process x + X under P is denoted by Px. We
will write indifferently P or P0. Note that Px{X(0) = x} = 1. That is, under Px,
the Lévy process X starts from x.

Under P, the finite dimensional distributions of a Lévy process X are completely
determined by the distribution of X(1). It is well-known that the class of possible
distributions for X(1) is precisely the class of infinitely divisible laws. This implies
that for every t > 0 the characteristic function of X(t) is given by

E
[
ei〈ξ,X(t)〉] = e−tψ(ξ),
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where, by the Lévy–Khintchine formula,

(2.8) ψ(ξ) = i〈a, ξ〉+
1
2
〈ξ, Σξ

′〉+
∫

Rd

[
1− ei〈x,ξ〉 +

i〈x, ξ〉
1 + |x|2

]
L(dx), ∀ξ ∈ Rd,

and a ∈ Rd is fixed, Σ is a non-negative definite, symmetric, (d× d) matrix, and L
is a Borel measure on Rd \ {0} that satisfies

∫

Rd

|x|2
1 + |x|2 L(dx) < ∞.

The function ψ is called the Lévy exponent of X, and L is the corresponding Lévy
measure. There are several different characterizations for the exponent ψ. Note
that ψ(0) = 0 and that by Bochner’s theorem the function ξ 7→ e−tψ(ξ) is con-
tinuous and positive definite for each t ≥ 0 since it is the Fourier transform of a
probability measure. Hence, by a theorem of Schoenberg (1938) [see also Theorems
7.8 and 8.4 in Berg and Frost (1975)], the Lévy exponent ψ is a continuous negative
definite function. Such functions appeared in Schoenberg (1938) in connection with
isometric imbedding in Hilbert spaces. It seems that this concept had also appeared
in the (unpublished) work of Beurling. We refer to Chapter II of Berg and Frost
(1975) for a systematic account on negative definite functions. We will see that the
Lévy exponent ψ plays very important roles in studying the Lévy process X and
many sample path properties of X can be described in terms of ψ. In this regard,
we also note that

Re ψ(ξ) ≥ 0, and Re ψ(−ξ) = Re ψ(ξ), ∀ ξ ∈ Rd.

A Lévy process X in Rd is called symmetric if −X and X have the same finite-
dimensional distributions under P [note that this is consistent with (2.4)]. It is clear
that X is symmetric if and only if ψ(ξ) ≥ 0, for all ξ ∈ Rd.

In the following, we list some special cases of Lévy processes:

(a). Stable Lévy processes. A Lévy process X in Rd is called a stable Lévy
process with index α ∈ (0, 2] if its Lévy measure L is of the form

(2.9) L(dx) =
dr

r1+α
ν(dy), ∀x = ry, (r, y) ∈ R+ × Sd,

where Sd = {y ∈ Rd : |y| = 1} is the unit sphere in Rd and ν(dy) is an arbitrary
finite Borel measure on Sd. In the literature, stable Lévy processes in Rd of index
α = 1 are also called Cauchy processes. It follows from (2.8) and (2.9) that the
Lévy exponent ψα of a stable Lévy process of index α ∈ (0, 2] can be written as

ψα(ξ) =
∫

Sd

|〈ξ, y〉|α
[
1− i sgn(〈ξ, y〉) tan

(πα

2
)]

M(dy) + i〈ξ, µ0〉 if α 6= 1,

ψ1(ξ) =
∫

Sd

|〈ξ, y〉|
[
1 + i

π

2
sgn(〈ξ, y〉) log |〈ξ, y〉|

]
M(dy) + i〈ξ, µ0〉,

where the pair (M, µ0) is unique, and the measure M is called the spectral measure
of X. See Samorodnitsky and Taqqu (1994, pp.65–66). When d = 1, ψα can be
conveniently expressed as

ψα(ξ) = σα|ξ|α[
1− iβ sgn(ξ) tan

πα

2
]
+ iξµ0 if α 6= 1,(2.10)

ψ1(ξ) = σ|ξ|[1 + i
π

2
β sgn(ξ) log |ξ|] + iξµ0,
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where the constants σ ≥ 0, −1 ≤ β ≤ 1 and µ0 ∈ R are called the scale, skewness
and shift parameters, respectively. Throughout, we will tacitly assume that all
stable distributions are non-degenerate; that is, the measure M is not supported by
any diametral plane of Sd. Then, it is possible to see that there exists a positive
and finite constant K, such that

(2.11) Re ψα(ξ) ≥ K|ξ|α, ∀ξ ∈ Rd.

A stable Lévy process X on Rd with index α ∈ (0, 2] is said to be strictly stable
if its Lévy exponent ψα has the form

(2.12) ψα(ξ) = |ξ|α
∫

Sd

wα(ξ, y)M(dy),

where

wα(ξ, y) =
[
1− i sgn(〈ξ, y〉) tan

(πα

2
)] ·

∣∣∣
〈 ξ

|ξ| , y
〉∣∣∣

α

, if α 6= 1;

w1(ξ, y) =
∣∣∣
〈 ξ

|ξ| , y
〉∣∣∣ +

2i

π
〈ξ, y〉 log

∣∣〈ξ, y〉∣∣

and, in addition, when α = 1, M must also have the origin as its center of mass,
i.e.,

(2.13)
∫

Sd

y M(dy) = 0.

See, for example, Samorodnitsky and Taqqu (1994, p.73). We remark that the
asymmetric Cauchy processes [i.e., the Cauchy processes whose spectral measures
M do not satisfy (2.13)] are not strictly stable. The presence of the logarithmic
term is the source of many difficulties associated with the studies of sample path
properties of the asymmetric Cauchy processes, which have to be treated separately.

It follows from (2.12) that strictly stable Lévy processes of index α are (1/α)-
self-similar [under Px for all x ∈ Rd]. Conversely, a self-similar Lévy process must be
a strictly stable Lévy process, see Sato (1999, p.71). A particularly interesting class
arises when we let M be the uniform distribution on Sd. In this case, ψ(ξ) = σα|ξ|α
for some constant σ > 0, and X is called the isotropic stable Lévy process with
index α. Note that isotropic processes are sometimes called symmetric processes in
the literature. It is well-known that when α = 2, 2−1/2σ−1X is a Brownian motion.
This is a Gaussian process with continuous sample paths. All other stable Lévy
processes have discontinuous sample paths.

As discovered in Taylor (1967), it is natural to distinguish between two types
of strictly stable processes: those of Type A, and those of Type B. A strictly stable
Lévy process X is of Type A, if

p(t, y) > 0, ∀t > 0, y ∈ Rd,

where p(t, y) is the density function of X(t); all other stable Lévy processes are
of Type B. Taylor (1967) has shown that if α ∈ (0, 1), and if the measure M is
concentrated on a hemisphere, then X is of Type B, while all other strictly stable
Lévy processes of index α 6= 1 are of Type A.

(b). Subordinators. A subordinator X is a Lévy process in R with increasing
sample paths. Equivalently, a real-valued Lévy process X is a subordinator if
and only if Σ = 0 in (2.8) [i.e., X has no Gaussian part], its Lévy measure L is
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concentrated on [0,∞) and satisfies
∫ 1

0
xL(dx) < ∞. In studying a subordinator X

it is more convenient to use its Laplace transform

E
[
exp

(− uX(1)
)]

= exp
(− g(u)

)
, ∀u ≥ 0,

where

(2.14) g(u) = cu +
∫ ∞

0

[
1− exp(−ur)

]
L(dr),

and c ≥ 0 is a constant and L is the (same) Lévy measure. The function g is called
the Laplace exponent of X. Clearly if we consider u as a complex variable, then
(2.14) defines g in the right half plane Re u ≥ 0. The Lévy exponent ψ of X is
given by ψ(ξ) = g(−iξ) for all ξ ∈ R.

It follows from Theorems 21.2 and 21.3 in Sato (1999) or Bertoin (1999, p.9)
that if c = 0 and L(R+) < ∞, then X is a compound Poisson process and its sample
path is a step function; otherwise, the sample function of X is strictly increasing.

Besides being of great interest in their own right, subordinators are an impor-
tant tool in studying the fractal properties of Lévy processes (e.g., co-dimension
arguments, zero set of Lévy processes, etc.), They can also be used to generate new
Lévy processes. That is, if τ = {τt, t ≥ 0} is a subordinator with τ0 = 0 and is
independent of a Lévy process X, then the process Y defined by Y (t) = X(τt) is
also a Lévy process (this is called subordination in the sense of S. Bochner). The
transition function of Y can be expressed explicitly as

P
{
Y (t) ∈ B

}
=

∫ ∞

0

P
{
X(s) ∈ B

}
P(τt ∈ ds).

For an extensive account of subordinators and their properties, see Bertoin (1996,
Chapter III; 1999).

(c). Operator stable Lévy processes. A Lévy process X = {X(t), t ∈ R+} in
Rd (d > 1) is called operator stable if the distribution ν of X(1) is full [i.e., not
supported on any (d− 1)-dimensional hyperplane] and ν is strictly operator stable,
i.e., there exists a linear operator A on Rd such that

νt = tAν for all t > 0,

where νt denotes the t-fold convolution power of the infinitely divisible law ν and
tAν is the image measure of ν under the linear operator tA which is defined by

tA =
∞∑

n=0

(log t)n

n!
An.

The linear operator A is called an exponent of X. The set of all possible exponents
of an operator stable law is characterized in Theorem 7.2.11 of Meerschaert and
Scheffler (2001).

On the other hand, a stochastic process X = {X(t), t ∈ R} is said to be operator
self-similar if there exists a linear operator B on Rd such that for every c > 0,

{X(ct), t ≥ 0} d= {cBX(t), t ≥ 0},
where B is called a self-similarity exponent of X.

Hudson and Mason (1982) proved that if X is a Lévy process in Rd such that
the distribution of X(1) is full, then X is operator self-similar if and only if X(1) is
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strictly operator stable. In this case, every exponent of X(1) is also a self-similarity
exponent of X.

Operator stable Lévy processes are scaling limits of random walks on Rd, nor-
malized by linear operators; see Meerschaert and Scheffler (2001, Chapter 11).
Clearly, all strictly stable Lévy processes in Rd of index α are operator stable with
exponent A = α−1I, where I is the identity operator in Rd. The Lévy process
X = {X(t), t ≥ 0} defined by

X(t) = (X1(t), . . . , Xd(t)),

where X1 . . . , Xd are independent stable Lévy processes in R with indices α1, . . . , αd

∈ (0, 2] respectively, is called a Lévy process with stable components. This type
of Lévy processes was first studied by Pruitt and Taylor (1969), and it is some-
times useful in constructing counterexamples [see Hendricks (1972)]. It is easy
to verify that X is an operator stable Lévy process with exponent A which has
α−1

1 , α−1
2 , . . . , α−1

d on the diagonal and 0 elsewhere. Examples of operator stable
Lévy process with dependent components have been considered by Shieh (1998)
and recently by Becker–Kern et al. (2002). For systematic information about oper-
ator stable laws and operator stable Lévy processes, see Meerschaert and Scheffler
(2001).

Now we return to general Lévy processes. In order to extend results on the sam-
ple paths of Brownian motion and stable Lévy processes to general Lévy processes
in Rd, Blumenthal and Getoor (1961) introduced the following indices β, β′, β′′

and obtained certain sample path properties of X in terms of these indices. Later
Pruitt (1969) and Hendricks (1983) defined the indices γ and γ′, respectively, and
showed their relevance to the Hausdorff dimension of the range of Lévy processes.
These indices have played important roles in studying the sample path properties of
Lévy processes. See the survey papers of Taylor (1973, 1986a), Fristedt (1974) and
Pruitt (1975). It is an interesting problem to understand the relationship among
these indices. Related results and open questions can be found in Pruitt and Taylor
(1996).

To be more specific, the upper index β of X is defined in terms of its Lévy
measure L as

β = inf
{

α > 0 :
∫

|y|<1

|y|α L(dy) < ∞
}

= inf
{

α > 0 : rαL
{
y : |y| > r

} →∞ as r → 0
}

.(2.15)

When X is a Lévy process without a Gaussian part and a in (2.8) is appropriately
chosen, Blumenthal and Getoor (1961, Theorem 3.2) showed that the upper index
β can be expressed in terms of the Lévy exponent ψ:

β = inf
{

α > 0 : lim
ξ→∞

|ξ|−α Re ψ(ξ) = 0
}

= inf
{

α > 0 : lim
ξ→∞

|ξ|−α ψ(ξ) = 0
}

.(2.16)

We mention that, under the same conditions on ψ, Millar (1971, Theorem 3.3) has
provided a characterization of the index β by using a class of subordinators called
“jump processes” associated to X.
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The parameters β
′′

and β
′
depend on the behavior of Re ψ at ∞:

(2.17) β
′′

= sup
{

α ≥ 0 : lim
|ξ|→∞

|ξ|−αRe ψ(ξ) = ∞
}

.

(2.18) β
′
= sup

{
α ≥ 0 :

∫

Rd

|ξ|α−d 1− exp(−Re ψ(ξ))
Re ψ(ξ)

dξ < ∞
}

.

Blumenthal and Getoor (1961) showed that 0 ≤ β
′′ ≤ β′ ≤ β ≤ 2 and these

indices could be distinct. However, when the process X is strictly stable with index
α ∈ (0, 2], all these indices equal α.

When X is a subordinator with Laplace exponent g, Blumenthal and Getoor
(1961) defined the index

(2.19) σ = sup
{

α ≤ 1 :
∫ ∞

1

uα−1

g(u)
du < ∞

}

and showed that both σ and the upper index β can be expressed in terms of the
Laplace exponent g:

σ = sup
{

α ≥ 0 : lim
u→∞

u−αg(u) = ∞
}

,

β = inf
{

α ≥ 0 : lim
u→∞

u−αg(u) = 0
}

.

Blumenthal and Getoor (1961, p.504) also proved that 0 ≤ β′ ≤ σ ≤ β ≤ 1. Later,
Horowitz (1968) found another representation for σ in terms of the Lévy measure:

σ = sup
{

α : xα−1

∫ x

0

L(y,∞)dy →∞ as x → 0
}

;

moreover, he showed that dimHX([0, 1]) = σ a.s., where dimHE denotes the Haus-
dorff dimension of E. See Section 3.1 for its definition.

In studying the Hausdorff dimension of the range of a general Lévy process X
in Rd, Pruitt (1969) defined the index γ by means of the behavior of the expected
time spent by X in a small ball:

(2.20) γ = sup
{

α ≥ 0 : lim sup
r→0

r−α

∫ 1

0

P
{|X(t)| ≤ r

}
dt < ∞

}
.

Pruitt (1969) showed that for a subordinator γ = σ [this is related to the above
result of Horowitz (1968)] and for a symmetric Lévy process γ = min{β′, d}, but in
general β′ and γ can be different.

Pruitt’s definition of γ is hard to calculate. The question of expressing the index
γ in terms of the Lévy exponent ψ was raised in Pruitt (1969, 1975) and he obtained
some partial results. This problem has recently been solved by Khoshnevisan, Xiao
and Zhong (2003) who have shown that

(2.21) γ = sup
{

α < d :
∫

ξ∈Rd: |ξ|>1

Re
( 1

1 + ψ(ξ)

) dξ

|ξ|d−α
< +∞

}
.

The parameter γ′ was due to Hendricks (1983),

(2.22) γ′ = sup
{

α ≥ 0 : lim inf
r→0

r−α

∫ 1

0

P
{|X(t)| ≤ r

}
dt < ∞

}
.

Taylor (1986b) proved that γ′ equals the packing dimension of the range of X. For
a subordinator X, it follows from the results of Fristedt and Taylor (1992) on the
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packing measure of the range X([0, 1]) that γ′ = β; see also Bertoin (1999, Theorem
5.1 and Lemma 5.2). Since (2.22) is not easy to evaluate for a general Lévy process,
it would be useful to represent γ′ in terms of the Lévy exponent ψ, as (2.21) for γ.

Using the results of Blumenthal and Getoor (1961), Pruitt (1969), Taylor (1986)
and Bertoin (1999) on the Hausdorff and packing dimensions of X([0, 1], we have
the following relationship among the indices γ, γ′, β′ and β

0 ≤ β′ ∧ d ≤ γ ≤ γ′ ≤ β ∧ d

and for a subordinator, γ = σ ≤ γ′ = β.1 Further results on relations among these
indices for general Lévy processes and some open problems can be found in Pruitt
and Taylor (1996).

It is clear that both indices γ and γ′ can be defined for any (Markov) process.
In Sections 4.1 and 4.2, we will prove that dimHX([0, 1]) = γ and dimPX([0, 1]) =
γ′ for a very large class of Markov processes, where dimPE denotes the packing
dimension of E. See Section 3.2 for its definition.

Due to the spatial homogeneity of Lévy processes, their transition operators
are convolution operators. One can see that both the transition operator and
infinitesimal generator of a Lévy process are pseudo-differential operators. See
subsection 2.3 below for the definition of pseudo-differential operators and related
references. This serves as a starting point for studying Feller processes generated
by pseudo-differential operators.

2.2. Additive processes. A stochastic process X = {X(t), t ∈ R+} on a
probability space (Ω,M,P), with values in Rd, is called an additive process if,
for every s, t ≥ 0, the increment X(t + s) − X(t) is independent of the process
{X(r), 0 ≤ r ≤ t}, X(0) = 0 a.s. and such that t 7→ X(t) is continuous in
probability.

Note that an additive process X has independent increments, but the incre-
ments may not be stationary. Hence, it is, in general, not temporally homogeneous.
The class of additive process is very large. For example, if X is a Lévy process in
Rd and τ(s) is any deterministic function that is increasing and right continuous,
then Y (s) = X(τ(s)) defines an additive process.

Of special interest is the class of self-similar additive processes. X = {X(t), t ∈
R+} is called broad-sense self-similar if, for every a > 0, a 6= 1, there exist b =
b(a) > 0 and a function c(t) : R+ → Rd such that

{
X(at), t ∈ R+

} d=
{
bX(t) + c(t), t ∈ R+

}
.

By Theorem 13.11 in Sato (1999), we know that if an additive process X is broad-
sense self-similar, then there exists a constant H > 0 such that b(a) = aH for all
a > 0. The constant H is called the self-similarity index of X. If c(t) ≡ 0, then X
is self-similar as defined before.

Recall that a probability measure ν on Rd is said to be self-decomposable or of
Class L if, for any a > 1, there is a probability measure ρa on Rd such that

ν̂(ξ) = ν̂(a−1ξ) ρ̂a(ξ), ∀ξ ∈ Rd,

1Pruitt (1969) defined a subordinator T satisfying β′′ < β′ < σ. Then σ = dimHT (R+) and

β′ is the Hausdorff dimension of the range of the symmetrized processes of T .
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where ν̂ is the Fourier transform of ν. It is easy to see that any stable distribution
on Rd is self-decomposable [cf. Sato (1999, p.91)], but the Class L is much larger
than the class of stable distributions.

It is well-known that a Lévy process X is self-similar if and only if it is strictly
stable. For additive processes, there is an analogous result. This is due to Sato
(1991), who showed that

(i). If X = {X(t), t ∈ R+} is broad-sense self-similar, then, for every t ∈ R+,
the distribution of X(t) is self-decomposable.

(ii). For every non-trivial self-decomposable distribution ν on Rd and any
H > 0, there exists an additive process X such that X is self-similar with
index H and the distribution of X(1) is ν.

Hence, self-similar additive processes are also called processes of class L. We refer
to Sato (1999) for systematic information on additive processes.

In contrast to the rich theory of Lévy processes, much less work on the sample
path properties of additive processes has been carried out. Note that each distri-
bution ν of Class L induces two kinds of processes of independent increments; one
is a Lévy process and the other is a process of Class L. Both of them have ν as
their distributions at t = 1. It is of interest to compare their probabilistic proper-
ties. Some results along this line have been established recently. For example, Sato
(1991) and Watanabe (1996) have compared the asymptotic behavior of increasing
self-similar additive processes X = {X(t), t ≥ 0} as t → 0 and t → ∞ with those
of stable subordinators. Yamamuro (2000a, b) has obtained a criterion for the re-
currence and transience of processes of Class L, which are different from those for
Lévy processes. However, as far as I know, few results on fractal properties of their
sample paths have been established for general processes of Class L.

2.3. Lévy-type Markov processes and pseudo-differential operators.
In recent years, many authors have investigated Markov processes that are com-
parable in some sense to Lévy processes. In this subsection, we briefly discuss the
Feller processes related to pseudo-differential operators and refer to Jacob (1996),
Schilling (1998a, b), Jacob and Schilling (2001), Kolokoltsov (2000) for more infor-
mation.

For simplicity, we take S = Rd. Let C∞c (Rd) denote the space of infinitely
differentiable functions on Rd with compact support and let C∞0 (Rd) be the Banach
space of continuous functions on Rd that tend to 0 at infinity equipped with the
uniform norm ‖·‖. A pseudo-differential operator is an operator q(x,D) on C∞c (Rd)
of the form

q(x, D)u(x) = (2π)−
d
2

∫

Rd

ei〈x,ξ〉q(x, ξ)û(ξ)dξ,

where the function q : Rd × Rd → C, called the symbol of the operator q(x, D), is
assumed to be measurable in (x, ξ) and of polynomial growth in ξ, and where û is
the Fourier transform of u, i.e.,

û(ξ) = (2π)−d/2

∫

Rd

e−i〈ξ,x〉u(x)dx.

Let X = {X(t), t ∈ R+,Px, x ∈ Rd} be a Feller process with values in Rd.
We denote its semigroup and infinitesimal generator by {Tt, t ≥ 0} and (A,D(A)),
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respectively. Define the function λt : Rd × Rd → C by

(2.23) λt(x, ξ) = Ex
[
e−i〈ξ,X(t)−x〉

]
,

which is the characteristic function of the random variable X(t)− x on the proba-
bility space (Ω,M,Px). Under some mild regularity conditions on X, Jacob (1998)
proves that the restriction of Tt on C∞c (Rd) is a pseudo-differential operator with
symbol λt(x, ξ), that is, for every u ∈ C∞c (Rd)

Tt u(x) = (2π)−
d
2

∫

Rd

ei〈x,ξ〉λt(x, ξ)û(ξ)dξ,

and, if the space of test functions C∞c (Rd) ⊂ D(A), then the infinitesimal generator
(A,D(A)) can be expressed as

(2.24) Au(x) = −(2π)−
d
2

∫

Rd

ei〈x,ξ〉q(x, ξ)û(ξ)dξ, ∀ u ∈ C0(Rd),

where

−q(x, ξ) = lim
t→0

λt(x, ξ)− 1
t

and λt(x, ξ) is defined as in (2.23). In other words, A is a pseudo-differential
operator with symbol q(x, ξ).

It is easy to see that if X is a Lévy process in Rd with exponent ψ, then its
transition operator and generator are pseudo-differential operators with the symbols
λt(x, ξ) = e−tψ(ξ) and q(x, ξ) = ψ(ξ), respectively. More precisely,

Au(x) = −(2π)−
d
2

∫

Rd

ei〈x,ξ〉ψ(ξ)û(ξ)dξ, ∀ u ∈ C∞c (Rd).

Note that both symbols above are constant in x and the corresponding pseudo-
differential operators are said to have “constant coefficients”.

More generally, a theorem of Courrége (1965) [see Jacob (1996)] implies that,
if C∞c (Rd) is contained in D(A), then the symbol q(x, ξ) of A is locally bounded
and, for every fixed x, is given by the Lévy–Khintchine formula
(2.25)

q(x, ξ) = i〈a(x), ξ〉+
1
2
〈ξ, Σ(x)ξ

′〉+
∫

Rd

[
1− ei〈y,ξ〉 +

i〈y, ξ〉
1 + |y|2

]
L(x, dy), ∀ξ ∈ Rd,

where a(x), Σ(x) and L(x, dy) satisfy the same conditions as in (2.8).
However, unlike the one-to-one correspondence between Lévy processes and

continuous negative definite functions given by the Lévy–Khintchine formula, con-
dition (2.25) is only necessary for q(x, ξ) to be the symbol of the generator of a
Feller process. Additional sufficient conditions that ensure the existence of a Feller
process for a given symbol q(x, ξ) have recently been obtained. In fact, given a
function q(x, ξ) : Rd × Rd → C such that ξ 7→ q(x, ξ) is continuous and negative
definite, there are several probabilistic and analytic ways to construct a Markov
process X having q(x, ξ) as its symbol. See Jacob (1996, Chapter 4) or Jacob and
Schilling (2001, p.149) and references therein for more details.

