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Abstract

Depth notions in regression have been systematically proposed and examined in Zuo (2018). One
of the prominent advantages of the notion of depth is that it can be directly utilized to introduce
median-type deepest estimating functionals (or estimators in the case of empirical distributions) for
location or regression parameters in a multi-dimensional setting.

Regression depth shares the advantage. Depth induced deepest estimating functionals are expected
to inherit desirable and inherent robustness properties ( e.g. bounded maximum bias and influence
function and high breakdown point) as their univariate location counterpart does. Investigating and
verifying the robustness of the deepest projection estimating functional (in terms of maximum bias,
asymptotic and finite sample breakdown point, and influence function) is the major goal of this article.

It turns out that the deepest projection estimating functional possesses a bounded influence func-
tion and the best possible asymptotic breakdown point as well as the best finite sample breakdown
point with robust choice of its univariate regression and scale component.
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1 Introduction

Consider a general linear regression model

y = x′β + e, (1)

where y and e are univariate random variables, ′ denotes the transpose of a vector, and random
vector x = (x1, · · · , xp)′ and unknown parameter β are in Rp, the error e has distribution
Fe and the random vector x has distribution Fx. Note that this general model includes the
special case with an intercept term. For example, if β = (β1,β2

′)′ and x1 = 1, then one
has y = β1 + x2

′β2 + e, where x2 = (x2, · · · , xp) ∈ Rp−1. If one denotes w = (1,x2
′)′, then

y = w′β + e. We use this model or (1) interchangably depending on the context. Denote by
F(y, x) the joint distribution of y and x under the model (1).

Let T (·) be a Rp-valued estimating functional for β, defined on the set G of distributions
on Rp+1. T is called Fisher consistent for β if T (F(y, x)) = β0 for the true parameter β0 ∈ Rp

of the model and for F(y, x) ∈ G1 ⊂ G, each member of G1 possesses some common attributes.
Additional desirable properties of a regression functional T (·) are regression, scale, and affine
equivariant. That is, T (F(y+x′b, x)) = T (F(y, x))+b,∀ b ∈ Rp; T (F(sy, x)) = sT (F(y, x)), ∀ s ∈
R; T (F(y, A′x)) = A−1T (F(y, x)),∀ nonsingular A ∈ Rp×p; respectively. Namely, T (·) does not
depend on the underlying coordinate system and measurement scale.

The classical regression estimating functional is the least square (LS) functional. It meets
all the desired properties above and is “optimal” if Fe is normal (Huber (1972)). But it is
extremely sensitive to a slight deviation from the normality assumption. Alternatives include
the least absolute deviation functional, and quantile regression (Koenker and Bassett (1978))
were posed. But in terms of asymptotic breakdown point (ABP) robustness, they are no
better than the traditional LS functional (all have 0% ABP). Estimating functionals with
higher ABP were consequently proposed. Among them, the least median squares estimator
(Rousseeuw (1984)) is the most famous one. It has the highest ABP (50%) but suffers a slow
convergence rate (cubic root) (Davies (1989 and Kim and Pollard (1990)) and a instability
drawback (Figure 3.2 of Seber and Lee (2003)).

Robust estimating functionals with high ABP and root n convergence rate were sub-
sequently advanced. Among many of them is the regression depth (RD) induced deepest
regression estimating functional (Rousseeuw and Hubert (1999) (RH99)) (T ∗

RD). The latter
has an ABP 1/3 (Van Aelst and Rousseeuw (2000) (VAR00)) and root n consistency (Bai
and He (1999)).

One of the prominent advantages of depth notion is that it can be directly employed to
introduce median-type deepest estimating functionals (or estimators in the empirical case)
for the location or regression parameter in a multi-dimensional setting based on a general
min-max stratagem. The most outstanding feature of the univariate median is its exceptional
robustness. Indeed, it has the best possible finite sample breakdown point (FSBP) (among all
location equivariant estimators, see Donoho (1982)) and the minimum maximum bias (MB)
(if the underlying distribution has a unimodal symmetric density, see Huber (1964)).

The functional in RH99 (T ∗
RD) holds desired properties, its ABP (1/3) is lower than the

highest (1/2) though. The deepest projection estimating functional (T ∗
PRD) induced from
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projection regression depth (PRD) in Zuo (2018)(Z18) overcomes this. It has the best ABP
with a root n consistency ((Z18)) as well. T ∗

PRD is closely related to the bias-robust estimates
(P-estimates) of Marrona and Yohai (1993) (MY93). In fact, it is a modified version of the
latter, achieving the scale-invariance (see Section 2).

MY93 investigated the robustness of P-estimates, provided an upper bound of their MB,
but their influence function (IF) and FSBP had not been explicitly established in the last
quarter of century. Establishing a MB upper bound for T ∗

PRD and discovering its IF and
revealing its exact FSBP are three main objectives of this article.