To give some examples of such Feller processes, we mention the stable jump dif-
fusions considered in Kolokoltsov (2000). Roughly speaking, these are the processes
corresponding to stable Lévy motions in the same way as the normal diffusions cor-
responding to Brownian motion. A stable jump-diffusion is a Feller process whose
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generator has the same form as that of a stable Lévy process with coefficients de-
pending on the position x. Locally, it resembles a stable Lévy motion, hence it
is expected that a stable jump diffusion has fractal properties similar to those of
a stable Lévy process. Some of these properties can be derived from results in
Kolokoltsov (2000) and Sections 4.1 and 4.2.

Another class of Feller processes determined by pseudo-differential operators
is the so-called stable-like process, that is, we allow the index α to depend on the
position x. Its symbol is of the form

q(x, ξ) = |ξ|α(x) or q(x, ξ) ³ 1 + |ξ|α(x),

where the function α(x) satisfies 0 < α0 ≤ α(x) ≤ α∞ < 2 and has modulus of
continuity of order o(| log h|−1) as h → 0; cf. Bass (1988a, b), Hoh (2000), Kikuchi
and Negoro (1997).

Similar to the studies of Lévy processes, Fourier analytic methods are very use-
ful in investigating probabilistic properties of a Feller process related to a pseudo-
differential operator. Given such a process X, an interesting question is to char-
acterize the properties of X by using the symbol q(x, ξ). One of the approaches
is to compare the symbol q(x, ξ) with a fixed continuous negative definite function
ψ(ξ). For example, Schilling (1998a, b) has shown that, under suitable conditions,
q(x, ξ) ³ ψ(ξ) implies estimates on the semigroup {Tt, t ≥ 0} of X and that of the
Lévy process with exponent ψ(ξ); from which asymptotic and Hausdorff dimension
properties can be derived. The behavior of X is in some sense similar to the be-
havior of the Lévy process with exponent ψ. Under more restrictive conditions, it
is even possible to obtain estimates on the transition functions similar to those of
a Lévy process with exponent ψ(ξ); see Negoro (1994).

More generally, sample path properties of the Feller process X can be described
through asymptotic properties of its symbol q(x, ξ). Schilling (1998a, b) introduced
several indices using q(x, ξ), similar to those for Lévy processes based on ψ, and
studied the growth and Hausdorff dimension properties of X.

2.4. Ornstein–Uhlenbeck type Markov processes. Another class of
Markov processes that are related to Lévy processes is formed by the Ornstein–
Uhlenbeck type Markov processes. Their sample path properties may also be in-
vestigated by using the geometric and analytic tools described in this paper.

The notion of Ornstein–Uhlenbeck type Markov processes was introduced by
Sato and Yamazato (1984). Such a process X = {X(t), t ∈ R+,Px, x ∈ Rd} is a
Feller process with infinitesimal generator

A = G−
d∑

j=1

d∑

k=1

Qjkxk
∂

∂xj
,

where G is the infinitesimal generator of a Lévy process Z = {Z(t), t ≥ 0} in Rd

and Q is a real d × d matrix of which all eigenvalues have positive real parts. An
equivalent definition of the process X is given by the unique solution of the equation

X(t) = x−
∫ t

0

QX(s)ds + Z(t),

which can be expressed as

X(t) = e−tQx +
∫ t

0

e(s−t)QdZ(s),
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where the stochastic integral with respect to the Lévy process Z is defined by con-
vergence in probability from integrals of simple functions; see e.g., Samorodnitsky
and Taqqu (1994). The name for the process X comes from the fact that if Z is
Brownian motion in Rd and Q = I, the d×d identity matrix, then X is the ordinary
Ornstein–Uhlenbeck process.

Since an Ornstein–Uhlenbeck type Markov process X is determined by the Lévy
process {Z(t), t ∈ R+} and the matrix Q, it is natural to ask how the properties
of X are related to those of Z and Q. Several authors have studied the sample
path properties of X. For example, Shiga (1990), Sato et al. (1994), Watanabe
(1998), Yamamuro (1998) have established criteria for recurrence and transience
of Ornstein–Uhlenbeck type Markov processes. There have also been some partial
results on the lower and upper bounds for the Hausdorff dimension of the range
of X, see Wang (1997), Deng and Liu (1999). However, for a general Ornstein–
Uhlenbeck type Markov process X, even dimHX([0, 1]) is not known.

2.5. Fractional diffusions. Initial interest in the properties of diffusion
processes and random walks on fractals came from mathematical physicists working
in the theory of disordered media. Their studies raised the natural question of how
to define analytic objects such as the “Laplacian” on fractal sets. Goldstein (1987)
and Kusuoka (1987) [see Barlow (1998) or Kigami (2001) for these references] were
the first to construct mathematically a Brownian motion X = {X(t), t ∈ R+} on
the Sierpinski gasket G, a connected fractal subset of R2. By defining the Laplacian
on G as the infinitesimal generator of X, their results suggested a probabilistic
approach [following the terminology of Kigami (2001)] to the problem of defining the
Laplacian on fractals. On the other hand, Kigami (1989) gives a direct definition
of the Laplacian on the Sierpinski gasket G. This analytical approach has been
extended to construct the Laplacians on more general finitely ramified fractals by
Kigami (1993). We refer to Kigami (2001) for a systematic treatment of this subject.

Barlow and Perkins (1988) have investigated the properties of Brownian motion
X on the Sierpinski gasket G systematically. They show that the process X, like
the standard Brownian motion, is a strong Markov process having a continuous
symmetric transition density p(t, x, y) with respect to the normalized Hausdorff
measure on G. Barlow and Perkins (1988) have also studied the existence and
joint continuity of the local times of X and proved a result for the modulus of
continuity in the space variable for the local time process. Since then, many authors
have investigated the existence and various properties of diffusions on more general
fractals, and there has been a rapid development in probability and analysis on
fractals; see Barlow (1998) and Kigami (2001) for additional historical background
and further information.

In order to give a unified treatment of diffusions on various fractals, Barlow
(1998) defines the class of fractional diffusions. Even though the assumptions there
are a little too restrictive for us, these Markov processes are well suited to be
analyzed by using general Markovian methods [or even Gaussian principles] and
fractal geometric techniques.

The following definitions of a fractional metric space and a fractional diffusion
are taken from Barlow (1998, Section 3).

Definition 2.2. Let (S, ρ) be a locally compact separable complete metric
space and let µ be a Radon measure on (S,S). The triple (S, ρ, µ) is called a
fractional metric space (FMS for short) if the following conditions are satisfied:
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(a). (S, ρ) has the midpoint property, i.e., for every x, y ∈ S, there exists z ∈ S
such that

ρ(x, z) = ρ(z, y) =
1
2
ρ(x, y);

(b). There exist df > 0 and positive constants c1 and c2 such that

(2.26) c1 rdf ≤ µ
(
B(x, r)

) ≤ c2 rdf for all x ∈ S, 0 ≤ r ≤ r0 = diamS.

Examples of FMS include Rd with the Euclidean distance | · | and Lebesgue
measure λd, the Sierpinski gasket G equipped with the geodesic metric (which is
equivalent to | · |) and the self-similar measure µ with equal weights.

Definition 2.3. Let (S, ρ, µ) be a fractional metric space. A Markov process
X = {X(t), t ∈ R+;Px, x ∈ S} is called a fractional diffusion on S if

(a). X is a conservative Feller diffusion with state space S.
(b). X has a symmetric transition density p(t, x, y) = p(t, y, x) (∀t > 0, x, y ∈

S), which is, for each t > 0, continuous in (x, y).
(c). There exist positive constants α, β, γ, c3, . . . , c6 such that

(2.27) c3t
−α exp

{
− c4ρ(x, y)βγt−γ

}
≤ p(t, x, y) ≤ c5t

−α exp
{
− c6ρ(x, y)βγt−γ

}
,

for all x, y ∈ S and 0 < t ≤ rβ
0 .

The above conditions are a little too restrictive. For studying the sample path
properties of X, the important conditions are (2.26) and (2.27). The proof of
Lemma 3.8 in Barlow (1998) shows that under these two conditions, α = df/β.

The following are some examples of fractional diffusions.

Example 2.4. [Diffusion processes on Rd] For any given number λ ∈ (0, 1],
let A(λ) denote the class of all measurable, symmetric matrix-valued functions
a : Rd → Rd ⊗ Rd which satisfy the ellipticity condition

λ|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ 1
λ
|ξ|2 for all x, ξ ∈ Rd.

For each a ∈ A(λ), let L = ∇ · (a∇) be the corresponding second order partial
differential operator. By Theorem II.3.1 of Stroock (1988), we know that L is
the infinitesimal generator of a d-dimensional diffusion process X = {X(t), t ≥
0}, which is strongly Feller continuous. Moreover, its transition density function
p(t, x, y) ∈ C((0,∞)× Rd × Rd

)
satisfies the following inequality

1
Ktd/2

exp
(
−K|y − x|2

t

)
≤ p(t, x, y) ≤ K

td/2
exp

(
−|y − x|2

Kt

)

for all (t, x, y) ∈ (0,∞)×Rd×Rd, where K = K(a, d) ≥ 1 is a constant. The above
estimate is due to Aronson (1967) [see Stroock (1988)]. Thus, X is a fractional
diffusion with α = d/2, β = 2 and γ = 1.

Example 2.5. [Diffusions on the Sierpinski gasket and affine nested fractals]
Let G be the Sierpinski gasket and let X be the Brownian motion on G. Barlow and
Perkins (1988) have proved that X is a fractional diffusion with α = log 3/ log 5,
β = log 5/ log 2 and γ = 1/(β − 1).

More generally, Fitzsimmons et al. (1994) have defined a class of finitely ram-
ified self-similar fractals in Rd, which they call the affine nested fractals. Roughly
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speaking, S is called an affine nested fractal if it is generated by a family {ψ1, . . . ,
ψN} of contracting similitudes satisfying the open set condition and certain sym-
metry, connectivity and nesting properties. In addition, S is called a nested fractal
if all the similitudes have the same contraction ratio. For any affine nested fractal
S, Fitzsimmons et al. (1994) construct a Brownian motion X on S and prove that
its transition density p(t, x, y) satisfies (2.27) for an intrinsic metric ρ with

(2.28) α =
ds

2
, β = dw, γ =

1
β − 1

,

where ds is the spectral dimension of the affine nested fractal S which describes
the asymptotic frequency of the eigenvalues of the infinitesimal generator A of X,
and dw is the walk dimension of S. The relationship among df , ds and dw is
ds = 2df/dw. The diffusions on affine nested fractals defined in Fitzsimmons et
al. (1994) extend those on the nested fractals considered by Lindstrøm (1990) and
Kumagai (1993). It is worthwhile to mention that the class of nested fractals has
two advantages: (i). For a nested fractal S, the intrinsic metric ρ on S is related
to the Euclidean metric | · | by

ρ(x, y) ³ |x− y|dc ,

where dc is the chemical exponent of the nested fractal S, see Fitzsimmons et al.
(1994, p.608). Hence one can use the ordinary Hausdorff and packing measure [i.e.,
in the Euclidean metric] to characterize the fractal properties of Brownian motion
X on S. (ii). The Brownian motion X on a nested fractal S is semi-self-similar
with a = N/(1 − c) [cf. (2.6) or (2.7)], where N is the number of similitudes that
generate S and c ∈ (0, 1) is a constant related to the return probability of the
approximating random walk. See Fukushima et al. (1999, Lemma 2.1), Bass and
Kumagai (2000) and Lindstrøm (1990) for details. In particular, for the Brownian
motion X on the Sierpinski gasket G, it is semi-self-similar with a = 5.

Example 2.6. [Diffusions on the Sierpinski carpets] The Brownian motion X
on the Sierpinski carpet defined by Barlow and Bass (1992, 1999) satisfies (2.27)
with α, β and γ given by (2.28). The biggest difference between affine nested
fractals and the Sierpinski carpets is that the former are finitely ramified while the
latter are infinitely ramified. Because of this, diffusions on the Sierpinski carpets
are significantly more difficult to construct and study.

If S ⊂ Rd and the triple (S, | · |, µ) satisfies (2.26), then S is called a d-set.
Recently, Chen and Kumagai (2003) have studied jump diffusions on d-sets and have
obtained estimates for their transition densities. Their diffusions can be viewed as
analogues of stable Lévy processes on fractals.

3. Tools from fractal geometry

In this section, we bring together definitions and some basic properties of Haus-
dorff measure and Hausdorff dimension, packing measure and packing dimension,
capacity, multifractal analysis and average densities. They will serve as tools for
analyzing fine properties of the stochastic processes discussed in this paper. More
systematic information on fractal geometry can be found in Falconer (1990, 1997)
and Mattila (1995).
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3.1. Hausdorff dimension and Hausdorff measure. Let Φ be the class of
functions ϕ : (0, δ) → (0,∞) which are right continuous, monotone increasing with
ϕ(0+) = 0 and such that there exists a finite constant K > 0 such that

(3.1)
ϕ(2s)
ϕ(s)

≤ K, for 0 < s <
1
2
δ.

The inequality (3.1) is usually called a doubling property. A function ϕ in Φ is
often called a measure function or gauge function.

For ϕ ∈ Φ, the ϕ-Hausdorff measure of E ⊆ Rd is defined by

(3.2) ϕ-m(E) = lim
ε→0

inf
{ ∑

i

ϕ(2ri) : E ⊆
∞⋃

i=1

B(xi, ri), ri < ε
}

,

where B(x, r) denotes the open ball of radius r centered at x. The sequence of balls
satisfying the two conditions on the right-hand side of (3.2) is called an ε-covering
of E. It is well-known that ϕ-m is a metric outer measure and every Borel set in
Rd is ϕ-m measurable. A function ϕ ∈ Φ is called an exact (or a correct) Hausdorff
measure function for E if 0 < ϕ-m(E) < ∞.

Remark 3.1. In (3.2) we only use coverings of E by balls, hence ϕ-m is usu-
ally called a spherical Hausdorff measure in the literature. Under (3.1), ϕ-m is
equivalent to the Hausdorff measure defined by using coverings by arbitrary sets.

The Hausdorff dimension of E is defined by

dimHE = inf
{
α > 0 : sα-m(E) = 0

}
.

The following lemma is often useful in determining upper bounds for the Haus-
dorff dimensions of the range, graph and inverse images. The proofs of the first two
inequalities can be found in Kahane (1985a) or Falconer (1990). The last one was
proved in Kaufman (1985) and Monrad and Pitt (1987). For the definition of local
times, see Section 6.1.

Lemma 3.2. Let I ⊂ RN be a hyper-cube. If there is a constant α ∈ (0, 1) such
that for every ε > 0, the function f : I → Rd satisfies a uniform Hölder condition
of order α− ε on I, then for every Borel set E ⊂ I

dimHf(E) ≤ min
{

d,
1
α

dimHE
}

,

dimHGrf(E) ≤ min
{ 1

α
dimHE, dimHE + (1− α)d

}
.

If, in addition, f has a bounded local time on I, then for every Borel set F ⊂ Rd,

dimHX−1(F ) ≤ N − αd + αdimHF.

Hausdorff dimension is closely related to the Bessel–Riesz capacity, as discov-
ered by Frostman (1935). More generally, let S be any metric space equipped with
the Borel σ-algebra S. A kernel κ is a measurable function κ : S×S → [0,∞]. For
a Borel measure µ on S, the energy of µ with respect to the kernel κ is defined by

Iκ(µ) =
∫

S

∫

S

κ(x, y)µ(dx)µ(dy).

For Λ ⊆ S, the capacity of Λ with respect to κ, denoted by Capκ(Λ), is defined by

Capκ(Λ) =
[

inf
µ∈P(Λ)

Iκ(µ)
]−1

,
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where P(Λ) is the family of probability measures carried by Λ, and, by convention,
∞−1 = 0. Note that Capκ(Λ) > 0 if and only if there is a probability measure µ on
Λ with finite κ-energy. We will mostly consider the case when κ(x, y) = f(|x− y|),
where f is a non-negative and non-increasing function. In particular, if f(r) = r−α,
then the corresponding Capκ is called the Bessel–Riesz capacity of order α and is
denoted by Capα. The capacity dimension of Λ is defined by

dimc(Λ) = sup{α > 0 : Capα(Λ) > 0}.
The well-known Frostman’s theorem [cf. Kahane (1985a, p.133)] states that

for any compact set Λ in Rd, dimHΛ = dimc(Λ). This result gives a very useful
analytic way for the lower bound calculation of Hausdorff dimension. Let Λ ⊂ Rd,
in order to show dimHΛ ≥ α, one only needs to find a measure µ on Λ such that the
α-energy of µ is finite. For many deterministic and random sets such as self-similar
sets or the range of a stochastic process, there are natural choices of µ.

Given a measure function ϕ ∈ Φ and a set E ⊂ Rd, it is often more complicated
to evaluate the Hausdorff measure ϕ-m(E). From (3.2) we see that, in order to
obtain an upper bound for the ϕ-Hausdorff measure of E, it is sufficient to construct
a sequence of εn-coverings of E such that εn → 0 and the corresponding sums are
bounded. However, it is more difficult to use the above definition directly to obtain
a lower bound for ϕ-m(E) because one needs to consider all possible coverings of
E by sets of diameter less than ε. This difficulty can usually be circumvented by
applying the following density theorem due to Rogers and Taylor (1961), [see also
Taylor and Tricot (1985)], which is a refinement of Frostman’s lemma [see e.g.,
Kahane (1985a)].

For any Borel measure µ on Rd and ϕ ∈ Φ, the upper ϕ-density of µ at x ∈ Rd

is defined by

D
ϕ

µ(x) = lim sup
r→0

µ(B(x, r))
ϕ(2r)

.

Lemma 3.3. Given ϕ ∈ Φ, there exists a positive constant K such that for
any Borel measure µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set E ⊆ Rd,
we have

(3.3) K−1µ(E) inf
x∈E

{
D

ϕ

µ(x)
}−1 ≤ ϕ-m(E) ≤ K‖µ‖ sup

x∈E

{
D

ϕ

µ(x)
}−1

.

Remark 3.4. One can define Hausdorff measure on any metric space (S, ρ)
by replacing in (3.2) the Euclidean metric by ρ. We will use this remark in Section
7, when we study intersections of the image of a Markov process with a Borel set
in the state space. Of course, the second inequality in the above density theorem
may not be true in general metric spaces. A sufficient condition for (3.3) to hold is
that S has finite structural dimension, i.e., for all 0 < a < 1, there exists a constant
M such that every subset of S with sufficiently small diameter δ can be covered
by M sets of diameter no greater than aδ. We refer to Howroyd (1994) for further
information about Hausdorff measures on a general metric space.

3.2. Packing dimension and packing measure. Packing dimension and
packing measure were introduced by Tricot (1982), Taylor and Tricot (1985) as a
dual concept to Hausdorff dimension and Hausdorff measure. It is known that only
for sets with certain regularities can their packing measure/dimension results be
the same as their Hausdorff measure/dimension. For random sets related to the
sample paths of Markov processes, the Hausdorff dimension and packing dimension
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properties may often be different; see Sections 4.1, 4.2 and 12.1. Moreover, even for
problems that only concern the Hausdorff dimension, one may still need the packing
dimension for their solutions [see Section 7.2]. Hence, in order to characterize the
geometric structure of a fractal, it is more desirable to establish both Hausdorff
and packing measure/dimension results.

For ϕ ∈ Φ, define the set function ϕ-P (E) on Rd by

(3.4) ϕ-P (E) = lim
ε→0

sup
{∑

i

ϕ(2ri) : B(xi, ri) are disjoint, xi ∈ E, ri < ε
}

,

where B denotes the closure of B. A sequence of closed balls satisfying the condi-
tions on the right-hand side of (3.4) is called an ε-packing of E. Unlike ϕ-m, the set
function ϕ-P is not an outer measure because it fails to be countably subadditive.
However, ϕ-P is a premeasure, so one can obtain an outer measure ϕ-p on Rd by
defining

(3.5) ϕ-p(E) = inf
{∑

n

ϕ-P (En) : E ⊆
∞⋃

n=1

En

}
.

ϕ-p(E) is called the ϕ-packing measure of E. Taylor and Tricot (1985) proved that
ϕ-p(E) is a metric outer measure; hence every Borel set in Rd is ϕ-p measurable. If
ϕ(s) = sα, sα-p(E) is called the α-dimensional packing measure of E. The packing
dimension of E is defined by

(3.6) dimPE = inf
{
α > 0 : sα-p(E) = 0

}
.

It follows from (3.5) that for any E ⊂ Rd,

(3.7) ϕ-p(E) ≤ ϕ-P (E).

Hence we can apply (3.7) to determine an upper bound for ϕ-p(E). However, it is
usually not easy to determine ϕ-P (E), because we need to consider all the possible
packings in (3.4). A lower bound for ϕ-p(E) can be obtained by using the following
density theorem for packing measures [see Taylor and Tricot (1985), Saint-Raymond
and Tricot (1988) for a proof].

Lemma 3.5. For a given ϕ ∈ Φ, there exists a finite constant K > 0 such
that for any Borel measure µ on Rd with 0 < ‖µ‖ = µ(Rd) < ∞ and any Borel set
E ⊆ Rd,

(3.8) K−1µ(E) inf
x∈E

{
Dϕ

µ(x)
}−1 ≤ ϕ-p(E) ≤ K‖µ‖ sup

x∈E

{
Dϕ

µ(x)
}−1

,

where

Dϕ
µ(x) = lim inf

r→0

µ(B(x, r))
ϕ(2r)

is the lower ϕ-density of µ at x.

There is an equivalent definition for dimPE which is sometimes more convenient
to use. For any ε > 0 and any bounded set E ⊆ Rd, let

N1(E, ε) = smallest number of balls of radius ε needed to cover E

and

N2(E, ε) = largest number of disjoint balls of radius ε with centers in E.
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Then we have
N2(E, ε) ≤ N1(E, ε) ≤ N2(E, ε/2).

To simplify the notations, we write N(E, ε) for N1(E, ε) or N2(E, ε) indifferently.
Then the upper and lower box-counting dimension of E are defined as

dimBE = lim sup
ε→0

log N(E, ε)
− log ε

and

dim
B
E = lim inf

ε→0

log N(E, ε)
− log ε

,

respectively. If dimB(E) = dim
B
(E), the common value is called the box-counting

dimension of E. It is easy to verify that

(3.9) 0 ≤ dimHE ≤ dim
B
E ≤ dimBE ≤ d and 0 ≤ dimPE ≤ dimBE ≤ d

for all bounded sets E ⊆ Rd. Hence dimBE and dim
B
E can be used to determine

upper bounds for dimHE and dimPE.
The disadvantage of dimB and dim

B
as dimension is that they are not σ-stable

[cf. Tricot (1982), Falconer (1990, p.45)]. One can obtain σ-stable indices dimMB

and dim
MB

by letting

dimMBE = inf
{

sup
n

dimBEn : E ⊆
∞⋃

n=1

En

}
,

dim
MB

E = inf
{

sup
n

dim
B
En : E ⊆

∞⋃
n=1

En

}
.

Following Falconer (1990), we call dimMBE and dim
MB

E the modified upper and
lower box-counting dimension of E, respectively. Tricot (1982) has proved that
dimPE = dimMB(E). Hence, for any set E ⊆ Rd,

(3.10) 0 ≤ dimHE ≤ dim
MB

E ≤ dimMBE = dimPE ≤ d.

Thus, if dimHE = dimPE, then all the dimensions in (3.10) coincide.
Since the upper box dimension dimB of a set is easier to determine, the following

lemma from Tricot (1982) is useful in calculating the packing dimension of a set.
Recall that dimB is said to be uniform on E if there exists a constant c such that
for every x ∈ E,

lim
r→0

dimB(E ∩B(x, r)) = c.

Lemma 3.6. If E is compact and dimB is uniform on E, then dimB(E) =
dimPE.

It is easy to see that the analogous upper bounds in Lemma 3.2 remain true if
one replaces dimH by dimP . However, unlike the Hausdorff dimension cases, if f is
a projection from RN to Rd (d < N) or f is the Brownian motion in R, these upper
bounds are not sharp anymore. In fact, Talagrand and Xiao (1996) have shown
that for any function f : RN → Rd satisfying a uniform Hölder condition of order
α on, say, [0, 1]N , there are compact sets E ⊂ [0, 1]N such that

dimPf(E) <
1
α

dimPE.
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For more information about the packing dimension of projections, see Järvenpää
(1994), Falconer and Howroyd (1997) and the references therein. It turns out that
in these cases, the upper bound for the packing dimension of f(E) is determined
by the packing dimension profile of E, see Lemma 3.8 below.

Remark 3.7. In order to study multifractals, Olsen (1995) has introduced
multifractal Hausdorff measure (dimension) and multifractal packing measure (di-
mension) with respect to a Radon measure. They are natural generalizations of
the Hausdorff measure and the packing measure discussed above and are more
appropriate for multifractal analysis.

3.3. Packing dimension profile. In this subsection, we recall briefly the
definitions of packing dimensions of measures and packing dimension profiles intro-
duced by Falconer and Howroyd (1997), and state some of their basic properties.
See also Howroyd (2001) for recent developments.

The packing dimension of a Borel measure µ on Rd (or lower packing dimension
as it is sometimes called) is defined by

(3.11) dimPµ = inf
{
dimPE : µ(E) > 0 and E ⊆ Rd is a Borel set

}
.

The upper packing dimension of µ is defined by

(3.12) dim∗
P
µ = inf

{
dimPE : µ(Rd\E) = 0 and E ⊆ Rd is a Borel set

}
.

The lower and upper Hausdorff dimension of µ can be defined in a similar way. They
are denoted by dimHµ and dim∗

H
µ, respectively. More information on Hausdorff,

packing and other dimensions of measures can be found in Hu and Taylor (1994),
Falconer (1997).

For a finite Borel measure µ on Rd and for any s > 0, define the potential

Fµ
s (x, r) =

∫

Rd

min
{
1, rs|y − x|−s

}
dµ(y).

The following equivalent definitions of dimPµ and dim∗
P
µ in terms of the potential

Fµ
d (x, r) are given by Falconer and Howroyd (1997):

(3.13) dimPµ = sup
{

t ≥ 0 : lim inf
r→0

r−tFµ
d (x, r) = 0 for µ-a.e. x ∈ Rd

}

and

(3.14) dim∗
P
µ = inf

{
t > 0 : lim inf

r→0
r−tFµ

d (x, r) > 0 for µ-a.e. x ∈ Rd
}

.

Extending the above, Falconer and Howroyd (1997) use the s-dimensional potential
Fµ

s (x, r) to define the packing dimension profile of µ by

(3.15) Dimsµ = sup
{

t ≥ 0 : lim inf
r→0

r−tFµ
s (x, r) = 0 for µ-a.e. x ∈ Rd

}

and the upper packing dimension profile of µ by

(3.16) Dim∗
sµ = inf

{
t > 0 : lim inf

r→0
r−tFµ

s (x, r) > 0 for µ-a.e. x ∈ Rd
}

,

respectively. It is easy to see that

0 ≤ Dimsµ ≤ Dim∗
sµ ≤ s

and, if s ≥ d, that

Dimsµ = dimPµ, Dim∗
sµ = dim∗

P
µ;
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see Falconer and Howroyd (1997) for details.

For any analytic set E ⊆ Rd, let M+
c (E) be the family of finite Borel measures

with compact support contained in E. Then dimPE can be characterized by the
packing dimension of the measures carried by E,

dimPE = sup
{
dimPµ : µ ∈ M+

c (E)
}
;

see Hu and Taylor (1994) for a proof. Motivated by this, Falconer and Howroyd
(1997) define the packing dimension profile of E ⊆ Rd by

(3.17) DimsE = sup
{
Dimsµ : µ ∈ M+

c (E)
}
.

It is easy to show that for every analytic set E ⊆ Rd, 0 ≤ DimsE ≤ s and for any
s ≥ d, DimsE = dimPE.

The following lemma from Xiao (1997a) gives upper bounds for Dimsµ, Dim∗
sµ

and DimsE; see Falconer and Howroyd (1997) for a special case.

Lemma 3.8. Let I be a hyper-cube in RN and let f : I → Rd be a continuous
function satisfying a uniform Hölder condition of all orders smaller than α. For
any finite Borel measure µ on RN with support contained in I and any Borel set
E ⊂ I, we have

(3.18) dimPµf ≤ 1
α

Dimαd µ, dim∗
P
µf ≤ 1

α
Dim∗

αd µ,

where µf is the image measure of µ under f , and

dimPf(E) ≤ 1
α

Dimαd E.

3.4. Multifractal analysis. The term “multifractal” and its connection with
thermodynamics first appeared in the works of the physicists Frisch and Parisi
(1985), Halsey et al. (1986). But a constructive and rigorous approach to mul-
tifractals as physical models was developed by Mandelbrot (1972, 1974) [see e.g.,
Falconer (1997), Olsen (2000) for the references mentioned above]. Since then,
multifractals have been extensively applied to model various phenomena in many
fields. Examples include the growth rate along a DLA-cluster, the distribution of a
percolation cluster, the distribution of galaxies in the universe, the time in a model
for price variation, and so on. In fractal geometry, multifractals were originally used
to analyze the mass concentration of measures and, in particular, to quantify their
singularity structure. Nowadays they have become one of the most basic tools that
can also be used to study the fine properties of functions or stochastic processes.

Let (S,S) be a measurable space and let h : S → R be a measurable function.
Let D be a real-valued function defined on S. Then the spectrum with respect to
the functions h and D is defined by

(3.19) H(θ) = D
({x ∈ S : h(x) = θ}).

In multifractal analysis, the set function D(·) is usually taken to be the Haus-
dorff or packing dimensions. Then the basic problem is to calculate the function
values H(θ).

Remark 3.9. The equality sign in the right-hand side of (3.19) can be replaced
by ≤ or ≥ to define more general multifractal spectra.

In the following, we give several examples of multifractal spectra.
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Example 3.10. Let µ be a locally finite Borel measure on (S,S), and let h(x)
be the local dimension of µ at x, that is,

(3.20) h(x) = lim
r→0

log µ(B(x, r))
log r

,

if the limit exists. For any θ > 0, let

(3.21) Eθ =
{
x ∈ S : h(x) = θ

}
.

Note that, for most measures µ of interest, Eθ is dense in supp(µ), the support of µ,
for values of θ for which Eθ is nontrivial. Hence the box-counting dimensions dimB

and dim
B

are of little use in differentiating the sizes of Eθ. It is more natural to let
D(·) be the Hausdorff dimension or the packing dimension, then H(θ) = D(Eθ) is
the usual multifractal spectrum fµ(θ) and Fµ(θ) of µ, respectively.

If µ is a self-similar measure on Rd defined by the probabilistic iterated function
system ({Ψi}n

i=1, {pi}n
i=1), where Ψ1, . . . , Ψn are similarity transforms on Rd with

ratios r1, . . . , rn ∈ (0, 1) and {pi}n
i=1 is a probability vector. Then µ satisfies the

equation µ =
∑n

i=1 piµ ◦Ψ−1
i . For each q ∈ R, there is a unique number, τ(q), such

that
n∑

i=1

pq
i r

τ(q)
i = 1.

It can be shown that τ(q) is a strictly decreasing and convex function of q. Caw-
ley and Mauldin (1992) [see also Falconer (1997, Chapter 11)], under the strong
separation condition, have shown that

(3.22) fµ(θ) = Fµ(θ) = inf
−∞<q<∞

(
τ(q) + θq

)
for all θ ∈ [θmin, θmax],

where θmin = min1≤i≤n log pi/ log ri and θmax = max1≤i≤n log pi/ log ri. That is,
the Hausdorff and packing multifractal spectra of µ are given by the Legendre
transform of τ .

This type of multifractal formalism has also been proven to hold for several
more general classes of measures such as self-similar measures satisfying the weak
separation condition, certain self-affine measures, self-conformal measures, statisti-
cally self-similar measures, and so on. See Olsen (2000) for a list of references.

If the limit in (3.20) fails to exist, then one can consider lower and upper local
dimensions of µ defined by

h(x) = lim inf
r→0

log µ(B(x, r))
log r

and

h(x) = lim sup
r→0

log µ(B(x, r))
log r

,

respectively. When µ is the occupation measure of a subordinator, this type of
multifractal spectrum for µ has been studied by Hu and Taylor (1997, 2000).

For random measures associated to stochastic processes such as their occupa-
tion measures or local times, the following setting will be useful.

Example 3.11. Let µ be a Borel measure on (S,S) with local (lower) dimen-
sion α everywhere. Define

h(t) = lim sup
r→0

µ
(
B(t, r)

)

rα(| log r|)β
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and let D be the Hausdorff dimension function or the packing dimension. Then
the corresponding function H(θ) is called a logarithmic multifractal spectrum of µ,
or more specifically, multifractal spectrum of the thick points of µ. In Section 12.3,
we will discuss some recent results of Dembo et al. (1999, 2000a, b, 2001), and
Shieh and Taylor (1998) on multifractal spectra on thick and thin points for the
occupation measures of Brownian motion, Lévy stable processes and subordinators.

Example 3.12. Let f : RN → Rd be a (continuous) function. Define its local
Hölder exponent at t0 ∈ RN by

hf (t0) = sup
{
α > 0 : f ∈ Cα(t0)

}
,

where f ∈ Cα(t0) means that there exists a constant K > 0 and a polynomial Pt0

of degree at most bαc (i.e., the largest integer ≤ α) such that in a neighborhood of
t0,

(3.23) |f(t)− Pt0(t)| ≤ C|t− t0|α.

Note that if f is continuously differentiable of order bαc in a neighborhood of t0,
then the polynomial Pt0(t) is exactly the Taylor expansion of f at t0 of order bαc.
Nevertheless, (3.23) can hold for a large α even though f is not differentiable in a
neighborhood of t0.

For Sθ = {t : hf (t) = θ}, the function d(θ) = dimH(Sθ) is called the spec-
trum of singularities of f . It gives geometric information about the distribution
of the singularities of f . A function f is called multifractal when its spectrum of
singularities is defined at least on a set with non-empty interior.

Multifractal functions have been studied extensively in recent years by several
authors using wavelet techniques. Instead of listing the references, we refer to
Jaffard (2001) for an expository treatment on this topic and for a list of references.
In Section 12.4, we will describe a result of Jaffard (1998) on the sample functions
of Lévy processes.

Example 3.13. Let W = {W (t), t ∈ R+} be the standard Brownian motion
in R. It is easy to see that the local Hölder exponent of W is 1/2 everywhere on
its sample path. Define

h(t) = lim sup
ε→0

|W (t + ε)−W (t)|√
2ε| log ε| .

Then for θ ∈ (0, 1], F (θ) = {t ∈ [0, 1] : h(t) = θ} 6= ∅, and is called the set of θ-fast
points. Let D = dimH , then H(θ) is the Hausdorff dimension of the set of θ-fast
points first studied by Orey and Taylor (1974). The packing dimension of F (θ)
always equals 1. See Khoshnevisan, Peres and Xiao (2000) for details.

3.5. Average densities and tangent measure distributions. In this sec-
tion, we recall the definitions and some basic properties of average densities and
tangent measure distributions. They are two useful tools in studying the local
geometric properties of fractal sets and measures in Rd.

Average densities were first introduced by Bedford and Fisher (1992) for fractal
sets and measures to characterize their fine local properties. Whereas the classical
densities fail to exist for fractal measures, the average densities of order n have been
shown to exist for a wide range of fractal measures such as self-similar measures,
mixing repellers and random measures related to Brownian motion and Lévy stable
processes.
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Let us recall briefly the definition of average densities. Let µ be a locally finite
Borel measure on Rd and let ϕ ∈ Φ be a gauge function. The lower and upper
average ϕ-densities of order two of µ at x are defined by

Dϕ
2 (µ, x) = lim inf

ε→0

1
| log ε|

∫ 1

ε

µ(B(x, r))
ϕ(r)

dr

r

and

D
ϕ

2 (µ, x) = lim sup
ε→0

1
| log ε|

∫ 1

ε

µ(B(x, r))
ϕ(r)

dr

r
,

respectively. When Dϕ
2 (µ, x) = D

ϕ

2 (µ, x), the common value is called the average
ϕ-density of order two of µ at x and is denoted by Dϕ

2 (µ, x). When ϕ(s) = sα, we
simply write it as Dα

2 (µ, x).
Similarly, the lower and upper average ϕ-densities of order three of µ at x are

defined by

Dϕ
3 (µ, x) = lim inf

ε→0

1
log | log ε|

∫ 1/e

ε

µ(B(x, r))
ϕ(r)

dr

r| log r|
and

D
ϕ

3 (µ, x) = lim sup
ε→0

1
log | log ε|

∫ 1/e

ε

µ(B(x, r))
ϕ(r)

dr

r| log r| .

If Dϕ
3 (µ, x) = D

ϕ

3 (µ, x), the common value is called the average ϕ-density of order
three of µ at x. Average densities of higher orders can also be defined using the cor-
responding Hardy–Riesz log averages. Details and some basic properties of average
densities are given in Bedford and Fisher (1992). Among the latter is the hierarchy
relationship between the lower and upper average ϕ-densities and the usual lower
and upper ϕ-densities defined in Sections 3.1 and 3.2: for all x ∈ Rd,

Dϕ
µ(x) ≤ Dϕ

2 (µ, x) ≤ Dϕ
3 (µ) ≤ D

ϕ

3 (µ) ≤ D
ϕ

2 (µ) ≤ D
ϕ

µ(x).

Average densities are closely related to Mandelbrot’s concept of fractal lacu-
narity. In particular, they can be used to compare the lacunarity (or mass density)
of different fractals with the same fractal dimensions. On the other hand, average
densities can also be used to characterize the geometric regularity of sets or the
symmetry properties of measures. We refer to Falconer (1997), Mörters (1998a)
and Mörters and Shieh (1999) for more information and the latest references.

We mention that similar techniques have been applied by Patzschke and Zähle
(1992, 1993, 1994) to study the local asymptotic properties of fractal functions and
stochastic processes.

Another useful tool to study the local geometry of fractal sets and measures
in Rd is the notion of tangent measure distributions, which appeared in a weak
form in Bedford and Fisher (1992) and then in its full strength in Bandt (1992)
and Graf (1995). The concept of a tangent measure distribution is an extension
of two ideas. One is the idea of introducing tangent measures to characterize the
regularity of measures by means of their local behavior [cf. Mattila (1995, Chapter
14), Falconer (1997, Chapter 9)]; the other idea is to use an averaging procedure on
the set of scales to define the local characteristics of fractal sets or measures [e.g., the
average densities above]. Roughly speaking, tangent measure distributions describe
the structure of a set or a measure in the neighborhood of a point by magnifying
smaller and smaller neighborhoods of x.
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In the following, we recall the definition of tangent measure distributions given
by Mörters and Preiss (1998) and Mörters (1998b). Let M(Rd) be the Polish space
of all non-negative, locally finite Borel measures on Rd endowed with the vague
topology. This is the smallest topology that makes the functionals ν 7→ ∫

f(x)ν(dx)
continuous, where f : Rd → R are arbitrary continuous functions with compact
support.

A finite Radon measure P on M(Rd) will be called a measure distribution on
Rd or, a random measure on Rd if P (M(Rd)) = 1 [since it can be regarded as
the distribution of a random measure]. A sequence {Pn} of measure distributions
on Rd is said to converge vaguely to a measure distribution P if the following two
conditions are satisfied:

(i). P (C) ≥ lim supn→∞ Pn(C) for every compact set C ⊂M(Rd), and
(ii). P (O) ≤ lim infn→∞ Pn(O) for every open set O ⊂M(Rd).

If, in addition to (ii), (i) holds for every closed set C ⊂ M(Rd), then we say
that {Pn} converges weakly to P . Note that we allow supn ‖Pn‖ = ∞, so vague
convergence is weaker than weak convergence. Of course, if Pn and P are probability
measures on M(Rd), the two senses of convergence are equivalent.

Let µ be a locally finite Borel measure on Rd. For any x ∈ Rd we define a
family of Borel measures {µx,r, r > 0} ⊂ M(Rd) by

µx,r(B) = µ(x + rB) for all B ∈ B(Rd).

These measures are called the enlargements of µ at x. Given a gauge function
ϕ ∈ Φ, define the probability distributions Pϕ

2,x,δ on M(Rd) by

(3.24) Pϕ
2,x,δ(M) =

1
| log δ|

∫ 1

δ

1lM
( µx,r

ϕ(r)

)dr

r
for Borel sets M ⊂M(Rd).

Let P
ϕ
2 (x, µ) be the family of all limit points of {Pϕ

2,x,δ, δ > 0} as δ ↓ 0 in the
vague convergence. The elements of P

ϕ
2 (x, µ) are called the ϕ-tangent measure

distributions of order two of µ at x.
The ϕ-tangent measure distributions of order three of µ at x are defined to be

the limit points of {Pϕ
3,x,δ, δ > 0} as δ ↓ 0 in the vague convergence, where

Pϕ
3,x,δ(M) =

1
log | log δ|

∫ 1/e

δ

1lM
( µx,r

ϕ(r)

) dr

r| log r| for Borel sets M ⊂M(Rd).

The tangent measure distributions usually have good geometric regularity even
if µ is highly irregular. For a self-similar measure µ on Rd, Bandt (1992) and
Graf (1995) proved that, for µ-almost all points x ∈ Rd, µ has a unique tangent
measure distribution at x which is equal to a fixed probability distribution on
M(Rd) independent of x. Recently, Bandt (2001) has extended the earlier work of
Bandt (1992) and Graf (1995) and has constructed explicitly the tangent measure
distribution of a self-similar measure µ with respect to another appropriate measure
ν, using µ(B(x, r)) as the normalizing function instead of ϕ(r) in (3.24).

Mörters and Preiss (1998) have investigated the tangent measure distributions
of an arbitrary measure µ on Rd and have shown that they have interesting scaling
and shift invariance properties. In order to state their results, we need to recall
some definitions. For every u ∈ Rd, the shift operator Tu on M(Rd) is defined by

Tuν(A) = ν(u + A) for all A ∈ B(Rd).
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For every c > 0 and α > 0, the scaling operator Sα
c on M(Rd) is defined by

Sα
c ν(A) = c−α ν(cA) for all A ∈ B(Rd).

A σ-finite measure Q on M(Rd) is said to be stationary if it is invariant with
respect to the shift operators Tu, i.e., Q ◦ (Tu)−1 = Q for all u ∈ Rd. The intensity
of a stationary σ-finite measure Q on M(Rd) is defined by

η =
1

λd(B)

∫
ν(B)Q(dν),

where B ∈ B(Rd) satisfies λd(B) > 0. Note that the stationarity of Q implies that
the definition of η is independent of the choice of B. A measure distribution P on
M(Rd) is called a Palm distribution if there is a stationary σ-finite measure Q on
M(Rd) with finite intensity such that

∫

M

ν(B)dQ(ν) =
∫

B

P ◦ Tu(M)du for all M ⊆M(Rd), B ∈ B(Rd).

Finally, a measure distribution P onM(Rd) is called an α-self-similar random mea-
sure if P is a Palm distribution that is invariant under the scaling group {Sα

c , c > 0},
i.e., P = P ◦ (

Sα
c

)−1 for all c > 0. This notion of self-similar random measures
is due to U. Zähle (1988) who has also studied the Hausdorff dimension of these
random measures. Mörters and Preiss (1998, p.64) have extended the above notion
of self-similar random measures.

Mörters and Preiss (1998) prove that for every µ ∈M(Rd) and every 0 < α ≤ d,
(i). at every x ∈ Rd, every tangent measure distribution P ∈ Pα(µ, x) is

scaling invariant under the scaling group {Sα
c , c > 0};

(ii). at µ-almost every x ∈ Rd at which the lower α-dimensional density of
µ is positive, every tangent measure distribution P ∈ Pα(µ, x) is a Palm
distribution.

Consequently, for µ-almost every x ∈ Rd, every tangent measure distribution P ∈
Pα(µ, x) is an α-self-similar random measure [in the more general sense of Mörters
and Preiss (1998)]. Related information on tangent measure distributions can be
found in Mörters (1998b), Mörters and Shieh (1999).

Motivated by the definition of tangent measure distributions, Falconer (2002a,
b) has recently introduced the concept of tangent processes and characterized the
tangent processes of Lévy processes and random fields.

4. Hausdorff and packing dimension results for the range

The first result on the Hausdorff dimension of random sets was obtained by
Taylor (1953) who determined dimHW ([0, 1]) for a Brownian motion W in Rd (d ≥
2); see also Lévy (1953). Since then many authors have investigated the Hausdorff
dimension and the exact Hausdorff measure of the range of Brownian motion and
Lévy processes. We refer to Taylor (1986a) and the references therein for more
information.

In this section, we discuss the Hausdorff and packing dimensions of the range
X([0, 1]) of a Markov process X with values in S. We will see that the expected
occupation measure plays a key role in this section. The Hausdorff and packing
dimensions of X(R+) can be studied similarly. In particular, for any Markov process
X satisfying the conditions of Theorem 4.2, the Markov property and the fact that
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dimHX(R+) = supn≥0 dimHX([n, n + 1]) imply that dimHX(R+) = dimHX([0, 1])
a.s.

4.1. Hausdorff dimension results for the range. First we summarize
some useful techniques for determining upper and lower bounds for the Hausdorff
dimension of the range X([0, 1]) or, more generally, X(E), where E ⊂ B(R+). Sim-
ilar arguments also work for calculating the Hausdorff dimension of other random
fractals.

In order to obtain an upper bound for dimHX(E), we can use:
• a covering argument: find a sequence of coverings of X(E), and show

that the corresponding sums in (3.2) are bounded. When X is Hölder
continuous, e.g., Brownian motion on Rd or on fractals, then this is given
by Lemma 3.2. With the help of Lemma 4.1 below, often a first moment
method is sufficient for general Markov processes.

• co-dimension arguments: the potential theory for Lévy processes implies
that if X(E) is polar for a symmetric stable process Y in Rd of index β
that is independent of X, then dimHX(E) ≤ d − β; see Proposition 4.11
for a general result. One can also use other random sets such as a random
percolation in place of Y (R+); see Peres (1999).

To prove lower bounds for the Hausdorff dimension of X(E), one can use the
following methods:

• a capacity argument based on the Frostman theorem. In order to show
dimHX(E) ≥ γ, we construct a random Borel measure µ on X(E) and
show that µ has finite γ-energy. A natural random measure on X(E) is
given by the occupation measure. This argument is also effective for the
level sets and self-intersection times, where the random measures are de-
termined by the local times and self-intersection local times, respectively.

• co-dimension arguments: if X(E) is not polar for a strictly stable process
Y in Rd of index β that is independent of X, then dimHX(E) ≥ d − β,
see Proposition 4.11 below.

Let K1 > 0 be a fixed constant. A collection Λ(a) of balls (open sets) of radius
(diameter) a in metric space (S, ρ) is called K1-nested if no ball of radius a in S
can intersect more than K1 balls (open sets) of Λ(a). Clearly, if S = Rd, then for
each integer n ≥ 1, the collection of dyadic (semi-dyadic) cubes of order n in Rd is
K1-nested with K1 = 3d.