The rest of the article is organized as follows. Section 2 introduces the T ∗
PRD. Section 3

is devoted to the establishment of MB, IF and FSBP of T ∗
PRD. Section 4 addresses the com-

putation issues of the deepest regression estimators, and presents data examples to illustrate
the performance (in terms of robustness) of the regression lines of the LS, the T ∗

RD and the
T ∗
PRD, and carries out some simulations to investigate the finite-sample relative efficiency of

T ∗
RD and the T ∗

PRD. Brief concluding remarks end the article in Section 5.

2 Maximum projection regression depth functionals

Let us first recall the projection regression depth and its induced deepest estimating func-
tionals defined in Z18.

Assume that T is a univariate regression estimating functional which satisfies

(A1) regression, scale and affine equivariant, that is,

T (F(y+xb, x)) = T (F(y, x)) + b, ∀ b ∈ R, and

T (F(sy, x)) = sT (F(y, x)), ∀ s ∈ R, and

T (F(y, ax)) = a−1T (F(y, x)), ∀ a(̸= 0) ∈ R.

respectively, where x, y ∈ R are random variables (r.v.s). Throughout the lower case x is
in R while bold x is a vector.

Let S be a positive scale estimating functional such that

(A2) S(Fsz+b) = |s|S(Fz) for any r.v. z ∈ R and scalar b, s ∈ R, that is, S is scale equivariant
and location invariant.

Equipped with a pair of T and S, we can introduce a corresponding projection based
multiple regression estimating functional. Define

UFv(β; F(y, x), T ) := |T (F(y−x′β, x′v))|/S(Fy), (2)

which represents unfitness of β at F(y, x) w.r.t. T along the v ∈ Sp−1 := {u : ∥u∥ = 1, u ∈ Rp}.
If T is a Fisher consistent regression estimating functional, then T (F(y−x′β0, x′v)) = 0 for
some β0 (the true parameter of the model) and ∀ v ∈ Sp−1. Then, overall one expects |T |
to be small and close to zero for a candidate β, independent of the choice of v and x′v. The
magnitude of |T | measures the unfitness of β along the v. Taking the supremum over all
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v ∈ Sp−1, yields
UF(β; F(y, x), T ) = sup

∥v∥=1
UFv(β; F(y, x), T ), (3)

the unfitness of β at F(y, x) w.r.t. T . Now applying the min-max scheme, we obtain the
projection regression estimating functional (also denoted by T ∗

PRD) w.r.t. the pair (T, S)

T ∗(F(y, x), T ) = argmin
β∈Rp

UF(β; F(y, x), T ) (4)

= argmax
β∈Rp

PRD
(
β; F(y, x), T

)
,

where, the projection regression depth (PRD) function is defined as

PRD
(
β; F(y, x), T

)
=

(
1 + UF

(
β; F(y, x), T

))−1
, (5)

Remarks 2.1

(I) UF(β; F(y, x), T ) or UF(β; F(y, x)) corresponds to outlyingnessO(x, F ), and T ∗(F(y, x))
corresponds to the projection median functional PM(F ) in location setting (see Zuo (2003)).
Note that in (2), (3) and (4), we have suppressed the scale S since it does not involve v and
is nominal. Sometimes we also suppress T for convenience.

A similar T ∗ was first introduced and studied in MY93, where it was called P1-estimate
(denote it by TP1, see (6)). However, they are different. The definition of T ∗ here is dif-
ferent from TP1 of MY93, the latter multiplies by S(Fv′x) instead of dividing by S(Fy) in
UFv(β; F(y, x), T ) here. Furthermore, MY93 did not talk about the “unfitness” (or “depth”).
Corresponding to (2) here, they instead defined the following

A(β,v) = |T (F(y−β′x, v′x))|S(Fv′x),

where v,β ∈ Rp. Their P1-estimate is defined as

TP1 = arg min
β∈Rp

sup
∥v∥=1

A(β,v). (6)

(II) It is readily seen that A(β,v) is not scale invariant whereas UFv(β; F(y, x), T ) is.
T ∗ is regression, scale, and affine equivariant.