The following covering lemma was first proved for Lévy processes in Rd by
Pruitt and Taylor (1969). A similar argument yields an extension to general Markov
processes; see Liu and Xiao (1998).

Lemma 4.1. Let X = {X(t), t ∈ R+,Px} be a time homogeneous strong Markov
process in S with transition function P (t, x, A) and let Λ(a) be a fixed K1-nested
collection of balls of radius a (0 < a ≤ 1) in S. For any u ≥ 0, we denote by
Mu(a, s) the number of balls in Λ(a) hit by X(t) at some time t ∈ [u, u + s]. Then
for all x ∈ S

Ex
[
Mu(a, s)

] ≤ 2K1s
[
inf
y∈S

Ey
(∫ s

0

1lB(y,a/3)(X(t))dt
)]−1

,

where 1lB is the indicator function of the set B.

For simplicity, we assume that S = Rd.
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Theorem 4.2. Let X = {X(t), t ∈ R+,Px} be a Markov process in Rd with
transition function P (t, x, A) satisfying the following conditions:

(4.1) P (t, x,B(x, r0)) ≥ K for all t > 0, x ∈ Rd and some r0 > 0,

(4.2) P (t, x, B(x, r)) ³ P (t, 0, B(0, r)) for all t > 0, x ∈ Rd, 0 ≤ r ≤ r0.

Then dimHX([0, 1]) = γlow Px-a.s. for all x ∈ Rd, where γlow is defined by

γlow = sup
{

α ≥ 0 : lim sup
r→0

1
rα

∫ 1

0

P (t, 0, B(0, r))dt < ∞
}

.

Remark 4.3. (i). Similar to Theorem 2 of Pruitt (1969), we can express the
index γlow in terms of the moments of X(t):

γlow = sup
{

α ≥ 0 :
∫ 1

0

E
(|X(t)|−α

)
dt < ∞

}
.

(ii). All the spatially homogeneous Markov processes satisfy the condition (4.2)
with equality.

The proof of the lower bound in Theorem 4.2 is based on Lemmas 4.4 and 4.5
below. For any t0 ∈ [0, 1] and r > 0, let

T (t0, r) =
∫

[0,1]

1l{|X(t)−X(t0)|≤r}dt

be the sojourn time of X in the ball B(X(t0), r).

Lemma 4.4. There is a constant δ > 0 such that for all t0 ∈ [0, 1], r > 0, all
λ > 0 and x ∈ Rd,

(4.3) Px
{

T (t0, r) ≥ λτ(2r)
}
≤ exp

(− δλ
)
,

where τ(r) = E
[
T (0, r)

]
.

Proof. For simplicity, we assume t0 = 0 and write T (0, r) as T (r). First we
note that (4.2) implies that for all x ∈ Rd and r > 0

Ex
[
T (r)

]
=

∫ 1

0

P
(
t, x,B(x, r)

)
dt ³ τ(r).

For any integer n ≥ 2 and x ∈ Rd, Fubini’s theorem and the Markov property of
X imply

Ex
[
T (r)n

]
= Ex

[ ∫ 1

0

· · ·
∫ 1

0

n∏

j=1

1l{|X(sj)−X(0)|≤r} ds1 · · · dsn

]

= n!
∫

0≤s1≤···≤sn≤1

Px
[ n⋂

j=1

{|X(sj)−X(0)| ≤ r
}]

ds1 · · · dsn

≤ n!
∫

0≤s1≤···≤sn≤1

Px
[ n−1⋂

j=1

{|X(sj)−X(0)| ≤ r
}]

·P (
sn − sn−1, xn−1, B(xn−1, 2r)

)
ds1 · · · dsn

≤ Kn n!
[
E(T (2r)

]n

,
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where the last step follows by induction and where K > 0 is a constant. Hence
there exists a positive constant δ > 0, say δ = (2K)−1, such that

Ex
[
exp

(
δ

T (r)
τ(2r)

)]
≤ 1.

Finally, (4.3) follows from the Chebyshev’s inequality. ¤
Using (4.3) and a standard Borel–Cantelli argument, we have

Lemma 4.5. Assume the conditions of Lemma 4.4. Then for every t0 ∈ [0, 1],

(4.4) lim sup
r→0

T (t0, r)
τ(2r) log log 1/r

≤ 1
δ

Px-a.s. for all x ∈ Rd,

where δ > 0 is the constant in Lemma 4.4.

Proof of Theorem 4.2. To prove the lower bound, we note that Lemma 4.5,
Fubini’s theorem and Lemma 3.3 together imply

(4.5) ϕ1-m
(
X([0, 1])

) ≥ K Px-a.s. for all x ∈ Rd,

where ϕ1(r) = τ(2r) log log 1/r. Hence dimHX([0, 1]) ≥ γlow Px-a.s.
Now we prove the upper bound. For any β > γlow , we chose α ∈ (γlow , β).

Then, by the definition of γlow , there exists a sequence {rn} of positive numbers
such that rn ↓ 0 and τ(rn) ≥ rα

n for all n ≥ 1. By Lemma 4.1, we see that for each
n ≥ 1, X([0, 1]) can be covered by M0(rn, 1) cubes in Λ(rn) and

Ex
[
M0(rn, 1)

] ≤ K

τ(rn)
≤ K r−α

n .

Hence we have sβ-m
(
X([0, 1])

)
< ∞ Px-a.s., and therefore, Theorem 4.2 is proved.

¤
Remark 4.6. From the proof, we see that Theorem 4.2 can also be applied

to a Markov process that is not temporally homogeneous, provided its transition
function ps,t(x,A) is comparable to a function P (t − s, x, A) satisfying conditions
(4.1) and (4.2).

Remark 4.7. Theorem 4.2 implies that if the transition functions of two
Markov processes are comparable, then the Hausdorff dimension of their ranges
are the same. This is related to the results of Schilling (1996). A natural question
is that, if a Markov process X with values in Rd is comparable with a Lévy stable
process Y , do the uniform dimension and Hausdorff measure results for Y also hold
for X? See Sections 5 and 8 for related results.

Theorem 4.2 can be conveniently applied to Markov processes for which tran-
sition functions can be estimated. Examples include Lévy stable processes, Brown-
ian motion on fractals [Barlow (1998)], stable-like processes on fractals [Chen and
Kumagai (2003)], stable jump diffusions [Kolokoltsov (2000)], Feller processes de-
termined by pseudo-differential operators [Schilling (1996, 1998)], and so on. In
many cases, γlow can be calculated in terms of more explicit characteristics of the
Markov process X. The following are some corollaries.

Corollary 4.8. [Barlow (1998, p.39)] Let X be a fractional diffusion in Def-
inition 2.3, then

dimHX([0, 1]) = min{df , β} a.s.
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When X = {X(t), t ∈ R+} is a general Lévy process in Rd, Pruitt (1969) has
proved that dimHX([0, 1]) = γ a.s., where the index γ is defined by (2.20). Since
(2.20) may be difficult to calculate, it is more desirable to represent γ in terms
of the Lévy exponent ψ of X. Pruitt (1969, Theorem 5) addresses this issue by
verifying the following estimate for γ:

γ ≥ sup
{

α < d :
∫

|ξ|≥1

1
|ψ(ξ)|

dξ

|ξ|d−α
< +∞

}
.

Moreover, it is shown there that if, in addition, Re Ψ(ξ) ≥ 2 log |ξ| (for all |ξ| large),
then

γ = sup
{

α < d :
∫

Rd

Re
(1− e−ψ(ξ)

ψ(ξ)

) dξ

|ξ|d−α
< +∞

}
.

See Fristedt (1974, 377–378) for further discussions on Pruitt’s work in this area.
Recently, Khoshnevisan, Xiao and Zhong (2003) have settled the problem com-
pletely.

Theorem 4.9. If X denotes a Lévy process in Rd with Lévy exponent ψ, then

γ = sup
{

α < d :
∫

ξ∈Rd: |ξ|>1

Re
( 1

1 + ψ(ξ)

) dξ

|ξ|d−α
< +∞

}
.

Remark 4.10. Recently, by using the result of Pruitt (1969), Becker–Kern,
Meerschaert and Scheffler (2002) have calculated dimHX([0, 1]) for a class of op-
erator stable Lévy processes X in Rd. Their arguments involve several technical
probability estimates of operator stable Lévy processes and require some restric-
tions on the transition densities of the processes. Theorem 4.9 gives a different,
analytic way to attack the problem. We expect that this method will work for the
cases that have left unsolved by Becker–Kern, Meerschaert and Scheffler (2002).

The proof of Theorem 4.9 in Khoshnevisan, Xiao and Zhong (2003) relies on
potential theory of a class of multi-parameter Lévy random fields, called additive
Lévy processes (this should not be confused with additive processes in Section 2.2)
and a co-dimension argument, which we explain below.

Let Xα = {Xα(t), t ≥ 0} be an isotropic stable Lévy process in Rd of index
α ∈ (0, 2]. If α < d, it is well-known that a compact set F ⊂ Rd is polar for Xα,
i.e.,

P
{
Xα(t) ∈ F for some t > 0

}
= 0

if and only if the Riesz–Bessel capacity Capd−α(F ) = 0. Kanda (1976) proved
that this is true for all strictly stable Lévy processes in Rd. More information on
the potential theory of Lévy processes can be found in Sato (1999, Chapter 8) and
Bertoin (1996, Chapter III).

Since the Riesz–Bessel capacity is related to the Hausdorff dimension, Taylor
(1966) proposed to use the range Xα(R+) of a stable Lévy process as a “gauge” to
measure the Hausdorff dimension of any Borel set F in Rd. More precisely, Taylor
(1966) pointed out that for any Borel set F ⊂ Rd with dimHF ≥ d− 2,

(4.6) dimHF = d− inf{α > 0 : F is not polar for Xα},
and he applied this method to derive the Hausdorff dimension of the set of multiple
points of strictly stable Lévy processes. See also Fristedt (1967) for a refinement.

With the help of potential theory of additive stable processes studied in Khosh-
nevisan and Xiao (2002, 2003a, b) and Khoshnevisan, Xiao and Zhong (2003), the
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restriction on F can be removed. Recall that an N -parameter additive stable
process in Rd of index α ∈ (0, 2], denoted by Xα,N = {Xα,N (t); t ∈ RN

+}, is defined
by

Xα,N (t) = X1(t1) + · · ·+ XN (tN ),
where X1, . . . , XN are independent isotropic stable processes with index α each.
The following result can be easily derived from Theorem 4.5 in Khoshnevisan and
Xiao (2003b).

Proposition 4.11. For any Borel set F ⊂ Rd,

dimHF = d− inf
{
Nα > 0 : F is not polar for Xα,N

}
.

Following Khoshnevisan and Shi (2000), this argument of finding dimHF is
called a co-dimension argument. As an application, we consider the following ex-
ample.

Example 4.12. Equip [0, 1]d with the Borel σ-field. Suppose F = F (ω) is a
random set in [0, 1]d (i.e., 1lF (ω)(x) is jointly measurable) such that for any compact
E ⊂ [0, 1]d, we have

(4.7) P{F ∩ E 6= ∅} =
{

1 if dimHE > γ
0 if dimHE < γ.

Then by taking E = Xα,N (RN
+ ) for appropriately chosen α and N and applying

Proposition 4.11, we see that dimHF = d− γ almost surely.

Remark 4.13. Results similar to Example 4.12 were established in Peres (1996)
using fractal percolation and a co-dimension argument, and in Khoshnevisan and
Shi (2000). Similar arguments can also be found in Hawkes (1971a), Khoshnevisan,
Peres and Xiao (2000).

Now we return to the study of the fractal properties of the range of a Markov
process X. Once dimHX([0, 1]) is known, two natural questions may be asked: (i)
Can we determine dimHX(E) for every Borel set E ⊂ R+? (ii) Is there an exact
Hausdorff measure function for X([0, 1])? These two problems for Brownian motion
and Lévy processes have been under rigorous investigation by several authors since
the pioneering works of Taylor (1953) and Lévy (1953).

We will discuss Question (ii) for Lévy processes and more general Markov
processes in Section 5. In the following, we summarize some results about Question
(i) for Markov processes. Additional information can be found in Taylor (1986a).

Question (i) for Brownian motion in Rd was first considered by McKean (1955)
[see Taylor (1986a) for the reference]. Blumenthal and Getoor (1960a, b) extended
McKean’s result first to a symmetric stable Lévy process and then to an arbitrary
stable Lévy process X in Rd, including the asymmetric Cauchy process. Their
results can be restated as follows: Let X be a stable Lévy process in Rd with index
α ∈ (0, 2]. Then for every Borel set E ⊂ R+,

(4.8) dimHX(E) = min
{
d, α dimHE

}
a.s.

For a general Lévy process X, Blumenthal and Getoor (1961) established the fol-
lowing upper and lower bounds for dimHX(E) in terms of the upper index β and
lower indices β′ and β′′ of X: for every E ⊂ R+, almost surely

(4.9) dimHX(E) ≤ βdimHE if β < 1,
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dimHX(E) ≥
{

β′dimHE if β′ ≤ d,
min{1, β′′dimHE} if β′ > d = 1;

if, in addition, X is a subordinator, then

σdimHE ≤ dimHX(E) ≤ βdimHE a.s.

The restriction that β < 1 in (4.9) was removed by Millar (1971). Blumenthal and
Getoor (1961, p.512) also conjectured that there is a function f : [0, 1] → [0, d]
depending only on X such that

(4.10) dimHX(E) = f(dimHE) a.s.

and they suspected that (4.10) might hold with the simple linear function f(x) =
dimHX([0, 1]) x. However, Hendricks (1972) has given an example of Lévy processes
with stable components which shows that (4.10) cannot hold for any linear func-
tion f . Hendricks (1973) proved that for any Lévy process with stable components,
(4.10) holds for a certain piecewise linear function f ; see also Becker–Kern, Meer-
schaert and Scheffler (2002). Hawkes and Pruitt (1974, p.285) have further shown
that linear functions f are not even enough for subordinators. In fact, their re-
sult shows that in general, dimHX(E) may not be determined by the (ordinary)
Hausdorff dimension of E alone; hence the conjecture (4.10) can not be true for
any function f . When X is a subordinator, Hawkes (1978b, Theorem 3) proves
that dimHX(E) is a.s. equal to the Hausdorff-type dimension of E which is de-
fined as inf{α > 0 : hα-m(E) = 0}, where h is a function determined by the
Laplace exponent of X and is related to the exact Hausdorff measure function of
the range X([0, 1]) obtained by Fristedt and Pruitt (1971). Let X be an arbitrary
Lévy process in Rd with exponent ψ, Khoshnevisan and Xiao (2003b) have recently
established a general formula for dimHX(E) in terms of ψ for any Borel set E ⊂ R+.
In particular, if X is symmetric or it has the lower index β′′ > 0, then

dimHX(E) = sup
{

γ ∈ (0, d) : Capκγ
(E) > 0

}
,

where κγ is the kernel defined by

κγ(x, y) =
∫

Rd

e−|x−y|ψ(ξ)|ξ|γ−d dξ, ∀x, y ∈ R.

Note that, when β′′ > 0, by using the Fourier transform of the function ξ 7→ |ξ|γ−d

(0 < γ < d) it can be shown that κγ(x, y) ≥ 0 for all x, y ∈ R.
For certain Markov processes that are comparable to Lévy processes, Question

(i) has been considered by Schilling (1996, 1998b) who has extended the results of
Blumenthal and Getoor (1961) and Millar (1971). It would be interesting to see
whether the results of Khoshnevisan and Xiao (2003b) can also be extended to such
Markov processes.

On the other hand, Liu and Xiao (1998) have studied Question (i) for Markov
processes that are approximately self-similar. The following result is an extension
of Theorem 3.1 in Liu and Xiao (1998). Its proof is similar to that in Liu and Xiao
(1998) and is omitted.

Theorem 4.14. Let X = {X(t), t ∈ R+,Px} be a time homogeneous strong
Markov process in Rd with transition function P (t, x, A). Assume that there exist
positive constants r0, K2 and K3 such that

(4.11) P
(
t, x, B(x, r)

) ≥ K2 min
{

1,
( r

tα

)d}
, ∀ x ∈ Rd, 0 ≤ r ≤ r0
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and

(4.12) P
(
t, x,B(y, r)

) ≤ K3 min
{

1,
( r

tα

)d}

for all x, y ∈ Rd with |x − y| ≤ r0 and all 0 ≤ r ≤ r0. Then for every Borel set
E ⊂ R+

(4.13) dimHX(E) = min
{

d,
1
α

dimHE
}

Px-a.s.

It is clear that the conditions (4.11) and (4.12) in Theorem 4.14 can be satisfied
by many Markov processes in Section 2. In particular, they are easily verified for
(jump) diffusions on d-sets studied in Barlow (1998), Chen and Kumagai (2003)
and, moreover, for a Lévy process X with exponent ψ, the conditions (4.11) and
(4.12) can be expressed in terms of the behavior of ψ(ξ) at infinity.

4.2. Packing dimension results for the range. Since Hausdorff and pack-
ing dimension characterize different aspects of fractals, more information on a ran-
dom set can be obtained if both of its Hausdorff and packing dimensions are known.
In this section, we consider the packing dimension of the range of X. The first re-
sult on packing dimension and packing measure of random fractals was obtained by
Taylor and Tricot (1985), in which they studied the packing measure of the range
of Brownian motion in Rd with d ≥ 3. Taylor (1986b) proves that for any Lévy
process X, dimPX([0, 1]) = γ′ a.s., where γ′ is the index defined in (2.22); see also
Pruitt and Taylor (1996) for a proof. When X is a general subordinator, Fristedt
and Taylor (1992) determine the exact packing measure of the range X([0, 1]). It
follows from their results that if X a subordinator, then dimPX([0, 1]) = β a.s.,
where β is the upper index of X defined by (2.16). See also Bertoin (1999, The-
orem 5.1 and Lemma 5.2) for a direct proof. Therefore, for any subordinator X,
γ′ = β.

Compared to the tool box for evaluating the Hausdorff dimension of a random
set, fewer techniques are available for packing dimension. In order to obtain an
upper bound for dimPF , we can use the inequality dimPF ≤ dimBF to look for
coverings of F by balls of equal radius. We have to be cautious, because upper
bounds obtained in this way may not be sharp. The density theorem of Taylor
and Tricot (1985) [cf. Lemma 3.5] remains to be the main tool for proving a lower
bound for dimPF . An alternative way is to use the packing dimension profile, which
looks promising and is worthy of further study.

The following theorem is an extension of the result of Taylor (1986b) on Lévy
processes to general Markov processes and it is an analogue of Theorem 4.2.

Theorem 4.15. Let X = {X(t), t ∈ R+,Px} be a Markov process in Rd with
transition function P (t, x, A) satisfying the conditions (4.1) and (4.2) in Theorem
4.2. Then dimPX([0, 1]) = γup Px-a.s., where γup is defined by

γup = sup
{

α ≥ 0 : lim inf
r→0

1
rα

∫ 1

0

P
(
t, 0, B(0, r)

)
dt < ∞

}
.

Proof. The proof is similar to that of Taylor (1986b). The lower bound
dimPX([0, 1]) ≥ γup follows from Lemma 3.5 and the definition of γup . We note that,
since we are dealing with liminf, all we need is Fatou’s lemma and a first moment
argument. On the other hand, in order to prove the upper bound dimPX([0, 1]) ≤
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γup , it suffices to show dimBX([0, 1]) ≤ γup a.s, which follows from Lemma 4.1 and
a first moment argument. ¤

As an example, we mention that Theorem 4.15 can be applied easily to all
elliptic diffusion processes in Rd, stable jump diffusions in Kolokoltsov (2000) and
stable-like processes on d-sets in Chen and Kumagai (2003). For these processes,
the packing and Hausdorff dimensions of the range are equal. Theorem 4.15 can
also be applied to fractional diffusions on a fractional metric space S to derive

dimHX([0, 1]) = dimPX([0, 1]) = min{df , β} Px-a.s.

However, the following natural question for Lévy processes remains open:

Question 4.16. Let X be a Lévy process in Rd with exponent ψ, can γ′ and
hence dimPX([0, 1]) be represented in terms of ψ?2

Pruitt and Taylor (1996) have proved several interesting results about the re-
lationship among γ, γ′ and other indices. They also raise several questions and
conjectures regarding γ′ and liminf behavior of T (r), the sojourn time of X in
B(0, r). As far as I know, the following problem has not been solved.

Question 4.17. For a Lévy process X in Rd, is it true that

γ′ = inf
{
α ≥ 0 : lim

r→0
r−αT (r) = ∞ a.s.

}
?

Next we consider the packing dimension of X(E) for an arbitrary Borel set
E ⊂ R+. First we note that if X satisfies the conditions in Theorem 4.14 and E
has the property that dimHE = dimPE, then Lemma 4.1 and Theorem 4.14 imply

(4.14) dimPX(E) = dimHX(E) = min
{

d,
1
α

dimPE
}

Px-a.s.

When X = {X(t), t ∈ R+} is a strictly stable Lévy process in Rd with index
β ∈ (0, 2] [so that X satisfies the conditions of Theorem 4.14 with α = 1/β],
Perkins and Taylor (1987) prove that, if β ≤ d, then with probability 1

(4.15) dimPX(E) = β dimPE for every Borel set E ⊆ R+.

This result is stronger than (4.14) since the exceptional null event does not depend
on E [hence (4.15) is called a uniform dimension result ; see Section 8 for more
information]. However, when β > d [i.e., d = 1 and β > 1], (4.14) does not even
hold for Brownian motion W . Talagrand and Xiao (1996) construct a compact set
E ⊂ R+ such that dimPW (E) < 2dimPE a.s.; they also obtain the best possible
lower bound for dimPW (E). Xiao (1997a) solves the problem of finding dimPW (E)
by proving

(4.16) dimPW (E) = 2Dim1/2E a.s.,

where DimsE is the packing dimension profile of E defined in (3.17). The arguments
of Xiao (1997a) are still valid for fractional diffusions, hence results similar to (4.16)
also hold for such processes. However, for a stable Lévy process X, the method
used in Xiao (1997a) for obtaining an upper bound for dimPX(E) breaks down due
to the existence of jumps. While we believe that this is only a technical difficulty
and can be overcome by using special properties of stable Lévy processes, we do
not know how to solve the following:

2This problem has recently been solved by Khoshnevisan and Xiao (2006).
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Question 4.18. Let X be the Markov process as in Theorem 4.14. Find a
general formula for dimPX(E). 3

We also mention that, if X is a Lévy process with stable components in Rd

or an operator stable Lévy process in Rd, the general formula for the packing di-
mension of X(E) has not been established [a special case is dimPGrW (E), since
GrW (E) is the image of the space-time Brownian motion (t,W (t))]. In this case,
the packing dimension profile in (3.17) does not seem to be appropriate for charac-
terizing dimPX(E). One may need to introduce a corresponding concept of packing
dimension profile that can capture different growths in different directions.

It is not clear to us whether Theorems 4.2, 4.14 and 4.15 can be applied to
an Ornstein–Uhlenbeck type Markov process X in Rd associated to a general Lévy
process Z and d × d matrix Q. As we mentioned earlier, both dimHX([0, 1]) and
dimPX([0, 1]) are unknown.

Finally we mention that, besides fractal dimensions, it is often of interest to
determine the topological structure of the range of a stochastic process X. Let X
be a Lévy process in R+ and let Rt = X([0, t]) be its closed range over the interval
[0, t]. Since the sample functions of X are cadlag, we see that Rt is a perfect set
for every t > 0 and

Rt =
{
X(s), X(s−), 0 < s < t

} ∪ {
X(0), X(t−)

}

[see e.g., Mountford and Port (1991, p.224) for a proof]. Kesten (1976) proves that
for a class of Lévy processes that are “close to” a Cauchy process, Rt is a nowhere
dense set with positive Lebesgue measure. He also gives a sufficient condition for
Rt to contain an open interval surrounding X(0). The latter result is related to
the properties of the local times of X, as shown by Kesten (1976): if X has a local
time `(x, t) that is continuous in x, then Rt contains an open interval around X(0).
Barlow (1981) proves an important 0-1 law which asserts that either Rt is nowhere
dense for every t > 0 a.s. or Rt contains an interval for every t > 0 a.s. The problem
of classifying Lévy processes according to the structure of Rt has been investigated
by several authors [Barlow (1981, 1985), Pruitt and Taylor (1985), Barlow et al.
(1986a), Mountford and Port (1991)], but it has not been settled completely. See
Section 6.1 for information on local time and its connection to the structure of Rt.4

5. Hausdorff and packing measure for the range and graph

There has been a long history of studying the exact Hausdorff measure of
random sets related to the sample paths of Brownian motion, Lévy processes and
Gaussian random fields, starting with the works of Lévy (1953), Taylor (1953),
Ciesielski and Taylor (1962) and Taylor (1964) for Brownian motion in Rd. The
Hausdorff measure of the range and graph of Lévy stable processes were evaluated
by Taylor (1967), Jain and Pruitt (1968), Pruitt and Taylor (1969), just to mention
a few. We refer to Taylor (1986a) for an extensive summary of the related results
and techniques for Lévy processes, along with a list of references. We note that the
problem of determining the exact Hausdorff measure of the range of subordinators
has been completely solved by Fristedt and Pruitt (1971). Their result is useful in

3Schilling and Xiao (2005) have solved this problem for a large class of Markov processes
including certain Lévy processes, stable jump-diffusions and stable-type processes on d-sets.

4I would like to thank the referee for pointing out the works of Kesten and Barlow on the
range of Lévy processes and their connections to local times.
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studying the Hausdorff measure of the level sets of a Markov process. See Section
6 below.

It is worthwhile to mention that several authors have investigated similar prob-
lems for non-Markov processes and random fields. See Ehm (1981), Talagrand
(1995, 1998) and Xiao (1996, 1997b) for related results on the range and graph sets
of the Brownian sheet and fractional Brownian motion. In turn, the arguments in
their papers can sometimes be applied for studying the fractal properties of Markov
processes as well.

Taylor and Tricot (1985) have evaluated the exact packing measure of the range
of a transient Brownian motion in Rd (i.e., d ≥ 3). The corresponding problems for
the range of a planar Brownian motion and for the graph have been considered by
Le Gall and Taylor (1986), Rezakhanlou and Taylor (1988), respectively. However,
compared to the results on exact Hausdorff measure of random sets, fewer on their
packing measure counterpart have been established for general Lévy processes or
other Markov processes. See Sections 5.2, 6.2 and 9.2 for more details.

5.1. Hausdorff measure of X([0, 1]). The study of exact Hausdorff measure
of X([0, 1]) or GrX([0, 1]) consists of two parts: lower bound and upper bound. For
a Markov process X, it is relatively easy to obtain a lower bound for the Hausdorff
measure of X([0, 1]). It follows from the LIL for the occupation measure of X [cf.
Lemma 4.5] and Lemma 3.3 that

(5.1) ϕ1-m(X([0, 1]) ≥ K Px-a.s.,

where ϕ1(r) = τ(2r) log log 1/r, τ(r) = E[T (0, r)] is defined in Lemma 4.4 and
K > 0 is a constant. In many cases such as when X is a stable Lévy process of
type A or a Brownian motion on certain nested fractals, the function ϕ1 is in fact
an exact Hausdorff measure function for X([0, 1]); see Taylor (1967), Wu and Xiao
(2002a, b).

As for obtaining an upper bound, one needs to construct economic coverings
for the range of X. This is usually more involved because an economic covering
of X([0, 1]) must reflect the fine structure such as the local oscillation behavior of
the sample paths of X. Since the local oscillation of X may change from point to
point, the sets (cubes or balls) in an economic covering must be of widely differing
sizes. There are two different approaches in the literature, both of them use a “good
point” and “bad point” argument. One involves the state space, while the other
involves the parameter space.

a. In order to construct an economic covering for the range or graph of X,
Taylor (1964, 1967) classified the points in the state space Rd into “good”
points and “bad” points, according to the amount of sojourn time of the
restarted process spent near these points. Results on hitting probabilities
and strong Markov property are needed in order to estimate the number
of dyadic cubes that contain bad points.

b. In constructing an economic covering for the range of fractional Brownian
motion, Talagrand (1995) classified the points in the parameter space into
“good” times and “bad” times according to the local asymptotic behavior
of fBm at these times. Typically, t0 ∈ [0, 1] is “good” if the oscillation of
X around X(t0) is small on a sequence of intervals [t0−rn, t0 +rn], where
rn ↓ 0, so that X([t0−rn, t0+rn]) can be covered by balls with small radius.
Such asymptotic behavior is characterized by Chung’s law of the iterated



40 YIMIN XIAO

logarithm for fBm. That is why small ball probability estimates are useful
in calculating the Hausdorff measure of the range and graph of X. See Li
and Shao (2001) for an extensive survey on small ball probabilities and
their applications. An advantage of Talagrand’s approach is that results
on hitting probabilities of X, which are difficult to establish since fBm is
not Markovian, are not needed. This method can sometimes be applied
to continuous Markov processes such as fractional diffusions as well; see
Wu and Xiao (2002a, b) for more details. On the other hand, Talagrand’s
argument does not apply directly to processes with discontinuous sample
paths such as Lévy processes.

The following is a special case of a result from Wu and Xiao (2002b) about the
Hausdorff measure of the range and graph of a class of Feller processes including
certain fractional diffusion processes. Let S be Rd or a closed subset equipped
with the Euclidean metric | · | and the Borel σ-algebra S. Let µ be a σ-finite
positive Radon measure on (S,S) which satisfies Condition (2.26) in Definition 2.2.
Recall that for a Markov process X on S satisfying Condition (c) in Definition 2.3,
α = df/β.

Theorem 5.1. Let X be a strong Markov process on S satisfying Condition
(c) in Definition 2.3. If α > 1, then there exists a constant K ≥ 1 such that for all
x ∈ S, Px-almost surely

(5.2) K−1t ≤ ϕ2-m(X([0, t])) ≤ ϕ2-m(GrX([0, t])) ≤ Kt

for all t > 0, where ϕ2(r) = rdf /α log log 1/r. If α < 1, then for all x ∈ S,
Px-almost surely

(5.3) K−1t ≤ ϕ3-m(GrX([0, t])) ≤ Kt for all t > 0,

where ϕ3(r) = r1−α+df (log log 1/r)α.

To end this subsection, we mention that upper and lower bounds for the exact
Hausdorff measure of X(E), where E ⊂ R+ is an arbitrary Borel set, have been
considered by Hawkes (1978b) for subordinators, and by Perkins and Taylor (1987)
for stable Lévy processes. However, in their results, the Hausdorff measure functions
for the lower bound and upper bound do not match. Recently, Li, Peres and Xiao
(2002) have found an exact Hausdorff measure function for the image W (E) of
Brownian motion, where E ⊂ R+ is a self-similar set. It is of some interest to study
the problem for more general processes and/or parameter sets E.

5.2. Packing measure of X([0, 1]). The study of the exact packing measure
of the range of a stochastic process has a more recent history. Taylor and Tricot
(1985) proved the following theorem for Brownian motion in Rd (d ≥ 3).

Theorem 5.2. Let W = {W (t), t ∈ R+} be Brownian motion in Rd with d ≥ 3.
Then there exists a positive and finite constant K such that with probability 1,

(5.4) ϕ4-p
(
W ([0, t])

)
= Kt for all t > 0,

where ϕ4(r) = r2/(log | log r|).
Much as is the case for results on Hausdorff measures, the proof of Theorem

5.2 consists of two parts: lower bound and upper bound. For proving the lower
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bound, Taylor and Tricot (1985) appeal to the lower density theorem [cf. Lemma
3.5], which leads to proving

(5.5) lim inf
r→0

T1(r) + T2(r)
ϕ4(r)

= 2 a.s.,

where T1 and T2 are independent copies of the sojourn time process T = {T (r), r ≥
0}. We note that (5.5) relies on the small ball probability of T (r), i.e., P{T (r) ≤ x},
which, in turn, is related to the large tails of M1 = maxt∈[0,1] |W (t)|. See Taylor
and Tricot (1985) for more details.

In order to prove the upper bound in (5.4), Taylor and Tricot (1985) use a
“good point” or “bad point” argument that is dual to those in Taylor (1964, 1967),
together with the upper inequality in (3.8). A different argument based on the local
oscillation of the sample paths can be found in Xiao (1996, 2003).

For the planar Brownian motion, Le Gall and Taylor (1986) prove that for any
measure function ϕ, the packing measure ϕ-p

(
W ([0, t])

)
is either 0 or ∞, and they

give the following criterion:

Theorem 5.3. Let W = {W (t), t ∈ R+} be Brownian motion in R2. If ϕ(r) =
r2 log(1/r)h(r), where h : [0, 1) → [0, 1) is monotone increasing but log(1/r)h(r)
is decreasing, then with probability 1,

(5.6) ϕ-p
(
W ([0, t])

)
=

{
0
∞ according as

∞∑
n=1

h
(
2−2n) {

< ∞
= ∞.

As for the packing measure of the graph GrW ([0, 1]) of Brownian motion W
in Rd, Rezakhanlou and Taylor (1988) proved that if d ≥ 3, then ϕ4 in Theorem
5.2 is also a correct packing measure function for GrW ([0, 1]) [see also Xiao (2003)
for a different proof]. However, if d = 1 or 2, then similar to (5.6) for any measure
function ϕ ∈ Φ, ϕ-p

(
W ([0, t])

)
is either 0 or ∞.

Taylor (1986b) proved that a result similar to (5.6) holds for the packing mea-
sure of the range of a stable Lévy process in Rd with index α < d. The reason for
this is that efficient packing of the range comes from using points on the sample
path where there are unusually large jumps, or from another less intuitive point of
view, that the small tail of the sojourn time T (r) has a power-law decay. Further
results on the asymmetric Cauchy process and subordinators have been established
by Rezakhanlou and Taylor (1988), and Fristedt and Taylor (1992), respectively.

So far, no packing measure results have been established for Markov processes
other than those mentioned above. It would be interesting to study the exact
packing measure of the range and graph of fractional diffusions, jump diffusions
and other Feller processes.

Finally, it is worthwhile to mention that the ϕ-Hausdorff measure and the ϕ-
packing measure of the range of a function f are closely related to the weak and
strong ϕ-variation of f , respectively; see Taylor and Tricot (1985). Strong and
weak variations have been studied by Taylor (1972) for Brownian motion, Fristedt
and Taylor (1973) for stable Lévy processes, Kawada and Kôno (1973) and Xiao
(1997c) for certain Gaussian processes, and Marcus and Rosen (1994) for local
times of Markov processes. It would be interesting to study the weak and strong
variations of more general Feller processes such as diffusion processes on fractals,
jump diffusions, and so on. The methods in Xiao (1997c) may be more convenient
for studying the case of diffusion processes on fractals.
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5.3. Further questions about the range. In the following, we list some
unsolved problems about the Hausdorff and packing measure of the range of a
Markov process X. Problem 5.4 was raised by Taylor (1986a, p.392) and it is still
open in general.

Question 5.4. For a general Lévy process in Rd, show that there is always
a correct measure function ϕ ∈ Φ which makes ϕ-m(X([0, 1])) finite and positive,
and give a method for constructing this ϕ.

Some partial results on the upper and lower bounds for the Hausdorff measure
of the range of a symmetric Lévy process in R were obtained by Dupuis (1974). It
follows from Lemmas 4.5 and 3.3 that, for the function ϕ1(r) = τ(2r) log log 1/r, the
ϕ1-Hausdorff measure of X([0, 1]) is always bounded below by a positive constant.
However, the Hausdorff measure ϕ1-m

(
X([0, 1])

)
may not necessarily be finite, as

shown by a strictly stable process of Type B with index α ∈ (0, 1), for which a
correct Hausdorff measure function for X([0, 1]) is proved by Taylor (1967) to be
ϕ(r) = rα(log log 1/r)1−α. Hence, the form of a correct Hausdorff measure function
may also be sensitive to the asymptotic properties of h(t, r) = P{|X(t)| ≤ r},
not just the average τ(r) = E{T (r)}. Before Problem 5.4 is solved completely, a
reasonable question would be to find conditions on the process X to ensure that
the function ϕ1 (or some other function) is a correct Hausdorff measure function
for X([0, 1]). Another more specific, perhaps easier, problem is to find the exact
Hausdorff measure function for the range of an operator stable Lévy process in Rd;
see Problem 5.6 below.

It would also be interesting to determine the exact Hausdorff measure functions
for the range and other random sets of a Feller process X corresponding to a pseudo-
differential operator with symbol q(x, ξ). We have the following questions:

Question 5.5. Under what conditions on q(x, ξ) can one determine an exact
Hausdorff measure function ϕ for X([0, 1])? How is ϕ related to q(x, ξ)? A natural
starting point is to consider a symbol q(x, ξ) that is comparable to that associated
with a stable Lévy process.

Question 5.6. Find exact Hausdorff and packing measure functions for the
image and graph of operator stable Lévy processes in Rd. The Hausdorff and pack-
ing dimensions of X([0, 1]), under some additional conditions, have been obtained
by Becker–Kern et al. (2002).

Fristedt and Taylor (1992, p.494) believe that if a Lévy process X is sufficiently
close to Brownian motion, then its range has an exact packing measure function.
The following question is motivated by their remarks.

Question 5.7. Find conditions on the Lévy exponent ψ or the Lévy measure L
of a symmetric Lévy process X in Rd (d ≥ 3) so that X([0, 1]) has an exact packing
measure function.

6. Level sets of Markov processes and local times

Let X = {X(t), t ≥ 0} be a Markov process with values in S. In this section,
we consider the level set

X−1(x0) = {t ∈ R+ : X(t) = x0}, x0 ∈ S.
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Since we are interested in its fractal properties, it is first necessary to ask whether
X−1(x0) is empty or not. For Lévy processes, this problem has been solved com-
pletely by Kesten (1969) and Bretagnolle (1971).

To study the fractal properties of the level sets as well as those of the inverse
image X−1(F ) of a stochastic process X, we need to have a (random) measure
supported on X−1(x0). Such a measure can be extended from the local times
`(x0, t) of X [see (6.2) below] when `(x, t) has a version that is jointly continuous
in (x, t); see Theorem 8.6.1 in Adler (1981). For a Markov process X, local times
can give more information about its level sets, see property (LT) below.

6.1. Local times: existence and regularity. The literature on local times
is very extensive. Our particular interest is to use the local times of a stochastic
process X to study the fractal and other fine properties of the sample paths of X.

The following is a definition of local times of a stochastic process X = {X(t), t ∈
R+} with values in Rd. For any Borel set I ⊆ R+, the occupation measure of X on
I is defined as:

(6.1) µ
I
(B) = λ1

{
t ∈ I : X(t) ∈ B

}
, ∀B ∈ B(Rd).

If µ
I

is absolutely continuous with respect to the Lebesgue measure λd in Rd,
we say that X(t) has local times on I, and define its local times, `(•, I), as the
Radon–Nikodým derivative of µI with respect to λd, i.e.,

(6.2) `(x, I) =
dµI

dλd
(x), ∀x ∈ Rd.

In the above, x is the so-called space variable and I is the time variable. Sometimes,
we write `(x, t) in place of `(x, [0, t]).

By standard martingale and monotone class arguments, one can deduce that the
local times have a measurable modification that satisfies the following occupation
density formula: for every Borel set I ⊆ R+, and for every measurable function
f : Rd → R,

(6.3)
∫

I

f(X(t)) dt =
∫

Rd

f(x)`(x, I) dx.

Bertoin (1996, Chapter V) gives a nice treatment of local times of a Lévy
process as occupation densities. There are several different ways to define local
times of a Markov process X, such as continuous additive functional, jumps across
the level, etc. See the survey paper by Taylor (1973), Barlow et al. (1986a) and
the references therein for more details.

The principal properties of the local times of a Markov process that are of
particular interest to us are the following, which will be called (LT) property for
easy reference.

(i). The inverse of `(x, ·) is a (perhaps exponentially killed) subordinator [see
Blumenthal and Getoor (1968, p.214) for the precise formulation]. When
X is a Lévy process in R with exponent ψ, then the Laplace exponent g
of the corresponding subordinator is

(6.4) g(u) =
[∫

R
Re

( 1
u + ψ(x)

)
dx

]−1

.

(ii). The range of this subordinator differs from X−1(x) by at most a countable
number of points.
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See Bertoin (1996, pp.130–131) for a proof of (LT) when X is a Lévy process.

For a Lévy process X = {X(t), t ≥ 0} in R, a necessary and sufficient condition
for the existence of local times of X is that

(6.5)
∫

R
Re

( 1
1 + ψ(ξ)

)
dξ < ∞.

This is proved by Hawkes (1986) and is based on a remarkable result of Kesten
(1969, Theorem 2). See also Bertoin (1996, p.126).

In the following, we consider the regularity properties of local times when they
exist.

(a). Joint continuity. Getoor and Kesten (1972) proved some necessary con-
ditions and (different) sufficient conditions for the local times of a Markov process
to have a version, still denoted by `(x, t), which is continuous in (t, x) [so `(x, t) is
said to be jointly continuous]. Their results were improved by Barlow (1985) in the
special case of Lévy processes. Later, a sufficient condition in terms of the metric
entropy or majorizing measure were obtained by Barlow and Hawkes (1985), which
is proven by Barlow (1988) to be necessary as well. The theorem in the form below
is taken from Bertoin (1996). Let

m(ε) = λ1

{
a ∈ R :

1
π

∫

R

(
1− cos(aξ)

)
Re

( 1
ψ(ξ)

)
dξ < ε

}
.

Theorem 6.1. Let X be a Lévy process in R with exponent ψ satisfying (6.5).
Assume further that 0 is regular for {0}. Then X has a jointly continuous local
time `(x, t) if and only if

∫

0+

√
log 1/m(ε) dε < ∞.

Marcus and Rosen (1992) give an alternative approach to the joint continuity
of local times of symmetric Markov processes. The key of their approach is to
connect [via the Dynkin-type isomorphism theorem] the joint continuity of `(x, t)
with the sample path continuity of a mean zero stationary Gaussian process G
having u1(x, y) as its covariance function, where u1(x, y) is the 1-potential density
of X. Then they apply the Dudley–Fernique theorem or the theorem of Talagrand
(1987) on the regularity of Gaussian processes. See Marcus and Rosen (1992, 2001)
for more details.

In yet another different approach, based on moment estimates, Berman (1985)
has proved some sufficient conditions for the joint continuity of the local times of
Markov processes, in terms of their transition density functions. This method is
applicable to fractional diffusions. However, for Brownian motions on the Sierpinski
gasket and carpets, much more can be done. By applying the bounds on the
potential kernel densities of such diffusions, Barlow and Perkins (1988), Barlow and
Bass (1990, 1992) have established the joint continuity and modulus of continuity
for their local times. See also Barlow (1998, Theorem 3.32).

As we mentioned at the end of Section 4.2, the local time `(x, t) of a Markov
process X has a close connection with the structure of the closed range Rt =
X([0, t]). It is easy to see that if for fixed t > 0, `(x, t) is continuous in the space
variable x, then the open set {x : `(x, t) > 0} ⊆ Rt. Several authors have investi-
gated the structure of Rt for Lévy processes; see Kesten (1976), Barlow’s (1981),
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Pruitt and Taylor (1985), Barlow et al. (1986a), Mountford and Port (1991). How-
ever, the problem of determining when Rt is nowhere dense has not been completely
solved. In particular, the following problem from Barlow et al. (1986a) remains
open.

Question 6.2. Suppose X = {X(t), t ∈ R+} is a Lévy process in R with Lévy
measure L such that L(−∞, 0) = L(0,∞) = ∞,∫

R

(|x| ∧ 1
)
L(dx) = ∞ and

∫

R
Re

1
1 + ψ(ξ)

dξ < ∞.

If a.s. no continuous version of `(x, t) exists, does it follow that the range Rt is a.s.
nowhere dense?

(b). Laws of the iterated logarithm and moduli of continuity. Denoting by
`(x, t) the local time of Brownian motion W in R, the following laws of the iterated
logarithm (LIL) for `(0, t) and the maximum local time `∗(t) = supx∈R `(x, t) of W
were established by Kesten (1965):

(6.6) lim sup
t→0+

`(0, t)√
t log log t−1

= lim sup
t→0+

`∗(t)√
t log log t−1

=
√

2 a.s.

and

(6.7) lim inf
t→0+

( log log t−1

t

)1/2

`∗(t) = K4 a.s.,

where K4 > 0 is a constant. As applications of their large deviation methods,
Donsker and Varadhan (1977, p.752) showed the following LIL similar to (6.6) for
the local time `(x, t) of a symmetric stable Lévy process X of index α ∈ (1, 2]:

(6.8) lim sup
t→0+

`(0, t)
t1−1/α(log log t−1)1/α

= lim sup
t→0+

`∗(t)
t1−1/α(log log t−1)1/α

= c(α) a.s.,

where c(α) > 0 is an explicit constant. Marcus and Rosen (1994) extended the
above results to all symmetric Lévy process with Lévy exponent ψ that is regularly
varying of index α ∈ (1, 2]. See also Bertoin (1995) for a different approach based
on subordinators.

From the inequality

t =
∫

R
`(x, t)dx ≤ 2`∗(t) sup

0≤s≤t
|X(s)|,

one can see that results of the form (6.8) on local times are closely related to the
oscillation properties of the sample paths of the process X. This can be made
precise by proving the so-called Chung type law of the iterated logarithm [also
called the other LIL]. For strictly stable Lévy process X of type A with index α,
Taylor (1967, Theorem 4) showed that

(6.9) lim inf
t→0+

( log log 1/t

t

)1/α

sup
0≤s≤t

|X(s)| = K5 a.s.

His proof is based on estimates for the small ball probability P
{

sup0≤s≤t |X(s)| ≤
ε
}

[see Li and Shao (2001) for more information on small ball probabilities and
their applications]. By using large deviations methods, Donsker and Varadhan
(1977, p.752) give another proof of (6.9) for symmetric stable Lévy processes. More
generally, Wee (1988) studies the lower functions for a Lévy process. We mention
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that there is also a uniform version of (6.9) for Brownian motion [cf. Csörgő and
Révész (1978)] and other Lévy processes [cf. Hawkes (1971c)].

For the local time `(0, t) of a general Lévy process X in R, the uniform modulus
of continuity in the time variable t is obtained by Fristedt and Pruitt (1972); see
also Bertoin (1995, 642–643). The fast points and slow points of the local time
`(0, t) have been studied by Marsalle (2000); see Section 12 for related results of
Shieh and Taylor (1998). On the other hand, the uniform modulus of continuity
of the maximum local time `∗(t) has been established by Perkins (1981, 1986) for
Brownian motion and strictly stable processes.

Lacey (1990) considered large deviation estimates for the maximum local time
`∗(1) of a strictly stable Lévy process X of index α ∈ (1, 2] and proved that

(6.10) logP
{
`∗(1) > u

} ∼ −K6u
α as u →∞,

where K6 > 0 is an explicit constant, which equals c(α) in (6.8) when X is sym-
metric. (6.10) matches with the result on P

{
`(0, 1) > u

}
, obtained by Hawkes

(1971c). Wee (1997) and Blackburn (2000) have extended (6.10) to a Lévy process
with exponent ψ that is regularly varying at 0 with index α ∈ (1, 2].