(III) Examples of T include mean, quantile, and median( Med), and location functionals
in Wu and Zuo (2009) (WZ09). Examples of S include standard deviation functional, the
median absolute deviations functional (MAD), and scale functionals in WZ08. Hereafter we
write Med(Z) rather than Med(FZ). For the special choice of T and S in (2) such as

T (F(y−x′β, x′v)) = Medx′v ̸=0

(y − x′β

x′v

)
,

S(Fy) = MAD(Fy),

we have

UF(β;F(y, x)) = sup
∥v∥=1

∣∣∣Medx′v ̸=0

(y − x′β

x′v

)∣∣∣/MAD(Fy), (7)
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and

PRD
(
β; F(y, x)

)
= inf

∥v∥=1,x′v ̸=0

MAD(Fy)

MAD(Fy) +
∣∣∣Med

(y−x′β
x′v

)∣∣∣ . (8)

A special case of PRD above (the empirical case) is closely related to the so-called “cen-
trality” in Hubert, Rousseeuw, and Van Aelst (2001) (HRVA01). In the definition of the
latter, nevertheless, all the term of “MAD(·)” on the RHS of (8) is divided by Med|x′v|. �

3 Robustness of the deepest projection regression functional

One of the main purposes of seeking the maximum depth estimating functional in regression is
for the robustness consideration, since the classical LS functional is notorious sensitive to the
deviation from the model assumptions (normality assumption) and to the contamination. On
the other hand, a maximum depth estimating functional could be regarded as a median-type
functional in regression. The latter in location is well-known for its exceptional robustness.
Do the maximum projection depth estimating functionals inherit the inherent robustness
properties of the location counterpart (and w.r.t. what types of robustness measure)?

3.1 Maximum bias

For a given distribution F ∈ Rd (hereafter F ∈ Rd really means that F is defined on Rd) and
an ε > 0, the version of F contaminated by an ε amount of an arbitrary distribution G ∈ Rd

is denoted by F (ε,G) = (1− ε)F + εG (an ε amount deviation from the assumed F ). Here it
is assumed that ε ≤ 1/2, otherwise F (ε,G) = G((1− ε), F ), and one can’t distinguish which
one is contaminated by which one. The maximum bias of a given general functional L under
an ε amount of contamination at F is defined as (see Hampel, Ronchetti, Rousseeuw and
Stahel (1986) (HRRS86))

MB(ε;L,F ) = sup
G∈Rd

∥L(F (ε,G))− L(F )∥,

where MB(ε;L,F ) is the maximum deviation (bias) of L under an ε amount of contamination
at F and it mainly measures the global robustness of L. For a given L at F , it is desirable
that MB(ε;L,F ) is bounded for an ε(≤ 1/2) as large as possible.

The minimum amount ε∗ of contamination at F which leads to an unbounded MB(ε;L,F )
is called the asymptotic breakdown point (ABP) of L at F , ε∗(L,F ) = inf{ε : MB(ε;L,F ) =
∞}.

For a given F = F(y, x) ∈ Rp+1, write F(v,β) := F(y−x′β, x′v) for v ∈ Sp−1 and a given β ∈ Rp.
Let Fy be the marginal distribution based on y ∈ R. For the univariate regression (and scale)
estimating functional T (and S) in Section 2 and an ε > 0, define

BT (ε;T, F ) = inf
β∈Rp

sup
G∈R2,∥v∥=1

|T (F(v,β)(ε,G))|,

C(ε;T, F ) = sup
G∈R2,∥v∥=1

|T (F(v,0))(ε,G))|,

BS(ε;S, F ) = sup
G∈R

|S(Fy(ε,G))|, b(ε;S, F ) = inf
G∈R

|S(Fy(ε,G))|.
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Proposition 3.1 For a given pair (T, S), F = F(y, x), and an ε > 0, assume that T (F(v,0)) =

0, ∀ v ∈ S(p−1), and b(ε;S, F ) > 0 and BS(ε;S, F ) < ∞. Then for T ∗(F(y, x), T ) in (4)

MB(ε;T ∗, F ) ≤ BT (ε;T, F ) + C(ε;T, F ).

Proof: By regression equivariance of the T ∗ (see (II) of Remarks 2.1), assume (w.l.o.g) that
T ∗(F ) = 0. Then

MB(ε;T ∗, F ) = sup
G∈Rp+1

∥T ∗(F (ε,G)∥.

For the given F and a given G ∈ Rp+1, denote β∗(ε,G) := T ∗(F (ε,G)) and F (ε,G) = Fz∗

and z∗ = (y∗,x∗′)′ ∈ Rp+1. Then we need to show that

sup
G∈Rp+1

∥β∗(ε,G)∥ ≤ BT (ε;T, F ) + C(ε;T, F ).

For the given G ∈ Rp+1 and F , by (2), (3), and (4), we have

β∗(ε,G) = argmin
β∈Rp

UF(F (ε,G);β, T )

= argmin
β∈Rp

sup
∥v∥=1

UFv(F (ε,G);β, T )

Assume that β∗(ε,G) ̸= 0. Write β∗ for β∗(ε,G) and let v∗ = β∗/∥β∗∥, then we have by
(A1) given in Section 2

|T (F(y∗−(x∗)′β∗, (x∗)′v∗))| = |T (F(y∗, (x∗)′v∗))− ∥β∗∥|.