For a Lévy process X in R, the modulus of continuity of the local time `(x, t) in
the space variable x has been established by Barlow (1985, 1988) and Marcus and
Rosen (1992), using different methods. [For the local times of Brownian motion,
the results are due to McKean (1962) and Ray (1963); see e.g., Barlow (1988) for
these references]. The following result for stable Lévy processes is from Barlow
(1988): If X is a stable Lévy process in R of index α > 1, then almost surely for
all intervals I ⊂ R and all t > 0,

lim
δ↓0

sup
a, b ∈ I : |b− a| < δ

0 ≤ s ≤ t

|`(b, s)− `(a, s)|
|b− a|(α−1)/2

(
log(1/|b− a|))1/2

= cα

(
sup
x∈I

`(x, t)
)1/2

,

where cα > 0 is an explicit constant depending on the index α and the skewness
parameter of X(1) [see (2.10)] only. Applying an isomorphism theorem of Dynkin,
Marcus and Rosen (1992, Theorem XIII) prove a similar result for the local times
of general symmetric Markov processes.

The liminf law of the iterated logarithm (6.7) for the maximum local times of
Brownian motion has been extended to a symmetric stable Lévy process X in R by
Griffiin (1985) and to more general Lévy processes by Wee (1992). Unlike (6.8), no
liminf law of the iterated logarithm can hold for `(0, t), see Taylor (1986b).

For diffusion processes on fractals, the regularity properties of their local times
have been studied in Barlow and Perkins (1988), Barlow and Bass (1992) and
Barlow (1998). Large deviation type results and Chung-type LILs analogous to
(6.8) for the maximum local times have recently been obtained by Fukushima et
al. (1999) of Brownian motion on the nested fractals, and more generally by Bass
and Kumagai (2000).

It seems to me that not much work has been done for local times of Feller
processes determined by pseudo-differential operators or stable jump diffusions. It
would be interesting to see to what extent the above results for Lévy processes are
still true for these Feller processes.

6.2. Fractal dimension and measure results. (a). Dimension results. The
Hausdorff dimension of the zero set X−1(0) was obtained by Taylor (1955) for
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Brownian motion in R and by Blumenthal and Getoor (1962) for symmetric stable
process in R with index α > 1. They proved that

dimHX−1(0) = 1− 1
α

a.s.

For a general Lévy process X with values in R, Blumenthal and Getoor (1964,
pp.63–64) obtained upper and lower bounds for dimHX−1(x) in terms of the indices
β and β′′.

Because of the property (LT), one can always use the result of Horowitz (1968)
on the Hausdorff dimension of the range of a subordinator to find the Hausdorff
dimension of the level set of a Markov process. It is also possible to obtain the pack-
ing dimension of X−1(0) by using the index γ′ of the corresponding subordinator.
The only possible disadvantage of this approach is that sometimes the dimension
is not expressed in terms of the original process X explicitly.

In the case of a Lévy process in R with exponent ψ, Hawkes (1974) studied
the Hausdorff dimension of its zero set directly and proved the following formula
in terms of ψ:

(6.11) dimHX−1(0) = 1− 1
b

a.s.,

where
1
b

= inf
{

γ ≤ 1 :
(
1 + Re [ψγ ]

)−1 ∈ L1(R)
}

and the infimum of the empty set is taken as 1 here. Hawkes’ proof is based on
the results of Kesten (1969) and a subordination [or co-dimension] argument. It
is worthwhile to note that Hawkes (1974) has also shown that the parameter b is
independent of the other indices of Lévy processes in Section 2.1 and has obtained
some results on the relationship between b and β, β′, γ.

Much as in (6.11), it would be interesting to express the packing dimension
dimPX−1(0) in terms of the exponent ψ. This question is related to Problem 4.16.

The Hausdorff and packing dimensions of the level sets of other Markov processes
such as diffusions and Brownian motion on fractals have been considered by Liu
and Xiao (1998), Bertoin (1999, Section 9.3).

(b). Hausdorff and packing measure of the level sets. Taylor (1973, pp.406–
407) describes a recipe for obtaining an exact Hausdorff measure function for the
level set of a Markov process. The basic idea is to use (LT) and the result of Fristedt
and Pruitt (1971) on the exact Hausdorff measure of the range of a subordinator.

Sometimes, it is more convenient to study the exact Hausdorff measure of the
level sets of a Markov process directly. Moreover, this is the only approach for non-
Markov processes because no relationship analogous to (LT) between the level set
of a non-Markov process and the range of a tractable process has been established
in that case. The direct approach uses the local times as a natural measure on the
level set X−1(x). Then LIL for `(x, ·) of the form

lim sup
r→0

`(x, t + r)− `(x, t− r)
ϕ(r)

≤ K a.s.

and Lemma 3.3 give a positive lower bound for ϕ-m
(
X−1(x)

)
. In order to obtain

an upper bound, one can use a covering argument similar to those discussed in
Section 5.1; see e.g., Xiao (1997d).
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Since the packing measure of the range of an arbitrary subordinator has been
studied by Fristedt and Taylor (1992), one can evaluate the packing measure of the
level sets of a Markov process by using property (LT) and the results in Fristedt
and Taylor (1992). It would be interesting to find conditions on a Lévy process X
that ensure that ϕ-p

(
X−1(0)

)
is 0, positive and finite or ∞, respectively.

Question 6.3. Find an exact Hausdorff measure function for the level sets of
Feller processes determined by pseudo-differential operators or stable jump diffu-
sions. Study the packing measure of their level sets.

Finally, we mention that the zero set of a Markov process is also related to
the collision problem of Markov processes. Let X1, X2, . . . , Xk be k independent
Markov processes with values in S. The collision problem concerns the following
questions:

(i) Under what conditions does there exist t > 0 such that

X1(t) = X2(t) = · · · = Xk(t)?

(ii) If the X1, . . . , Xk do “collide”, what are the Hausdorff and packing di-
mensions of the “set of collision points”

Ck =
{
x ∈ S : X1(t) = X2(t) = · · · = Xk(t) = x for some t > 0

}

and the set of “collision times”

Dk =
{
t > 0 : X1(t) = X2(t) = · · · = Xk(t)

}
?

The above problems were first considered by Jain and Pruitt (1969) for two inde-
pendent stable processes in R with indices α1 and α2. Assume that α2 ≤ α1, for
convenience. Jain and Pruitt (1969) showed that collision exists almost surely if
both 1 < α2 ≤ α1 ≤ 2. This condition was weakened by Hawkes (1971b, c) to
α1 > 1. They also obtained the Hausdorff dimensions of C2 and D2, as follows:

dimHC2 = α2

(
1− 1

α1

)
, dimHD2 = 1− 1

α1
a.s.

See also Hawkes and Pruitt (1974, Theorem 5.3) and the survey of Pruitt (1975)
for more information. The above results on the existence of collisions have been
extended to Lévy processes on the line by Shieh (1989) and to more general Markov
processes by Shieh (1995). Shieh uses local time arguments for proving the exis-
tence, and potential theory [see Blumenthal and Getoor (1968, Chapter VI)] for
proving the non-existence of collisions. See also Bertoin (1999, Section 9.3) for the
study of the collision problem for diffusions.5

The following problem has not been solved, even for stable Lévy processes.

Question 6.4. Find, if they exist, exact Hausdorff and packing measure func-
tions for Ck and Dk.

5Applying potential theory of additive Lévy processes and a co-dimension argument, Khosh-
nevisan, Shieh and Xiao (2006) have obtained necessary and sufficient condition for a symmetric
Lévy process to have Ck 6= ∅ and determined the Hausdorff dimensions of Ck and Dk.
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7. Inverse images and hitting probabilities

Let X = {X(t), t ≥ 0} be a Markov process with values in a metric space S.
Again, we just consider the case when S = Rd. This section is concerned with the
question of determining when X−1(F ) ∩ E 6= ∅ with positive probability, where
E ⊂ (0,∞) and F ⊂ Rd are Borel sets, and with the computation of the Hausdorff
and packing dimensions of X−1(F ) ∩ E, when this intersection is not empty.

7.1. Conditions for X−1(F ) ∩ E 6= ∅. It is well-known that if X is an
isotropic stable Lévy process in Rd with index α ∈ (0, 2] and E = (0,∞), then
a compact set F ⊂ Rd satisfies P{X−1(F ) ∩ E 6= ∅} = 0 (i.e., F is polar for X)
if and only if Capd−α(F ) = 0, where Capd−α(·) denotes the Bessel–Riesz capacity
of order d− α. Kanda (1976) proved that this is true for all non-degenerate stable
Lévy processes in Rd with index α 6= 1. For the asymmetric Cauchy process X on
the line, Port and Stone (1969) showed earlier that X hits points, and hence that
there are no non-empty polar sets. For more information on the potential theory
of Lévy processes, we refer to Hawkes (1975, 1979), Bertoin (1996, Chapter 2) and
Sato (1999, Chapter 8).

The results on the probability of a general Markov process hitting a Borel set
F in the state space can be found in Blumenthal and Getoor (1968), Dellacherie,
Maisonneuve and Meyer (1992).

Let E ⊂ R+ and F ⊂ Rd be compact sets. The question of determining when
P
{
X−1(F ) ∩ E 6= ∅} = 0 is related to the potential theory for the highly singular

Markov process
{
(t,X(t)), t ∈ R+

}
with values in R+ × Rd. Some sufficient con-

ditions and necessary conditions for P{X−1(F ) ∩ E 6= ∅} = 0 have been obtained
by Kaufman (1972) for Brownian motion, by Hawkes (1978a) for stable subordi-
nators and Kahane (1983, 1985b) for symmetric stable Lévy processes in Rd. See
also Testard (1987) and Xiao (1999) for results on (fractional) Brownian motion.
The conditions are best stated in terms of Hausdorff measure and capacity on the
product space R+ × Rd equipped with an appropriate metric.

For any 0 < η ≤ 1, we define a metric on R+ × Rd by

ρη

(
(s, x), (t, y)

)
= max

{ |s− t|η, |x− y|}.

For any measure function ϕ ∈ Φ, the ϕ-Hausdorff measure on the metric space
(R+ × Rd, ρη) is denoted by ϕ-mη. The corresponding Hausdorff dimension is
denoted by dimη.

The following theorem can be proven by methods similar to those in Testard
(1987) and Xiao (1999); details will be given elsewhere.

Theorem 7.1. Let X = {X(t), t ≥ 0} be a strictly stable Lévy process of index
α in Rd and let E ⊂ (0,∞) and F ⊂ Rd be compact sets. Let η = α if 0 < α ≤ 1,
and η = α−1 if 1 < α ≤ 2.

(i). If sd-mη(E × F ) = 0, then P
{
X−1(F ) ∩ E 6= ∅} = 0.

(ii). If Caph(E × F ) > 0, then P{X−1(F ) ∩ E 6= ∅} > 0, where

h(s, t;x, y) =
1[

ρη

(
(s, x), (t, y)

)]d
.

There is an obvious gap between the two conditions above. I believe that the
condition in (ii) is actually a necessary and sufficient condition for P{X−1(F )∩E 6=
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∅} > 0. This is supported by a result of Kaufman and Wu (1982), who have shown
that if X is a Brownian motion in R, E ⊂ (0,∞) is compact and F = {x0}, then
P
{
X−1(F ) ∩ E 6= ∅} > 0 if and only if Caph(E × F ) > 0.

7.2. Dimension results on X−1(F )∩E. Applying results from the potential
theory for isotropic stable Lévy processes and a subordination argument, Hawkes
(1971a) proved the following theorem for isotropic stable Lévy processes. It follows
from Theorem 5 in Hawkes (1971a) and Theorem 1 of Kanda (1976) [see also
Bertoin (1996, p.61) and Sato (1999, Theorem 42.30)] that the same results hold
for all strictly stable Lévy processes.

Theorem 7.2. Let X be a strictly stable Lévy process of index α in Rd. Let Γ
be the support of the distribution of X(1). If α ≥ d, then for every Borel set F ⊂ Γ,

(7.1) dimHX−1(F ) =
α + dimHF − d

α
a.s.;

and if α < d, then

(7.2) ‖dimHX−1(F )‖∞ =
α + dimHF − d

α
,

where ‖ · ‖∞ is the L∞-norm in the underlying probability space.

Remark 7.3. It follows from Taylor (1967) and Port and Vital (1988) that Γ
is a convex cone with the origin as its vertex; and if X is of type A, then Γ = Rd.

The problem of finding the packing dimension of X−1(F ), when X is a strictly
stable Lévy process in Rd, has not been solved completely. When α > d = 1, it
is possible to prove a result analogous to (7.1), in the uniform sense; see Section 8
for more information. However, when α < d, we suspect that a result analogous
to (7.2) may not hold in general and that dimPF alone may not be enough for
determining dimPX−1(F ). It would be interesting to investigate this question.

Not much work on dimHX−1(F ) has been done for a general Lévy process X
or other Markov processes. The following question seems to be of interest.

Question 7.4. Let X be a Lévy process in Rd with exponent ψ. Is it possible
to give a formula for dimHX−1(F ) in terms of ψ and dimHF?

Now we turn to the Hausdorff dimension of the intersection X−1(F )∩E. When
X = {X(t), t ∈ R+} is a Brownian motion in R, the Hausdorff dimensions of
X−1(F ) ∩ E and X(E) ∩ F were considered by Kaufman (1972). Hawkes (1978a)
generalizes Kaufman’s results to stable subordinators. Their results can be stated
as

‖dimH

(
X−1(F ) ∩ E

)‖∞ = dimα(E × F )− 1
α

,

where α = 2 if X is a Brownian motion in R and by convention, the fact that
the dimension is negative means that the set X−1(F ) ∩ E is empty. This result
can be proved to hold for all strictly stable Lévy processes. However, the packing
dimension of X−1(F ) ∩ E is unknown even for Brownian motion.

A related question is to find the Hausdorff dimension of the smallest set F ⊂
Rd\{0} that can be hit by a Brownian motion or a stable Lévy process X =
{X(t), t ∈ R+} in Rd, when t is restricted to some Borel set E ⊂ R+. To be more
precise, given E ⊂ R+, determine the following infimum:

inf
{

dimHF : F ∈ B(Rd), P
{
X−1(F ) ∩ E 6= ∅} > 0

}
.
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This question was raised by Y. Peres in 1996 and deals only with the Hausdorff
dimension. However, packing dimension is needed in order to answer it.

Xiao (1999) solved this and related problems for Brownian motion X in Rd and
proved that for any compact set E ⊂ (0,∞),

inf
{

dimHF : F ∈ B(Rd), P
{
X−1(F ) ∩ E 6= ∅} > 0

}
= d− 2dimPE.

The exact Hausdorff measure of X−1(F ) seems difficult to study in general. It
is reasonable to first consider the case when X is a Brownian motion and F ⊂ Rd a
self-similar set. On the other hand, it is possible to estimate the capacity of X−1(F )
in terms of X and the capacity of F . This problem has been considered by Hawkes
(1998) for symmetric stable process in R of index α ∈ (0, 2] and by Khoshnevisan
and Xiao (2003b) for general Lévy processes. See Section 10 for related results.

8. Uniform dimension and measure results

We note that the exceptional null probability events in (4.13) and (7.1) depend
on E and F ⊂ Rd, respectively. In many applications, we have a random time set
E(ω) or F (ω) ⊂ Rd and wish to know the fractal dimensions and fractal measures
of X(E(ω), ω) and X−1(F (ω), ω). For example, for any Borel set F ⊂ Rd, we can
write the intersection X(R+) ∩ F as X(X−1(F )), the set Ck of collision points
as X(Dk) and the set Mk of k-multiple points of X as X(L′k), where L′k is the
projection of Lk into R+; see Section 9.1. For such problems, the results of the
form (4.13) and (7.1) give no information.

8.1. Uniform dimension results for the image. Kaufman (1968) was the
first to show that if W is the planar Brownian motion, then

(8.1) P
{

dimHW (E) = 2dimHE for all Borel sets E ⊂ R+

}
= 1.

Since the exceptional null probability event in (8.1) does not depend on E, it is
referred to as a uniform dimension result. For Brownian motion in R, (8.1) does
not hold. This can be seen by taking E = W−1(0). A little surprisingly, Kaufman
(1989) showed that with probability one,

dimHW (E + t) = min
{
1, 2dimHE

}

for all Borel sets E ⊂ R+ and almost all t > 0. Here the exceptional null probability
event does not depend on t or E.

Several authors have worked on the problem of establishing uniform dimension
results for the range of stable Lévy processes and other Markov processes. See the
survey papers of Pruitt (1975) and Taylor (1986a) for more information. We just
mention that Hawkes and Pruitt (1974) proved that for any strictly stable Lévy
process X of index α in Rd with α ≤ d,

(8.2) P
{

dimHX(E) = αdimHE for all Borel sets E ⊂ R+

}
= 1.

They also showed that for any Lévy process X in Rd with upper index β,

P
{

dimHX(E) ≤ βdimHE for all Borel sets E ⊂ R+

}
= 1

and if, in addition, X is a subordinator, then

(8.3) P
{

σdimHE ≤ dimHX(E) ≤ βdimHE for all Borel sets E ⊂ R+

}
= 1.



52 YIMIN XIAO

Hawkes and Pruitt (1974) further showed that the upper and lower bounds in (8.3)
are best possible. For a symmetric and transient Lévy process X in Rd, a uniform
lower bound for dimHX(E) in terms of the indices β′′, γ and γ′ was given by
Hendricks (1983):

P
{

dimHX(E) ≥ β′′(d− γ′)(d− γ)−1 dimHE for all Borel sets E ⊂ R+

}
= 1.

It follows that for symmetric and transient Lévy processes with γ = γ′, the uni-
form lower bound for dimHX(E) is β′′ dimHE. Using Lévy processes with stable
components, one can easily show that both upper and lower bounds for dimHX(E)
can not be improved; see Hendricks (1983).

It is known that for a general transient Lévy process, it is not always possible
to find a function f : [0, 1] → [0, d] such that almost surely

dimHX(E) = f(dimHE) for all Borel sets E ⊂ R+.

See Hendricks (1972), Hawkes and Pruitt (1974) for counterexamples. However,
given a Lévy process X, it is still an interesting problem to determine whether it
is possible to find a function f and a large class C of Borel sets E ⊂ R+ such that
almost surely

(8.4) dimHX(E) = f(dimHE) for all Borel sets E ∈ C.
Hawkes and Pruitt (1974) studied this question for subordinators and they have
shown that for any subordinator X with lower index σ,

(8.5) P
{

dimHX(E) = σdimHE for all Borel sets E ∈ C
}

= 1,

where C = {E ⊂ R+ : dimHE = dimPE} [their definition of C is different. By using
an argument in Talagrand and Xiao (1996), one can see that the two definitions
are equivalent]. It would be interesting to find the largest class C on which (8.5)
holds. Such a result may be helpful for solving a problem in Hu and Taylor (2000)
about “thin points” of the occupation measure of a general subordinator.

Uniform packing dimension results analogous to (8.1) and (8.2) can also be
proved. It is worthwhile to note that Perkins and Taylor (1987) have established
more precise information by proving uniform results on Hausdorff and packing
measures of the images.

Clearly, it is useful to extend the above uniform Hausdorff and packing di-
mension results to more general Markov processes. If X satisfies a uniform Hölder
condition, then upper bounds for both dimHX(E) and dimPX(E) can be obtained
by using Lemma 3.2. For a general Markov process, we follow the approach of
Pruitt (1975) and state the following two uniform covering principles which can be
applied to prove uniform upper and lower bounds for dimHX(E) and dimPX(E).

Lemma 8.1 was proved by Hawkes and Pruitt (1974) for Lévy processes. The
extension to more general Markov processes is not difficult.

We need some notation. Let {tn, n ≥ 1} be a sequence of positive real numbers
such that

∑∞
n=1 tpn < ∞ for some p > 0, and let Cn be a class of Nn intervals in R+

of length tn with log Nn = O(1)| log tn|. For example, we can take tn = 2−n and
Cn the class of dyadic intervals of order n in, say, [0, 1].

Lemma 8.1. [For proving the upper bounds] Let X = {X(t), t ∈ R+,Px} be a
strong Markov process in Rd (or S). If there is a sequence {θn} of positive numbers
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such that for some δ > 0,

(8.6) Px
{

max
0≤s≤tn

|X(s)− x| ≥ θn

}
≤ K7 tδn, ∀x ∈ Rd,

then there exists a positive integer K8, depending on p and δ only, such that, with
probability one, for n large enough, X(I) can be covered by K8 balls of radius θn

whenever I ∈ Cn.

Lemma 8.1 can be applied to a large class of Markov processes including frac-
tional diffusions and stable-like processes. For example, if X is a stable jump
diffusion of index α as considered in Kolokoltsov (2000), we can choose tn = 2−n

and θn = 2−n/β for some β > α. It follows from Theorem 6.1 in Kolokoltsov (2000)
that (8.6) is satisfied with δ = 1 − α/β. Consequently, an easy covering argument
using Lemma 8.1 yields dimHX(E) ≤ αdimHE for all Borel sets E ⊂ R+. Simi-
lar result also holds for the stable-like processes on d-sets considered by Chen and
Kumagai (2003).

In order to obtain uniform lower bounds for dimHX(E) and dimPX(E), we can
use the second covering principle, which requires a condition on the delayed hitting
probability of the process. Usually only a transient process X can satisfy (8.7).

Lemma 8.2. [For proving the lower bounds] Let X = {X(t), t ∈ R+,Px} be
a strong Markov process in Rd (or S). Let {rn, n ≥ 1} be a sequence of positive
numbers with

∑∞
n=1 rp

n < ∞ for some p > 0, and let Dn be a class of Nn balls of
diameter rn in Rd with log Nn = O(1)| log rn|. If there exist a sequence {tn} of
positive numbers and constants K9 and δ > 0 such that

(8.7) Px
{

inf
tn≤s<∞

|X(s)− x| ≤ rn

}
≤ K9r

δ
n, ∀x ∈ Rd,

then there exists a constant K10, depending on p and δ only, such that a.s. for
all n large enough, X−1(B) can be covered by at most K10 intervals of length rn,
whenever B ∈ Dn.

8.2. Level sets and inverse image. Uniform Hausdorff and packing dimen-
sion results for the level sets of stable Lévy processes in R with index α ∈ (1, 2]
follow directly from the uniform dimension results for the images of stable subor-
dinators. In fact, for the level sets X−1(x) of a class of Lévy processes, uniform
results [i.e., the exceptional null probability event does not depend on x] on the
exact Hausdorff measure of X−1(x) have been determined.

When X is a Brownian motion in R, Perkins (1981) has proved that with
probability 1,

ϕ5-m
(
B−1(x)

)
= `(x, t) for all (t, x) ∈ R+ × R,

where ϕ5(r) = (2r log log 1/r)1/2. This result has been extended by Barlow, Perkins
and Taylor (1986b) to a class of Lévy processes with exponents that are regularly
varying at ∞. This includes strictly stable Lévy processes with index α > 1, Lévy
processes with Brownian components and Lévy processes that are close to Cauchy
processes.

As for the inverse image X−1(F ) of a Markov process X, a uniform dimension
result has only been established in the Brownian motion case. Kaufman (1985) has
shown that with probability 1,

dimHW−1(F ) =
1
2

+
1
2
dimHF for all Borel sets F ⊂ R.
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His proof makes use of the Hölder continuity of B as well as the Hölder continuity
of the Brownian local time in the time variable.

For a strictly stable Lévy process X in R of index α ∈ (1, 2), the analogous
result for X−1(F ) should also be true. In fact Kaufman’s argument, together with
the Hölder conditions for the local times of X established by Donsker and Varadhan
(1977), gives a.s.

dimHX−1(F ) ≥ 1− 1
α

+
1
α

dimHF for all Borel sets F ⊂ R.

The reverse inequality requires a little more effort, and will be dealt with in a
subsequent paper.

9. Multiple points and self-intersection local times

Taylor (1986a, Section 7) contains a historical account of the classical results
of Dvoretzky, Erdös, Kakutani and Taylor in the 50’s about the multiple points of
Brownian motion in Rd. Their original proofs are based on the potential theory of
Brownian motion and combinatorial analysis. A nice proof of the existence theorem
using an elementary argument based on the self-similarity and Markov property of
Brownian motion is given by Khoshnevisan (2003).