If ∥β∗∥ ≤ sup∥v∥=1 |T (F(y∗, (x∗)′v)| for every given G ∈ Rp+1, then ∥β∗∥ ≤ C(ε;T, F ), we
already have the desired result. Otherwise, we have for any given β ∈ Rp

sup
∥v∥=1

|T (F(y∗−(x∗)′β, (x∗)′v))| ≥ |T (F(y∗−(x∗)′β∗, (x∗)′v∗))|

≥ ∥β∗∥ − |T (F(y∗, (x∗)′v∗)|

≥ ∥β∗∥ − sup
∥v∥=1

|T (F(y∗, (x∗)′v)|,

Therefore, we have for the given G ∈ Rp+1 and F and ε and the given β ∈ Rp

∥β∗(ε,G)∥ ≤ sup
∥v∥=1

|T (F(y∗−(x∗)′β, (x∗)′v))|+ sup
∥v∥=1

|T (F(y∗, (x∗)′v))|

≤ sup
G∈R2,∥v∥=1

|T (F(v,β)(ε,G))|+ sup
G∈R2,∥v∥=1

|T (F(v,0)(ε,G))|.

Taking the infimum over β ∈ Rp and then supremum over G ∈ R(p+1) in both sides immedi-
ately yields the desired result. This completes the proof. �

Remarks 3.1
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(I) The assumption (A0): T (F(v,0)) = T (F(y, x′v)) = 0 for v ∈ Sp−1 is equivalent to the
Fisher-consistency of T or F(y, x) is T-symmetric about 0 ∈ Rp. F(y, x) is T-symmetric about
a β0 iff

(C0) : T
(
F(y−x′β0, x′v)

)
= 0, ∀ v ∈ Sp−1, (9)

and it holds for a wide range of distributions F(y, x) and T . For example, if the univariate
functional T is the mean functional, then this becomes the classical assumption in regression
when β0 is the true parameter of the model: the conditional expectation of the error term e
(which is assumed to be independent of x) given x is zero, i.e.

(C1) : E(Fy−x′β0

∣∣
x=x0

) = E(F(y−x′β0,x′v) = 0, ∀ x0 ∈ Rp−1,v ∈ Sp−1.

(A0), however, is not indispensable in the proof but for the neatness of the upper bound
and of the expression for BT (ε;T, F ). Adding sup∥v∥=1 |T (F(y,x′v))| to the RHS of the up-
per bound and using the regular deviation definition for BT (ε;T, F ), the proposition holds
without (A0).

(II) An upper bound for their P-estimates was also given in MY93 (Theorem 3.3). The
two upper bounds are quite different due to the definition of T ∗ is different from P-estimates.

(III) The conditions on S in the proposition are typically satisfied by common scale
functionals such as MAD or scale functionals in WZ08. The term C(ε;T, F ) in the Proposition
is typically bounded for T (such as quantile functionals or functionals in WZ09).

(IV) The maximum projection regression depth functional T ∗ has a bounded maximum
bias as long as that is true for the T , and S does not breakdown (for a scale functional, its
ABP is defined as ε∗(S, F ) = min{ε : BS(ε;S, F ) + b(ε;S, F )−1 = ∞}). Furthermore, the
MB upper bound of T ∗ depends entirely on that of the T as long as S does not breakdown.
The Proposition also reveals the ABP of T ∗ as summarized in the following. �

Corollary 3.1 Under the same assumptions of Proposition 3.1, we have

(i) ε∗(T ∗, F ) ≥ min
{
ε∗(T, F ); ε∗(S, F )

}
.

if (T, S) = (Med, MAD) then

(ii) ε∗(T ∗, F ) = 1/2

Proof:

(i) is trivial.

(ii) follows from the standard ABP results of Med and MAD (see e.g. HRRS86) and the
upper bound of ABP for any regression equivariant functional (see Theorem 3.1 of Davies
(1993) and of Davies and Gather (2005)). �

Remarks 3.2
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(I) If the choice for T and S is (Med, MAD), then T ∗ can have an ABP as high as
1/2. HRVA01 reported their most central regression estimator T c

r (in Theorem 8) has a
50% breakdown point without any rigorous treatment. T c

r , however, is slightly different from
T ∗(Fn) here, see Remarks 2.1.

(II) The ABP of the deepest regression functional of RH 99 has been inventively studied
in VAR00 and is 1/3, while the ABP of the classical LS functional is 0. �

When (T, S) is (Med, MAD) , then the general bounds involved in Proposition 3.1 could
be concretized and specified as shown in the following. Furthermore, one also could construct
a lower bound for the maximum bias of T ∗ in (4).

First we need some notations. Write q(ε) = 1/(2(1− ε)) for a given 0 < ε < 1/2. Denote
mi(Z, c, ε) for quantiles such that m1(Z, c, ε) = F−1

|Z−c|(1 − q(ε)), m2(Z, c, ε) = F−1
|Z−c|(q(ε))

for a random variable Z ∈ R any scalar c ∈ R .

Proposition 3.2 Let T (F(y−x′β, x′v)) = Med
(y−x′β

x′v

)
(x′v ̸= 0 a.s.), S(Fy) = MAD(Fy).

Assume that 1o) F(y,x) is T -symmetric about a β0 which is the true parameter of model (1);
2o) Fe has a symmetric, decreasing in |x| density f(x); 3o) Fx′v is the same ∀ v ∈ Sp−1; 4o)
e and x are independent. Then, for the T ∗ in (4), the given F = F(y, x), any 0 < ε < 1/2,

(i) T ∗ is Fisher-consistent. That is, T ∗(F, T ) = β0, under 1
o);

(ii) BS(ε;S, F ) = c, b(ε;S, F ) = d, under 1o)–2o); BT (ε;T, F ) = b, under 3o);

(iii) b ≤ MB(ε;T ∗, F ) ≤ b+ C(ε;T, F ) = 2b, under 1o)–4o);

where b = J−1
(
q(ε)

)
, c = m2(y, a1, ε), d = m1(y, b1, ε), a1 = F−1

|y| (1− q(ε)), b1 = F−1
|y| (q(ε)).

All quantiles is assumed to exist uniquely, J is the distribution of y/x′v,v ∈ Sp−1.

To prove the statements above, we need the following result given in Zuo, Cui, and Young
(2004) (ZCY04).

Lemma 3.1 Suppose that A = F−1(1− q(ε)) and B = F−1(q(ε)) exist uniquely for X ∈ R
with F := FX and 0 < ε < 1/2. Let δx denote the point-mass probability measure at x ∈ R.
Then for any distribution G ∈ R and point x,

(L-i) A ≤ Med(F (ε,G)) ≤ B, (L-ii) Med(F (ε, δx)) = Med{A,B, x},

(L-iii) m1
(
X,Med(F (ε,G)), ε

)
≤ MAD(F (ε,G)) ≤ m2

(
X,Med(F (ε,G)), ε

)
,

(L-iv) MAD(F (ε, δx)) = Med

{
m1

(
X,Med(F (ε, δx)), ε

)
, |x−Med(F (ε, δx))|,

m2
(
X,Med(F (ε, δx)), ε

)}
.

where Med is applied to distributions as well as discrete points. �

Proof of Proposition 3.2
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(i) The given condition (assumption) guarantees that T is Fisher-consistent at F(y,x), that
is, for any v ∈ Sp−1

T
(
F(y−x′β0, x′v)

)
= 0.

Both (2) and (3) are equal to zero. That is, UF(β0;F(y,x), T ) = 0. Therefore, β0 attains
the minimum possible value of UF(β;F(y,x), T ) for any β ∈ Rp, which further means that
T ∗(F(y, x), T ) = β0. By the equivalence of T ∗ (see Remarks 2.1), assume w.l.o.g. that β0 = 0.

(ii) We need the maximum bias bounds on Med and MAD. Some of them have been
already established in Lemma A.2 of ZCY04 (cited above in Lemma 3.1).

Note that when β0 = 0, y has the same distribution as e, mi(y, c, ε) is nonincreasing in c
for c > 0, the bounds for S follow directly from this fact, coupled with (L-iii) and (L-i).

We have to establish the bound for T . Note that

BT (ε;T, F ) = inf
β∈Rp

sup
G∈R2,∥v∥=1

|T (F(v,β)(ε;G))|. (10)

To invoke (L-i) of the Lemma 3.1, we need to first determine the B in (L-i) for the distribution
of Z := (y − x′β)/(x′v) for a given β ∈ Rp and a v ∈ Sp−1. Note that

Z =
y − x′β

x′v
=

y − x′(β − (β′v)v)− x′v(β′v)

x′v

:=
y − x′α(β,v)

x′v
− β′v

:= Z1− β′v.

For convenience we suppress the dependency of Z and Z1 on β and v. Note that ∥α(β,v)∥ =

∥β − (β′v)v∥ = (∥β∥2 − (β′v)2)1/2 and α′
(β,v)v = 0. It is readily seen that FZ(z) =

FZ1(z + β′v) and hence that F−1
Z (p) = F−1

Z1 (p)− β′v for any p ∈ (0, 1).

Now denote the distribution of (y − x′α)/x′v with ∥α∥ = r and α′v = 0 by Jr for any
v ∈ Sp−1. Hence FZ1 = Jr with r = (∥β∥2− (β′v)2)1/2 for any v ∈ Sp−1 and a given β ∈ Rp.