Since the late 80’s, a lot of progress has been made in the studies of multiple
points. Many of the problems and conjectures in Taylor (1986a, Section 7) regarding
Lévy processes have been solved by Le Gall (1987a, b), LeGall et al. (1989), Evans
(1987a), Fitzsimmons and Salisbury (1989). In this section, we discuss some of
their results.

9.1. Existence of the multiple points. Let X = {X(t), t ∈ R+} be a
stochastic process with values in a metric space (S, ρ). A point x ∈ S is called a
k-multiple point of X if there exist k distinct times t1, t2, · · · , tk ∈ R+ such that

X(t1) = · · · = X(tk) = x.

If k = 2 (or 3), then x is also called a double (or triple) point.
The set of k-multiple points is denoted by Mk (or M

(d)
k if S = Rd) and the set

of k-multiple times is denoted by

Lk =
{
(t1, · · · , tk) ∈ Rk

+, t1, . . . , tk are distinct and X(t1) = · · · = X(tk)
}
.

When S = Rd, we may also write L
(d)
k for Lk.

Given a Markov process X, there are several ways to study the existence of
k-multiple points of X:

(a) potential theory for X [see Taylor (1986) and the references therein].
(b) self-intersection local times [Geman et al. (1984), Dynkin (1985), Rosen

(1983, 1987), Le Gall, Rosen and Shieh (1989), Rogers (1989), Shieh
(1992), etc.]. The idea is that the intersections of Markov processes can
be formulated as the zero set problem of a random field, say, Y , which
can be effectively studied by the method of local times. The local times
of Y are called the self-intersection local times of X [note that in some
papers, e.g., Le Gall (1986b), an intersection local time is also referred to
as a measure on Mk]. Intersection local times have been under extensive
study for their own right. The particular interest here is to use them
to define a random measure on the set Lk of multiple times. Using this
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approach, not only one can prove the existence of k-multiple points, but
also the results on the Hausdorff and packing dimensions and measures of
Lk and Mk.

(c) Wiener or Lévy sausages [Le Gall (1986b, 1987a, b)]. They are used
to define a random measure on the set Mk of multiple points. Exact
Hausdorff and packing measure of Mk can be studied.

(d) potential theory for multiparameter processes [Evans (1987a, b), Fitzsim-
mons and Salisbury (1989), Khoshnevisan and Xiao (2002)].

(e) intersection equivalence to independent percolation [Peres (1996a, 1999)].

Le Gall, Rosen and Shieh (1989) give a sufficient condition for the existence
of k-multiple points of a Lévy process by constructing a random measure on Lk.
They require Lévy processes having transition density functions.

By using a potential-theoretic and Fourier analytic approach, Evans (1987a)
has weakened the conditions of Le Gall, Rosen and Shieh (1989) by only assum-
ing that X has a resolvent density. Applying potential theory for multiparameter
Markov processes, Fitzsimmons and Salisbury (1989) prove that Evans’ condition
is also necessary. Thus, the combined results of the above authors have verified
the Hendricks–Taylor conjecture concerning the existence of k-multiple points of a
Lévy process.

To state their results, we need some notation. Let X be a Lévy process in Rd

with transition function P (t, x, A) : R+×Rd×B(Rd) → [0, 1]. For all q > 0, z ∈ Rd

and B ∈ B(Rd), set

Uq(z, B) =
∫ ∞

0

e−qsP (s, z, B)ds.

Under the assumption that X has a strong Feller resolvent operator, there exists
for each q > 0 a unique measurable function uq such that

(i) Uq(z, B) =
∫

B
uq(y − z)dy for all B ∈ B(Rd),

(ii) for every y, the function z 7→ uq(y − z) is q-excessive,
(iii) uq − ur = (r − q)ur ? uq.

See Hawkes (1979) or Bertoin (1996, Section I.3). {uq, q > 0} is called the family
of canonical resolvent densities.

Theorem 9.1. Let X be a Lévy process in Rd with canonical resolvent densities
{uq, q > 0} and u1(0) > 0. Then, for any integer k ≥ 2, the sample paths of X
have k-multiple points almost surely if and only if∫

|x|≤1

[
u1(x)

]k
dx < ∞.

We mention that the existence of k-multiple points of a Lévy process can also
be related to the zero set of an additive Lévy processes, cf. Khoshnevisan and Xiao
(2002).

Rogers (1989) has extended the sufficiency part of Theorem 9.1 to certain
Markov processes on a complete metric space. His results can be applied to frac-
tional diffusions [cf. Barlow (1998, p.40)] and stable-like processes. It is not clear
whether his condition is also necessary for the existence of k-multiple points in these
more general settings.

There are two ways to further investigate the existence of multiple points of a
Markov process. The first is to restrict the time t to some fractal-type sets. Kahane
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(1983) has considered the intersection of X(E) and X(F ), where E,F ⊂ R+\{0}
are disjoint compact sets and X is a symmetric stable Lévy processes. He gives
necessary conditions and sufficient conditions for P{X(E) ∩ X(F ) 6= ∅} > 0. A
necessary and sufficient condition in terms of a suitable capacity of E × F has
recently been obtained by Khoshnevisan and Xiao (2003b); see Section 10.

Using the approach of self-intersection local times, Shieh (1992) proves some
sufficient conditions for X(E) to contain k-multiple points, where X is a certain
Markov process such as an elliptic diffusion or a Lévy process in Rd. It is a natural
question to look for a necessary and sufficient condition similar to (10.8) for such
processes.

The second refinement is to ask what set Λ ⊂ Rd can contain k-multiple points
of X. To put it another way, when can P{Λ ∩Mk 6= ∅} be positive?

When X is a Brownian motion in Rd (d = 2, 3), this question was considered
by Evans (1987b) and Tongring (1988), who proved some sufficient conditions and
different necessary conditions for P{Λ ∩Mk 6= ∅} > 0. Fitzsimmons and Salisbury
(1989) proved that the sufficient condition of Evans (1987b) and Tongring (1988)
for planar Brownian motion is also necessary. By using the approach of intersection
equivalence, Peres (1999, Corollary 15.4) proves the following much more general
result. In particular, it can be applied to a large class of Lévy processes.

Theorem 9.2. Suppose {Ai}k
i=1 are independent random closed sets of [0, 1]d

and there exists a constant 1 ≤ K < ∞ such that

K−1Capgi
(Λ) ≤ P{Ai ∩ Λ 6= ∅} ≤ K Capgi

(Λ)

for all closed sets Λ ⊂ [0, 1]d and some non-negative and non-increasing functions
gi (i = 1, . . . , k). Then

P
{
A1 ∩ . . . ∩Ak ∩ Λ 6= ∅} > 0 ⇐⇒ Capg1···gk

(Λ) > 0.

Similar results for the intersections of zero sets of independent Lévy processes
have been obtained in Khoshnevisan and Xiao (2002, Theorem 6.1), by using po-
tential theory for additive Lévy processes.

9.2. Hausdorff dimension and measure of Mk and Lk. The Hausdorff
dimensions of the sets Mk of k-multiple points for Brownian motion in Rd were
obtained by Taylor (1966) for d = 2 [and k ≥ 2] and by Fristedt (1967) for d = 3
[and k = 2]. These results can also be proved by finding dimHL′k first [recall
that L′k is the projection of Lk into R+] and then using the uniform Hausdorff
dimension result (8.2). If X is either a Brownian motion on R2 or a symmetric
Cauchy process on R, there are points with multiplicity c, where c denotes the
cardinality of the continuum. Le Gall (1986a, 1987b) has proved that, given any
totally disconnected compact set E ⊂ R+, there exists a.s. a z ∈ R2 such that
W−1(z) has the same order structure as E. In particular, there are points of
multiplicity ℵ0 for X. About the size of W−1(z), Taylor (1986a, p.395) raises the
question of determining measure functions ϕ ∈ Φ such that a.s. ϕ-m

(
W−1(z)

)
= 0

for all z ∈ R2. This problem has not been resolved. Taylor (1986a) points out that
the results in Perkins and Taylor (1987) imply that if b > 2, then a.s. (log 1/r)−b-
m

(
W−1(z)

)
= 0 for all z ∈ R2; and he conjectures that the critical value for b

is 1. That is, the function ϕb(s) = (log 1/r)−b satisfies the above condition for
b > 1, but not for 0 < b < 1. On the other hand, Bass, Burdzy and Khoshnevisan
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(1994) have investigated an intersection local time for planar Brownian motion W
at points of infinite multiplicity. Their results indicate that the set of points of
infinite multiplicity may have a multifractal structure.

The Hausdorff dimension of Mk has been studied by Hawkes (1978c) for an
isotropic Lévy process with transition density function, and by Hendricks (1974)
and Shieh (1998) for a special class of operator stable Lévy processes.

Hawkes (1978c) proves the following result: if X is an isotropic transient
Lévy process with transition density pt(x, y) = pt(|x − y|) such that

∫∞
0

pt(x)dt
is monotone in |x|, then

(9.1) dimHMk = max
{
kγ − (k − 1)d, 0

}
a.s.,

where γ is the index of X defined by (2.20). If X is not isotropic, e.g., if X is a
Lévy process in Rd with stable components considered by Pruitt and Taylor (1969),
then the index γ alone is not enough to determine dimHMk. This can be seen from
the results of Hendricks (1974) and Shieh (1998) for a class of operator stable Lévy
processes. We note that even for this special class of Lévy processes, the problem
of finding dimHMk has not been settled completely. Hence the following question
is interesting.

Question 9.3. Let X be a Lévy processes in Rd. Find general formulas for
dimHMk and dimPMk.

Now we turn to the problem of finding the exact Hausdorff measure function
for the set Mk of k-multiple points. For Brownian motion W = {W (t), t ∈ R+} on
Rd, this problem has been completely resolved by Le Gall (1986b, 1987a, 1989). To
restate his results in Le Gall (1989), let

hk(r) = r2
(
log 1/r log log log 1/r

)k
, k ≥ 2

and
h̃2(r) = r

(
log log 1/r

)2
.

Let `
(d)
k (·) be the image measure of the k-th order self-intersection local time α

(d)
k of

W [note that α
(d)
k is a random measure on L

(d)
k ] under the mapping (t1, · · · , tk) 7→

W (t1). This is a random measure carried by M
(d)
k and it is called the projected

self-intersection local time.

Theorem 9.4. Let W = {W (t), t ≥ 0} be a Brownian motion in Rd.
(i). If d = 2, then for every integer k ≥ 2, there exists a positive constant ck

such that a.s.

hk-m(F ∩M
(2)
k ) = ck`

(2)
k (F ) for all F ∈ B(R2).

(ii). If d = 3, then there exists a positive constant K11 such that a.s.

h̃2-m(F ∩M
(3)
2 ) = K11`

(3)
2 (F ) for all F ∈ B(R3).

Partial results on the Hausdorff measure of Mk for general Lévy processes have
also been obtained by Le Gall (1987b). His approach consists of two parts. In the
first part, he considers the set Nk of the intersection points of X1, . . . , Xk, which
are k independent copies of X, and constructs directly a random measure µk on
Nk as the normalized limit of the Lebesgue measure of the sausages:

µk(A) = lim
ε→0

[
C(ε)

]−k
λd

(
S1(ε) ∩ S2(ε) · · · ∩ Sk(ε) ∩A

)
,
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where C(ε) is the capacity of the ball B(0, ε) and Si(ε) is the ε-sausage of Xi defined
by

Si(ε) =
⋃

s∈R

(
Xi(s) + B(0, ε)

)
.

Then he establishes bounds on the moments of µk(A) and apply them to derive
upper and lower bounds for the Hausdorff measure of Nk. More specifically, he has
found measure functions ϕ∗ and ψ∗ such that

ϕ∗-m
(
Nk ∩ I

)
< ∞ for all compact sets I ⊂ Rd

and
ψ∗-m

(
Nk ∩A

) ≥ K µk(A) for all Borel sets A ⊂ Rd,

where K > 0 is a constant depending on d, k and the laws of X only. The second
part of his argument is easy: since Mk can be identified with the set Nk of inter-
section points of independent copies X1, . . . , Xk of X with different starting points,
the result on Mk follows. However, it is not known when we can have ϕ∗ ³ ψ∗.
Hence no exact Hausdorff measure function for Mk has yet been determined.

The Hausdorff dimension of the set L
(d)
k of multiple times for Brownian motion

W in Rd (d = 2, 3) has been obtained by Rosen (1983) as follows:

(9.2) dimHL
(3)
2 =

1
2

and dimHL
(2)
k = 1 for all k ≥ 2.

He also conjectured that an exact Hausdorff measure function for L
(d)
k is

ϕ
(d)
k (r) = r2−d/2

(
log log 1/r

)d(k−1)/2
.

Zhou (1994) verifies this conjecture for d = 3; i.e., an exact Hausdorff measure
function for L

(3)
2 is

ϕ
(3)
2 (r) = r1/2

(
log log 1/r

)3/2
.

For d = 2, the analogous problem remains open.

In general, the Hausdorff dimension of Lk is not known for Lévy processes.
However, if X is a symmetric Lévy process in Rd with exponent ψ such that
ξ 7→ e−tψ(ξ) is in L1(Rd), then dimHLk can be derived from Theorem 1.10 in
Khoshnevisan and Xiao (2002):

dimHLk = sup
{

b > 0 :
∫

[0,1]k

1
|s|b Φ(s)ds < ∞

}
,

where Φ is the gauge function on Rk defined by

Φ(s) = (2π)−d

∫

R(k−1)d

exp
(
−

k∑

j=1

|sj |ψ
(
ξj − ξj−1

))
dξ

for s = (s1, . . . , sk) ∈ Rk. In particular, if X is a symmetric stable Lévy processes
in Rd with index α ∈ (0, 2] and such that αk > (k − 1)d [i.e., Lk 6= ∅], then

dimHLk = k − (k − 1)d
α

.

This extends Rosen’s result (9.2).
Since Problem 5.4 has not been solved, it may be relatively easier to consider

the following less general problem.
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Question 9.5. Let X be a strictly stable Lévy processes in Rd or a fractional
diffusion. Find Hausdorff measure functions h and ϕ such that

0 < h-m(Mk) < ∞ and 0 < ϕ-m(Lk) < ∞.

Related to this problem, Le Gall (1987b, p.372) conjectures that if X is a
symmetric stable Lévy process of index α in Rd, then an exact Hausdorff measure
function for Mk is

h(r) = ra
(
log log 1/r

)k

if α < d and a = kα− (k − 1)d > 0; and for α = d = 1,

h(r) = r
(
log 1/r log log log 1/r

)k
.

Finally, we consider the exact packing measure of the set Mk of k-multiple
points. Le Gall (1987b) proves that, if X is a Brownian motion in R2, then, for
every integer k ≥ 2, M

(2)
k does not have an exact packing measure function and

he gives an integral test for ϕ-p(M (2)
k ) = 0 or ∞. More precisely, the following is

Theorem 5.1 of Le Gall (1987b).

Theorem 9.6. Suppose f : (0,∞) → R+ is a decreasing function such that
r 7→ rkf(r) is increasing for r large enough. Let

ϕ(r) = r2
(
log 1/r

)k
f
(
log 1/r

)
.

Then

ϕ-p(M (2)
k ) =

{
0
∞ according to whether

∞∑
n=1

f(2n)
{

< 0
= ∞.

For Brownian motion in R3, Le Gall (1987b) has only obtained the following
partial result for the packing measure of M

(3)
2 : For β > 0, let

ϕβ(r) = r
(
log 1/r

)−β
,

then (i) there exists a β > 0 such that ϕβ-p(M (3)
2 ) = ∞ a.s. and (ii) ϕβ-p(M (3)

2 ) = 0
a.s. if β > 1.

The problems of finding the exact packing measure functions for M
(3)
2 and L

(d)
k

have not yet been solved. It is plausible that in the Brownian motion case, M
(3)
2

may have an exact packing measure function,6 but L
(d)
k (d = 2 and 3) do not. The

latter problems are related to the liminf behavior of the self-intersection local times,
which seems to be more difficult to study than the limsup behavior.

10. Exact capacity results

In the following, we discuss some exact capacity results of Kahane (1983),
Hawkes (1978b, 1998), Khoshnevisan and Xiao (2003b) for the range and inverse
image of Lévy processes, and their applications to intersections of Lévy processes.

Let X be a stable Lévy process in Rd of index α ∈ (0, 2] (including the asym-
metric Cauchy process), Blumenthal and Getoor (1960b) proved that for any Borel
set E ⊂ R+,

(10.1) dimHX(E) = min
{
d, α dimHE

}
a.s.

6Recently, Mörters and Shieh (2005) have shown that the set M
(3)
2 has no exact packing

measure function and they give an integral test.
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On the other hand, Hawkes (1971a) considered the Hausdorff dimension of the
inverse image

X−1(F ) = {t ∈ R+ : X(t) ∈ F}
of a strictly stable process X in Rd of index α [cf. Theorem 7.2]. Once dimHX(E)
or dimHX−1(F ) is known, it is of interest to further investigate the exact Hausdorff
measure functions for X(E) and X−1(F ) or their capacities. For the former, even
though there have been a lot of work in the case when E = R+ and F = {0}, few
results exist for general E and F and the problems seem to be quite difficult. For
the latter, several authors have worked on characterizing the capacities of X(E)
and X−1(F ) in terms of the capacities of E and F for any Borel sets E ⊂ R+ and
F ⊂ Rd.

When X is a symmetric stable process in Rd of index α ∈ (0, 2], Kahane (1985b,
Theorem 8) proved that for any Borel set E ⊂ R+,

(10.2) sγ-m(E) = 0 =⇒ sαγ-m(X(E)) = 0 a.s.

and if αγ < d, then

(10.3) Capγ(E) > 0 =⇒ Capαγ

(
X(E)

)
> 0 a.s.

On the other hand, Hawkes (1998) has recently proved that if X is a stable subor-
dinator of index α ∈ (0, 1), then for any Borel set E ⊂ R+ and γ ∈ (0, 1),

(10.4) Capγ(E) > 0 ⇐⇒ Capαγ

(
X(E)

)
> 0 a.s.

See also Hawkes (1978b) for a related result. We note that Hawkes’ argument
uses specific properties of stable subordinators and does not work for other stable
processes; further, while Kahane’s proof of (10.2) depends crucially on the self-
similarity of strictly stable processes, it does not apply to general Lévy processes
either.

The following theorem of Khoshnevisan and Xiao (2003b) strengthens and ex-
tends the results of Kahane (1985b) and Hawkes (1998, Theorem 4) mentioned
above.

Theorem 10.1. Let X be a symmetric Lévy process in Rd with Lévy exponent
ψ. For any 0 < γ < d and any Borel set E ⊂ R+, the event {Capγ

(
X(E)

)
> 0}

satisfies a zero-one law; and

(10.5) Capγ

(
X(E)

)
> 0 a.s. ⇐⇒ CapΦ1

(
E × RM

+

)
> 0,

where

Φ1

(
s, x

)
=

∫

Rd

exp
(
− |s|ψ(ξ)−

M∑

j=1

|xj | · |ξ|β
)
dξ, (s, x) ∈ R× RM

and M ∈ N and β ∈ (0, 2] are chosen to satisfy γ = d−Mβ.

When X is a strictly stable Lévy process of index α ∈ (0, 2], the kernel Φ1

in Theorem 10.1 can be replaced by a Bessel–Riesz type kernel with respect to a
different (asymmetric) metric, as shown by the following Corollary 10.2.

Corollary 10.2. Let X be a symmetric Lévy process in Rd with Lévy expo-
nent ψ satisfying

ψ(ξ) ³ |ξ|α, ξ ∈ Rd,
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for some α ∈ (0, 2]. Then for any 0 < γ < d,

(10.6) Capγ

(
X(E)

)
> 0 a.s. ⇐⇒ CapΦ2

(
E × RM

+

)
> 0,

where

Φ2(s, x) =
1

max{|s|d/α, |x|d/β} , (s, x) ∈ R× RM

and M ∈ N and β ∈ (0, α) are chosen so that γ = d−Mβ.

Remark 10.3. Since we have chosen β ∈ (0, α), the following formula

ρ
(
(s, x), (t, y)

)
= max

{|s− t|β/α, |x− y|}

defines a metric on R× RM . The kernel Φ2 can be written in the form

Φ2(s, x) =
1

ρ
(
(0, 0), (s, x)

)d/β
(s, x) ∈ R× RM .

Thus, we can view Φ2 as a Bessel–Riesz type kernel with respect to the metric ρ.

Capacities are also useful in studying self-intersections of Lévy processes. Ka-
hane (1983) proved the following result: Let E1 and E2 be two compact sets con-
tained in disjoint intervals and let X be a symmetric stable Lévy process in Rd of
index α. Then

Capd/α(E1 × E2) > 0 =⇒ P
{
X(E1) ∩X(E2) 6= ∅} > 0

=⇒ sd/α-m(E1 × E2) > 0.(10.7)

Kahane (1983, p.90) conjectured that Capd/α(E1 × E2) > 0 is necessary and suf-
ficient for P

{
X(E1) ∩X(E2) 6= ∅} > 0. This has been recently proven by Khosh-

nevisan and Xiao (2003b).

Theorem 10.4. Let X1 and X2 be two independent symmetric Lévy processes in
Rd with Lévy exponents ψ1 and ψ2, respectively. We assume that for all t > 0, X1(t)
has a density that is positive a.e. Then for any disjoint Borel sets E, F ⊂ R+\{0},

(10.8) P
{

X1(E) ∩X2(F ) 6= ∅
}

> 0 ⇐⇒ CapΦ3

(
E × F

)
> 0,

where

Φ3(t) =
∫

Rd

exp
(
− |t1|ψ1(ξ)− |t2|ψ2(ξ)

)
dξ, t = (t1, t2) ∈ R2.

The methods for proving Theorems 10.1 and 10.4 are based on the potential-
theoretic results for additive Lévy processes established in Khoshnevisan and Xiao
(2002, 2003a) and Khoshnevisan, Xiao and Zhong (2003).

Now we consider the exact capacity of the inverse image X−1(F ) of a Lévy
process X with values in Rd. Hawkes (1998) proves that if X is a symmetric stable
Lévy process in R of index α ∈ (0, 2] and 0 < β < 1 satisfies α + β > 1, then for
every Borel set F ⊂ R,

Cap(α+β−1)/α

(
X−1(F )

)
= 0 ⇐⇒ Capβ(F ) = 0 a.s.

Appealing to the potential theory of Lévy processes, Khoshnevisan and Xiao (2003b)
extend this result to more general Lévy process.
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Along similar lines, several authors have studied the following “capacitary mod-
ulus” problem for the range of a Lévy process. According to Rosen (2000), a func-
tion h(x) : Rd → R+ is called a capacitary modulus for Λ ⊂ Rd if there exist
constants 0 < K12 ≤ K13 < ∞ such that

[
K13

∫

Rd

f(|x|)h(x)dx
]−1

≤ Capf (Λ) ≤
[
K12

∫

Rd

f(|x|)h(x)dx
]−1

for all f : R+ → [0,∞]. The point is that the constants K12 and K13 are inde-
pendent of the kernel f . This type of results are closely related to intersections of
independent Markov processes. See Section 9 for more information.

Let W = {W (t), t ≥ 0} be a Brownian motion in Rd. Pemantle, Peres and
Shapiro (1996) prove that the function

(10.9) h(x) =
{ |x|−(d−2) if d ≥ 3
| log x| if d = 2

is a capacity modulus for the range W ([0, 1]). They have also shown that the
function h(x) = x−1/2 is a capacitary modulus for the zero set W−1(0). Their
results have been extended by Rosen (2000) to a class of Lévy processes including
the isotropic stable Lévy processes and subordinators.

Rosen (2000) believes the similar results should still hold for Lévy processes in
the domain of attraction of general strictly stable Lévy processes in Rd. It would
be interesting to solve this problem, as well as to consider the capacitary modulus
problem for other Markov processes such as diffusions on fractals.