In the light of Lemma 3.1,

BT (ε;T, F ) = inf
β∈Rp

sup
∥v∥=1

∣∣F−1
Z1 (q(ε))− β′v

∣∣ . (11)

On the other hand,

inf
β∈Rp

sup
∥v∥=1

∣∣F−1
Z1 (q(ε))− β′v

∣∣ ≥ inf
β∈Rp

∣∣J−1
0 (q(ε))− ∥β∥

∣∣
= inf

β∈Rp

∣∣∥β∥ − J−1
0 (q(ε))

∣∣ = J−1
0 (q(ε)),

where the first inequality follows from the consideration of a special v = β/∥β∥ for β ̸= 0
and 3o), the second equality is due to the fact that J−1

0 (q(ε)) has nothing to do with β.
Therefore, by picking β = 0 on the RHS of (11), its LHS attains its lower bound. That
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is, BT (ε;T, F ) = J−1
0 (q(ε)) which is the same as b since when r = 0, Jr is the same as J

distributionally.

(iii) In virtue of (ii) above, one part of the RHS inequality has already been established
in Proposition 3.1. But we still need to show that C(ε;T, F ) = b. This, however, follows in
a straightforward manner from the definition of C(ε;T, F ) and the proof in (ii) above (with
β = 0 in this case).

We need to show the LHS lower bound for MB(ε;T ∗, F ). We adapt the idea of Huber
(1981) (page 74-75). Note that for a given v ∈ Sp−1 by 4o)

Fv(y, z) := F(y, x′v)(y, z) = F(y−x′β0, x′v)(y, z) = Fe(y)Fx′v(z), for y, z ∈ R.

Assume that x ̸= 0, otherwise, our discussion reduces to Huber (1981) (page 74-75), our
conclusion holds true. Assume, w.l.o.g., that the first component of x, x1 ̸= 0. Construct
two functions:

F+
v (y, z) = (1− ε)

[
Fe(y)Iy≤ax1 + Fe(y − 2ax1)Iy>ax1

]
Fx′v(z),

F−
v (y, z) = F+

(y,x)(y + 2ax1, z),

where a = J−1(q(ε)) is the q(ε)th quantile of y/x′v0(= y/x1) with v0 = (1, 0, · · · , 0)′ ∈ Rp.
It is now not difficult to verify that the two functions above are distribution functions over
R2 and belong to Fv(ε;G) for some G ∈ R2(because both keep (1− ε) part of Fv(y, z)).

Assume that for some the random vector (y∗,x), F(y∗, x′v) = F+
v . (note that vector x is

unchanged due to the construction). Then one has F−
v = F(y∗+2ax1, x′v) = F(y∗+x′η, x′v) with

η = (2a, 0, · · · , 0)′ ∈ Rp

Denote the first coordinate of T ∗(F ) as T ∗
1 (F ). Then by the equivariance of T ∗, we see

that T ∗
1 (F

+
v0
)− T ∗

1 (F
−
v0
) = −2a, which implies

2a ≤ sup
∥v∥=1

|T ∗
1 (F

+
v )− T ∗

1 (F
−
v )|

≤ 2 sup
G∈R2,∥v∥=1

∥T ∗(Fv(ε;G))∥.

Note that a = b. This completes the entire proof. �

Remarks 3.3

(I) Part (i) of the Proposition holds as long as T is T -symmetric about a β0 ∈ Rp. That is,
T is not necessarily to be the Med functional. Furthermore, S plays no role in the verification
process, that is, any scale estimating functional will work. Likewise, the lower bound in (iii)
holds true for any T and S. The (Med, MAD) choice is just the classical one.

(II) The assumption that Fe has a symmetric density f(x) which is decreasing in |x| is
common and typically required in the literature (see, e.g., MY93, Theorem 3.5). It guarantees
that the construction of the two functions are indeed distribution functions in the proof
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of (iii) (actually it guarantees that the probability mass covered by both Fe(y)Iy≤ax1 and
Fe(y − 2ax1)Iy>ax1 are q(ε), therefore guarantees the success of the construction).

(III) The assumption 3o), that is, Fx′v is the same for any v ∈ Sp−1 holds if (i) (y,x′v) is
spherically distributed about the origin or (ii) if x is spherically distributed about the origin.
(ii) was assumed in Theorem 3.5 of MY93. However, in the light of the equivalence of T ∗,
the spherical symmetry could be relaxed to elliptical symmetry.

(IV) In many cases, the maximum bias is attained by a point-mass distribution, that is,
MB(ε;T ∗, F ) = supx∈Rd ∥T ∗(F (ε, δx))−T ∗(F )∥ (see Huber (1964), Martin, Yohai and Zamar
(1989), Chen and Tyler (2002) and Adrover and Yohai (2002)). The upper bound in (iii)
also appeared in MY93 ((a) of Theorem 4.1). Where it was shown attainable by a variant of
their P1-estimate (different from T ∗ here) under the point-mass contamination δx and when
X is spherical distributed. �

Maximum bias and ABP are global robustness measure and depict the global robust
perspectives of the underlying functional. Now we will focus on the local robustness of T ∗

via its influence function.

3.2 Influence function

The influence function (IF) of a functional T at a given point x ∈ Rd for a given F is defined
as

IF(x;T, F ) = lim
ε→0+

T (F (ε, δx))− T (F )

ε
,

where δx is the point-mass probability measure at x ∈ Rd , and the gross error sensitivity of
T at F is then defined as (in HRRS86)

γ∗(T, F ) = sup
x∈Rd

∥IF(x;T, F )∥.

The function IF(x;T, F ) describes the relative effect (influence) on T of an infinitesi-
mal point-mass contamination at x and measures the local robustness of T . The function
γ∗(T, F ) is the maximum relative effect on T of an infinitesimal point-mass contamination
and measures the global as well as local robustness of T . It is desirable that a regression
estimating functional has a bounded influence function and especially a bounded gross-error
sensitivity. This, however, does not hold for an arbitrary regression estimating functional,
especially for the classical least squares functional. Now we investigate this for T ∗ in (4).

For the sake of simplicity, we will assume below that x is spherically distributed, i.e. the
distribution of x′v is the same for any v ∈ Sp−1. The result and the discussion, however, can
be trivially extended to cover the case that x is elliptically distributed, in the light of the
equivalence of T ∗ (see Remarks 2.1) and Proposition 1 of VAR00.

Denote z := (y,x), F (y, s) := Fz(y, s). Consider the point-mass ε contamination of F(y,x)

at δz: F(y,x)(ε; δz) = (1−ε)F(y,x)+εδ(y0,x0), where x0 = (x01, x02, · · · , x0p)′ ∈ Rp and x0 ̸= 0.
Denote z0 := y0/x01 (assume w.l.o.g. that x01 is the first non-zero component of x0 since
x0 ̸= 0). Write Z0 := y/x1 −min{|z0|I|z0|̸=1/2 − 1, 1}, with x = (x1, · · · , xp)′ ∈ Rp.
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Proposition 3.3 With the same T and S as in Proposition 3.2 under its assumption 1o),
further assume that y is symmetrically distributed, x is spherically distributed, and the
distribution of Z := (y − x′β)/x′v is differentiable near 0 with density fZ at any given
β ∈ Rp and v ∈ Sp−1. Then

(i)

IF((y0,x0);T
∗, F(y,x)) =

(
min{|z0|I|z0|̸=1/2 − 1, 1})

2fZ0(0)F
−1
y (3/4)

, 0, · · · , 0
)

∈ Rp,

(ii) γ∗(T ∗, F(y,x)) = sup
z0∈R

|min{|z0|I|z0|̸=1/2 − 1, 1}|
2fZ0(0)F

−1
y (3/4)

,

Proof : (i) Assume, in virtue of equivariance, that T ∗(F ) = 0. Then for z = (y0,x0) we have

IF(z;T ∗, F ) = lim
ε→0+

T ∗(F(y,x)(ε, δz))

ε
, (12)

and that

T ∗(F(y,x)(ε, δz)) = argmin
β∈Rp

sup
∥v∥=1

|T (F(v,β)(ε, δz))|
S(Fy(ε, δy0))

=
argminβ∈Rp sup∥v∥=1 |T (F(v,β)(ε, δz))|

S(Fy(ε, δy0))
, (13)

where F(v,β) := F(y−x′β,x′v).

The (L-iv) of Lemma 3.1 can be employed to take care of the denominator of (13). In
fact, it tends to F−1

y (3/4) as ε → 0+ by the Lemma 3.1 and the given conditions. We now
focus on the numerator of the RHS of (13).

It is readily seen that the distribution of Z is the same for any v ∈ Sp−1 and a given
β ∈ Rp and hence is symmetric about the origin. By the (L-ii) of Lemma 3.1, write T in
the numerator of the RHS of (13) for a given v = (v1, · · · , vp) ∈ Sp−1 (x′

0v ̸= 0) and a
β = (β1, · · · , βp) ∈ Rp as

T (F(v,β)(ε, δz)) = Med(F(v,β)(ε, δz)) = Med{A,B, η},

where η = (y0 − x′
0β)/x

′
0v and A = F−1

Z (1− q(ε)) and B = F−1
Z (q(ε)) as defined in Lemma

3.1 and q(ε) = 1/(2(1−ε). By a direct derivation or standard result on the influence function
of the median functional (e.g. Example 3.1 of Huber (1981)), we have

lim
ε→0+

T (F(v,β)(ε, δz))

ε
=


−1

2fZ(F−1
Z (1/2))

, if η < F−1
Z (1/2)

0, if η = F−1
Z (1/2)

1
2fZ(F−1

Z (1/2))
, if η > F−1

Z (1/2)