11. Average densities and tangent measure distributions

The average density for the zero set of Brownian motion was studied by Bed-
ford and Fisher (1992). Let W be a Brownian motion in R and let µ be the
(2r log log 1/r)1/2-Hausdorff measure of W−1(0). Bedford and Fisher (1992) proved
that the order-two density of µ with respect to the gauge function r 7→ √

r exists
and D

1/2
2 (µ, t) = 2/

√
π for µ-a.e. t ∈ R+. Falconer and Xiao (1995) proved the

existence of order-two densities of the range X([0, 1]) of any strictly stable processes
in Rd with index α < d, thereby extending the result of Bedford and Fisher (1992).
Similar problems for the range of planar Brownian motion was studied by Mörters
(1998). It is interesting to note that Mörters (1998) proves that the order two
densities of the range of planar Brownian motion do not exist, but the order-three
densities do. The following is the result for Brownian motion from Falconer and
Xiao (1995) and Mörters (1998).

Theorem 11.1. Let µ be the occupation measure of Brownian motion in Rd

defined by
µ(B) = λ1{t ∈ [0, 1] : W (t) ∈ B}, ∀B ∈ B(Rd).

Then with probability 1
(i). If d ≥ 3, then D2

2(µ, x) = 2/(d− 2) µ-a.e. x ∈ Rd.
(ii). If d = 2, let ϕ(r) = r2 log(1/r), then for µ-a.e. x ∈ R2, Dϕ

2 (µ, x) does not
exist. However, Dϕ

3 (µ, x) = 2 for µ-a.e. x ∈ R2.

Similar results for the average densities of the set of multiple points of Brownian
motion have been proven by Mörters and Shieh (1999).

For tangent measure distributions of the occupation measure µ of Brownian
motion in R2, Mörters (2000, Theorem 1.2) proves the following result.
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Theorem 11.2. Let µ be the occupation measure of Brownian motion in R2.
Let ϕ(r) = r2 log 1/r. Then a.s. the ϕ-tangent measure distribution of order three
of µ exists for µ-a.e. x ∈ R2 and is given by

w-limδ↓0
1

log | log δ|
∫ 1/e

ε

1lM
( µx,r

ϕ(r)

) dr

r| log r| =
∫ ∞

0

1lM (
a

π
λ2) a e−ada

for all Borel sets M ⊂ M(R2), where w-lim means weak convergence in M(R2),
the space of all locally finite Borel measures on R2, and λ2 is the Lebesgue measure
on R2.

The corresponding problems regarding average densities and tangent measure
distributions for the occupation measures of general Lévy processes [e.g., Cauchy
processes] as well as diffusions on fractals have not been solved. It would be of
interest to study them.

12. Multifractal analysis of Markov processes

In recent years, there has been a lot of interest in verifying the multifractal
formalism and in evaluating the multifractal spectrum of various deterministic and
random measures; see Olsen (2000) and the references therein. For a self-similar
measure µ satisfying certain separation conditions, the multifractal spectra fµ(α)
and Fα(µ) of µ are defined through its local dimension and can be represented
nicely as the Legendre transform of a convex function τ ; see Section 3.4. However,
for random measures associated to stochastic processes, as shown first by Perkins
and Taylor (1998) for super Brownian motion and by Hu and Taylor (1997) for
a stable subordinator, this fails to be of much use because either the function τ
needed for the multifractal formalism has no valid definition [this is the case if µ
is the occupation measure of a stable subordinator] or the local dimensions are
the same everywhere on the support of the random measure µ [this is the case for
the occupation measure of Brownian motion]. Thus, in order to capture the deli-
cate fluctuations of the random measures involved, a refined notion of multifractal
analysis is required.

To be more specific, we describe the results of Hu and Taylor (1997) on the
occupation measure of a stable subordinator X = {X(t), t ∈ R+} of index α ∈ (0, 1)
[see Dolgopyat and Sidorov (1995) for the special case of α = 1/2]. Let µ be the
occupation measure of X defined by (6.1). It follows from results related to the
Hausdorff and packing dimension of X([0, 1]) that a.s.

(12.1) d(µ, x) = lim
r↓0

log µ(x− r, x + r)
log r

= α µ-a.e. x ∈ R.

However, on the exceptional set where (12.1) is false, d(µ, x) does not exist. For
x ∈ supp(µ), consider the lower and upper local dimensions of µ at x:

d(µ, x) = lim inf
r→0

log µ(x− r, x + r)
log r

and d(µ, x) defined similarly, but with a lim sup. Hu and Taylor (1997) show that
a.s. d(µ, x) = α for every x ∈ supp(µ); while for the random sets

Cβ =
{
x ∈ supp(µ) : d(µ, x) ≥ β

}

and
Dβ =

{
x ∈ supp(µ) : d(µ, x) = β

}
,
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they prove that Cβ = ∅ for β < α or for β > 2α, and Dβ 6= ∅ for α ≤ β ≤ 2α.
Moreover, in the latter case,

dimHCβ = dimHDβ =
2α2

β
− α, a.s.

When α = 1/2, dimHCβ has also been given by Proposition 2 of Dolgopyat and
Sidorov (1995). We further remark that Hu and Taylor (2000) have extended the
above results to a general subordinator X in R. Since it is not known whether
a uniform Hausdorff dimension result holds for the images of X [cf. (8.4)], their
multifractal spectrum is given for the time set.

12.1. Limsup random fractals. First we recall some results on “limsup ran-
dom fractals”. This class of random fractals has been introduced by Dembo et al.
(2000a, b), Khoshnevisan, Peres and Xiao (2000) to approximate random sets aris-
ing from the multifractal analysis of occupation measures and the sample paths of
Brownian motion. They are also useful in studying various exceptional sets related
to more general stochastic processes. The results in this section are from the above
references. Some of the dimension properties of limsup random fractals can be
found in Orey and Taylor (1974), Deheuvels and Mason (1998).

Let N ≥ 1 be a fixed integer. For every integer n ≥ 1, let Dn denote the
collection of all hyper-cubes in RN

+ of the form
[
k12−n, (k1 + 1)2−n

]× · · · × [
kN2−n, (kN + 1)2−n

]
,

where k ∈ ZN
+ is any N -dimensional positive integer. Suppose for each integer

n ≥ 1,
{
Zn(I); I ∈ Dn

}
denotes a collection of random variables, each taking

values in {0, 1}. By a discrete limsup random fractal, we mean a random set of the
form A=̂ lim supn A(n), where,

A(n) =̂
⋃

I∈Dn:Zn(I)=1

Io,

where Io denotes the interior of I.
In order to determine the hitting probabilities for a discrete limsup random frac-

tal A, we assume the following two conditions on the random variables
{
Zn(I); I ∈

Dn

}
.

Condition 1: the index assumption. Suppose that for each n ≥ 1, the
mean pn=̂E

[
Zn(I)

]
is the same for all I ∈ Dn and that

lim
n→∞

1
n

log2 pn = −γ,

for some γ > 0, where log2 is the logarithm in base 2. We refer to γ as the index
of the limsup random fractal A.

Condition 2: a bound on the correlation length. For each ε > 0, define

f(n, ε) = max
I∈Dn

#
{

J ∈ Dn : Cov
(
Zn(I), Zn(J)

) ≥ εE
[
Zn(I)

]
E

[
Zn(J)

]}
.

Suppose that δ > 0 satisfies

∀ε > 0, lim sup
n→∞

1
n

log2 f(n, ε) ≤ δ .

If Condition 2 holds for every δ > 0, then we say that Condition 2∗ holds. The
following theorem is from Khoshnevisan, Peres, and Xiao (2000) and Dembo et
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al. (2000a). Similar results under weaker conditions can be found in Dembo et al.
(2000b).

Theorem 12.1. Suppose that A = lim supn A(n) is a discrete limsup random
fractal which satisfies Condition 1 with index γ, and Condition 2 for some δ > 0.
Then for any analytic set E ⊂ RN

+ ,

P
(
A ∩ E 6= ∅) =

{
1 if dimP(E) > γ + δ,
0 if dimP(E) < γ.

Moreover, if Condition 2∗ is satisfied, then for any analytic set E ⊂ RN
+ ,

(12.2) dimH(E)− γ ≤ dimH

(
A ∩ E

) ≤ dimP(E)− γ a.s.

In particular, dimH(A) = N − γ, a.s.

Let W be a Brownian motion in Rd and let U be the class of sequences {(un, vn)}
such that un, vn ≥ 0 and un + vn ↓ 0. Let h be a positive continuous function such
that h(x) ↑ ∞ as x ↓ 0. Kôno (1977) studied the exact Hausdorff measure of the
set Fh of “two-sided fast points” of W defined by

Fh =
{

t ∈ [0, 1] : ∃{(un, vn)} ∈ U , |W (t+un)−W (t−vn)| ≥ √
un + vn h(un+vn)

}

and showed that ϕ-m(Fh) = 0 or ∞ according to an integral test involving ϕ and
h. Since Fh can be regarded approximately as a limsup random fractal, Kôno’s
result suggests that it would be interesting to study the exact Hausdorff measure
of more general limsup random fractals. A solution of the following problem will
have several interesting applications.

Question 12.2. Let A be a limsup random fractal satisfying Conditions 1 and
2∗. Study the exact Hausdorff measure of A.

We note that Dembo et al. (2000a) have obtained some partial results about
ϕ-m(A).

12.2. Fast points of Brownian motion. Let W = {W (t), t ∈ R+} be a
linear Brownian motion. For λ ∈ (0, 1], Orey and Taylor (1974) have considered
the set of λ-fast points for W , defined by

(12.3) F(λ) =
{

t ∈ [0, 1] : lim sup
h→0+

∣∣W (t + h)−W (t)
∣∣

√
2h| log h| ≥ λ

}

and have proved that

(12.4) ∀λ ∈ (0, 1], dimH

(
F(λ)

)
= 1− λ2 a.s.

Kaufman (1975) subsequently showed that any analytic set E with dimH(E) > λ2,
a.s. intersects F(λ). The next theorem from Khoshnevisan, Peres and Xiao (2000)
shows that packing dimension is the right index for deciding which sets intersect
F(λ).

Theorem 12.3. Let W denote linear Brownian motion. For any analytic set
E ⊂ R+,

sup
t∈E

lim sup
h→0+

∣∣W (t + h)−W (t)
∣∣

√
2h| log h| =

(
dimP(E)

)1/2
, a.s.
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Equivalently,

(12.5) ∀λ > 0, P
(
F(λ) ∩ E 6= ∅) =

{
1 if dimP(E) > λ2,
0 if dimP(E) < λ2 .

Moreover, if dimP(E) > λ2 then dimP(F (λ) ∩ E) = dimP(E) a.s.

Remark 12.4. Condition (12.5) can be sharpened to a necessary and sufficient
criterion for a compact set E to contain λ-fast points; see Khoshnevisan, Peres and
Xiao (2000) for details.

Hausdorff dimension results for the exceptional times related to the functional
laws of the iterated logarithm have been obtained by Deheuvels and Lifshits (1997),
Deheuvels and Mason (1998) and Lucas (2002). Their arguments are based on those
of Orey and Taylor (1974). The basic idea of Khoshnevisan, Peres and Xiao (2000)
is that such exceptional times sets as F(λ) can be approximated by limsup random
fractals and Theorem 12.4 follows from the general results on hitting probabilities of
limsup random fractals. As another application of their arguments, Khoshnevisan,
Peres and Xiao (2000) have strengthened the results of Deheuvels and Mason (1998).

Several authors have also studied the Hausdorff measure of the exceptional sets
for Brownian motion, see Orey and Taylor (1974), Kôno (1977), Lucas (2002); but
the problems of determining the exact Hausdorff measure of these exceptional sets
have not been solved except for the case considered by Kôno (1977). It would be
useful to develop some general techniques for studying the Hausdorff measure of a
limsup type random fractals; see Problem 12.2.

When X is a symmetric stable Lévy process in R of index α, Orey and Taylor
(1974) stated that for every 0 < γ < α−1,

(12.6) dimH

{
t ∈ [0, 1] : lim sup

h→0

∣∣X(t + h)−X(t)
∣∣

hγ
= ∞

}
= αγ.

We note that the results in Khoshnevisan, Peres and Xiao (2000) are not applicable
to processes with discontinuities. It would be interesting to relax some of the
conditions there so that the general methods can be applied to Lévy processes and
other Markov processes. In particular, such a result will be useful to study the
fractal properties of the exceptional sets related to the following result of Hawkes
(1971c) for a stable subordinator X of index α:

(12.7) lim
ε→0

inf
0≤t≤1
0<h<ε

X(t + h)−X(t)
ϕ(h)

= cα,

where ϕ(h) = h1/α| log h|−(1−α)/α and cα > 0 is an explicit constant depending on
α only.

Finally, it is worthwhile to mention that it has been proven [cf. Kahane (1985a)]
that on the sample paths of a Brownian motion, there exist slow points t at which
the oscillation of W (t + h) − W (t) is of the order

√
h. The fractal properties of

the set of slow points are different from those of fast points and we will not discuss
them here. Instead we refer to Taylor (1986a) for more information and related
references.

12.3. Thick and thin points for occupation measures. In this subsec-
tion, we describe the results of Shieh and Taylor (1998), Dembo et al. (1999, 2002a,
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b, 2001) on the thick and thin points for the occupation measures of Brownian mo-
tion and stable Lévy processes.

Let X = {X(t), t ∈ R+} be a Brownian motion in Rd (d ≥ 2) or a stable
subordinator in R of index α ∈ (0, 1). Let µ be the occupation measure of X.
When X is Brownian motion, we will write µ as µ

W
. It follows from the modulus

of continuity and the uniform dimension results of Kaufman (1969) and Perkins and
Taylor (1987) that the local dimension of µ

W
at x is 2 for every x ∈ W ([0, 1]). For

the occupation measure µ of a stable subordinator, the local dimension d(µ, x) = α
for µ-a.e. x ∈ supp(µ), while at those exceptional points, d(µ, x) does not exist.
Thus the ordinary multifractal spectrum defined in terms of the local dimension
for µ is not of much use. However, the delicate fluctuation structure of µ can be
captured by means of logarithmic corrections.

Shieh and Taylor (1998) study the random sets

Aθ =
{

x ∈ X([0, 1]) : lim sup
r→0

µ(x− r, x + r)
cαrα(log r−1)1−α

≥ θ
}

and

Bθ =
{

x ∈ X([0, 1]) : lim sup
r→0

µ(x− r, x + r)
cαrα(log r−1)1−α

= θ
}

,

where cα > 0 is an explicit constant. They have proved the following theorem:

Theorem 12.5. Let µ be the occupation measure of a stable subordinator X =
{X(t), t ∈ R+} in R with index α ∈ (0, 1). If θ > 1, then Aθ = ∅ a.s. If 0 ≤ θ ≤ 1
then Bθ 6= ∅ a.s. Moreover,

(12.8) dimHAθ = dimHBθ = α
(
1− θ1/(1−α)

)
.

They refer to (12.8) as the logarithmic multifractal spectrum of µ. We will follow
the terminology of Dembo et al. (2000a, b, 2001) and call Aθ and Bθ the sets of
thick points of the occupation measure µ. We mention that a similar result for the
thick points of a subordinator with Laplace exponent that is regularly varying at
infinity has been proven by Marsalle (1999).

In a series of papers, Dembo, Peres, Rosen and Zeitouni (2000a, b, 2001) have
investigated two different types of logarithmic multifractal spectra for µ

W
: thick

points and thin points. A point x ∈ Rd (d ≥ 3) is called a thick point for µW if

lim sup
ε→0

µW

(
B(x, ε)

)

ε2| log ε| = a

for some a > 0. Similarly, x ∈ Rd is called a thin point for µW if

(12.9) lim inf
ε→0

µW

(
B(x, ε)

)

ε2/| log ε| = a

for some a > 0.
Among other beautiful results, Dembo, Peres, Rosen and Zeitouni (2000a, b,

2001) obtain the Hausdorff dimensions of the sets of thick and thin points of the
occupation measure µ

W
. Theorem 12.6 deals with thick points [note that the scaling

functions for d ≥ 3 and d = 2 are different].

Theorem 12.6. Let W = {W (t), t ∈ R+} be a Brownian motion in Rd.
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(i). If d ≥ 3, then for all 0 ≤ a ≤ 4/q2
d,

(12.10) dimH

{
x ∈ Rd : lim sup

ε→0

µ
W

(
B(x, ε)

)

ε2| log ε| = a
}

= 2− aq2
d

2
a.s.,

where qd is the first positive zero of the Bessel function Jd/2−2(x).
(ii). If d = 2, then for any 0 < a ≤ 2,

dimH

{
x ∈ R2 : lim sup

ε→0

µ
W

(
B(x, ε)

)

ε2| log ε|2 = a
}

= 2− a a.s.

In both cases, the packing dimension of the sets of thick points equals 2
a.s.

Remark 12.7. Dembo, Peres, Rosen and Zeitouni (2001) have also proved
the existence of consistently thick points for the occupation measure of a planar
Brownian motion: x ∈ R2 is called consistently thick for µW if

lim inf
ε→0

µ
W

(
B(x, ε)

)

ε2| log ε|2 = a

for some a > 0. They show that, unlike in the case of the set of thick points of µ
W

of a planar Brownian motion, the packing dimension of the set of consistently thick
points equals 2− a.

Theorem 12.8 gives the Hausdorff dimension of the sets of thin points.

Theorem 12.8. Let W = {W (t), t ∈ R+} be a Brownian motion in Rd and
d ≥ 2. Then for all a > 1,

dimH

{
x ∈ Rd : lim inf

ε→0

µW

(
B(x, ε)

)

ε2/| log ε| = a
}

= 2− 2
a

a.s.

The packing dimension of the set of thin points equals 2 a.s.

A result similar to (12.10) for the set of thick points of symmetric stable
processes in Rd with index α < d has been proven by Dembo, Peres, Rosen and
Zeitouni (1999). However, it seems that no results on thick points for Cauchy
processes or more general Lévy processes have been established. It is also natural
to ask for the spectrum of thin points in a sense similar to (12.9) [different log-
arithmic or other corrections may be allowed] for certain class of Lévy processes,
say, a subordinator with an exact packing measure function. Compared to (12.9),
the results of Hu and Taylor (1997, 2000) deal with “extremely thin” points of the
occupation measure of a subordinator.

We mention that the thick points for the projected intersection local times
of independent Brownian motions in Rd (d = 2, 3) have recently been studied by
König and Mörters (2002), Dembo, Peres, Rosen and Zeitouni (2002).

12.4. Local Hölder exponents and spectrum of singularities. Compar-
ing with Section 12.2, a different way of characterizing the multifractal structure of
the sample paths of a stochastic process X = {X(t), t ∈ R+} with values in Rd is
to use the local Hölder exponents. For every t0 ∈ R+, recall from Section 3.4 that
the local Hölder exponent of X at t0 is defined by

hX(t0) = sup
{
` > 0 : X ∈ C`(t0)

}
,



RANDOM FRACTALS AND MARKOV PROCESSES 69

where X ∈ C`(t0) is defined in Example 3.12. Let S(h) = {t : hX(t) = h}. Then
d(h) = dimHS(h) is called the spectrum of singularities of X. Note that d(h) < 0
means that S(h) = ∅.

If W is a Brownian motion in Rd, then the local Hölder exponent of W is 1/2
everywhere on the sample paths, thus the spectrum of singularities of W is trivial
and the set of “fast points” can be studied in order to gain more information.
Jaffard (1999) shows that, however, the sample paths of a general Lévy process in
Rd may have an interesting spectrum of singularities. More precisely, for β > 0,
define

dβ(h) =
{

βh if h ∈ [0, 1/β],
−∞ otherwise;

dβ(h) =





βh if h ∈ [0, 1/2],
1 if h = 1/2,
−∞ otherwise.

Theorem 12.9. Let X = {X(t), t ∈ R+} be a Lévy process in Rd with Lévy
measure L and upper index β > 0. Let

Cj =
∫

2−j−1≤|x|≤2−j

L(dx) for j ≥ 1,

and assume that
∞∑

j=1

2−j
√

Cj log(1 + Cj) < ∞.

(i). If X has no Brownian component, then a.s. the spectrum of singularities
of X is dβ(h).

(ii). If X has a Brownian component, then a.s. the spectrum of singularities
of X is dβ(h).

It is easy to verify that the conditions in Theorem 12.9 are satisfied by all stable
Lévy processes of index α. To compare Theorem 12.9 with (12.6), we note that
when X is a symmetric stable Lévy process of index α ∈ (0, 2), then (12.6) implies
that the Hausdorff dimension of the set of points where the Hölder exponent of X
at t is at most h is αh; however, as Jaffard (1999, p.210) points out, (12.6) does not
fully characterize the regularity of X at these points. It is worthwhile to mention
that the Lévy processes in Theorem 12.9 serve as examples of multifractal functions
with a dense set of discontinuities.

We believe that local Hölder exponents and spectrum of singularities are useful
for analyzing sample paths of more general Markov processes such as those deter-
mined by pseudo-differential operators or stable-like processes. So far, not much
work has been done for these processes.
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Lévy processes. Ann. Probab. 16, 1389–1427.

[7] M. T. Barlow (1998), Diffusions on fractals. In: Lectures on Probability Theory and Statistics
(Saint-Flour, 1995), pp. 1–121, Lecture Notes in Math., 1690, Springer–Verlag, Berlin.

[8] M. T. Barlow and R. F. Bass (1989), The construction of Brownian motion on the Sierpinski
carpet. Ann. Inst. Henri Poincaré Probab. Statist. 25, 225–257.
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[102] N. Jacob and R. L. Schilling (2001), Lévy-type processes and pseudodifferential operators.
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221–225.

[168] A. Negoro (1994), Stable-like processes: construction of the transition density and the be-
havior of sample paths near t = 0. Osaka J. Math. 31, 189–214.

[169] L. Olsen (1995), A multifractal formalism. Adv. Math. 116, 82–196.



76 YIMIN XIAO

[170] L. Olsen (2000), Multifractal geometry. In: Fractal Geometry and Stochastics II (C. Bandt
et al., eds.), pp. 3–37, Progess in Probability, 46, Birkhäuser Boston, MA.
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Thèse de doctorat, Orsay.

[227] N. Tongring (1988), Which sets contain multiple points of Brownian motion? Math. Proc.
Camb. Philos. Soc. 103, 181–187.

[228] C. Tricot (1982), Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc.
91, 57–74.

[229] Y. Wang (1996), On the dimensions of the ranges for a class of Ornstein–Uhlenbeck type
Markov processes. Chinese J. Appl. Probab. Statist. 12, 1–9.

[230] T. Watanabe (1996), Sample function behavior of increasing processes of class L. Probab.
Th. Rel. Fields 104, 349–374.

[231] T. Watanabe (1998), Sato’s conjecture on recurrence conditions for multidimensional
processes of Ornstein–Uhlenbeck type. J. Math. Soc. Japan 50, 155–168.

[232] I. S. Wee (1988), Lower functions for processes with stationary independent increments.
Probab. Th. Rel. Fields 77, 551–566.

[233] I. S. Wee (1992), The law of the iterated logarithm for local time of a Lévy process. Probab.
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J. Math. 23, 163–178.

[235] J. Wu and Y. Xiao (2002a), The exact Hausdorff measure of the graph of Brownian motion
on the Sierpinski gasket. Acta Sci. Math. (Szeged) 68, 849–871.

[236] J. Wu and Y. Xiao (2002b), Hausdorff measure of the sample paths of Markov processes
with applications to Brownian motion on fractals. Preprint.

[237] Y. Xiao (1996), Packing measure of the sample paths of fractional Brownian motion. Trans.
Amer. Math. Soc. 348, 3193–3213.

[238] Y. Xiao (1997a), Packing dimension of the image of fractional Brownian motion. Statist.
Probab. Lett. 33, 379–387.

[239] Y. Xiao (1997b), Hausdorff measure of the graph of fractional Brownian motion. Math. Proc.
Camb. Philos. Soc. 122, 565–576.

[240] Y. Xiao (1997c), Weak variation of Gaussian processes. J. Theoret. Probab. 10, 849-866.
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