Note that by the symmetry of the distribution of Z, F−1
Z (1/2) = 0.
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For the consideration of the supremum within the numerator of the RHS of (13), we
should ignore the case η = 0 and just focus on the case η ̸= 0. Note that the distribution of
Z is identical for any v ∈ Sp−1 and a given β ∈ Rp, it is readily seen that if η ̸= 0, then

lim
ε→0+

sup
∥v∥=1

|T (F(v,β)(ε, δz))|
ε

= sup
∥v∥=1

lim
ε→0+

|T (F(v,β)(ε, δz))|
ε

=
1

2fZ(0)
. (14)

Note that the RHS of (14) depends on β only through the definition of Z and η. In order to
overall minimize the RHS of (13), obviously we have to select β so that fZ(0) is maximized
meanwhile η ̸= 0. But for any given β the distribution of Z is symmetric about the origin
and its density is maximized at the origin. Therefore, β = (β1, 0, · · · , 0) ∈ Rp with β1 =
min{|z0|I|z0|̸=1/2 − 1, 1} is obviously one solution.

By the given condition, w.l.o.g., we can select v = (1, 0, · · · , 0) ∈ Sp−1 in the above
discussion and in the definition of Z. Then Z = (y − x′β)/(x′v) = Z0 and η = z0 − β1 ̸= 0.
This, in conjunction with (12) and (13), yields the desired result (i).

(ii) This part is trivial. �

Remarks 3.4

(I) The influence functions of the P-estimates in MY93 have never been established.

(II) Having a bounded influence function or even bounded gross error sensitivity is a very
much desirable property for any regression estimating functional. The proposition shows that
the deepest projection regression depth functional T ∗ possesses this desired property.

(III) The IF of the deepest regression depth estimating functional in RH99, has been
investigated in VAR00. Where the authors started with elliptical symmetric (x, y) but with
an appropriate transformation, the problem is converted to the one with a spherical symmetric
(x, y) for the IF of any regression, scale, affine equivariant functional. A rather complicated
yet bounded IF when x ∈ R (i.e. p = 1 here, the simple regression case) was obtained.

(IV) The symmetry assumption of the distribution of y could be dropped, then F−1
y (3/4)

in the proposition should be replaced by F−1
|y−c|(1/2) with c = F−1

y (1/2). �

3.3 Finite sample breakdown point

Asymptotic breakdown point (ABP) measures the global robustness of a regression estimating
functional. It does not reveal the effect of dimension p on its breakdown point robustness,
notwithstanding. In finite sample real practice, there is an alternative to ABP.

Donoho (1982) and Huber and Donoho (1983) (DH83) introduced the notion of the finite
sample breakdown point (FSBP) which has become the most prevailing quantitative measure
of global robustness of any location and regression estimators in the finite sample practice.

Roughly speaking, the FSBP is the minimum fraction of ‘bad’ (or contaminated) data
that the estimator can be affected to an arbitrarily large extent. For example, in the context
of estimating the center of a distribution, the mean has a breakdown point of 1/n (or 0%),
because even one bad observation can change the mean by an arbitrary amount; in contrast,
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the median has a breakdown point of ⌊(n+1)/2⌋/n (or 50%), where ⌊·⌋ is the floor function.
For a discussion on general upper and lower bounds of FSBP, see C. Müller (2013).

Definition The finite sample replacement breakdown point (RBP) of a regression estimator
T at the given sample Z(n) = {Z1, Z2, · · · , Zn}, where Zi := (yi,x

′
i), is defined as

RBP(T,Z(n)) = min
1≤m≤n

{
m

n
: sup
Z

(n)
m

∥T (Z(n)
m )− T (Z(n))∥ = ∞

}
, (15)

where Z
(n)
m denotes an arbitrary contaminated sample by replacing m original sample points

in Z(n) with arbitrary points in Rp+1. Namely, the RBP of an estimator is the minimum
replacement fraction which could drive the estimator beyond any bound.

We shall say Z(n) is in general position when any p of observations in Z(n) give a unique de-
termination of β. In other words, any (p-1) dimensional subspace of the space (y,x′) contains
at most p observations of Z(n). When the observations come from continuous distributions,
the event (Z(n) being in general position) happens with probability one.

Proposition 3.4 For T ∗ defined in (4) with (T, S) = (Med, MAD) and Z(n) being in general
position, we have for 1 ≤ p < ⌊n/2⌋+ 2

RBP(T ∗, Z(n)) =

{
⌊(n+ 1)/2⌋

/
n, if p = 1,

(⌊n/2⌋ − p+ 2)
/
n, if p > 1,

(16)

Proof:

Note that when p = 1, the problem becomes an estimation of a location parameter β0 of
y based on minimizing |Medi{yi − β0}|, and the solution is the median of {yi} which indeed
has a RBP given in (16). In the following, we consider the case p > 1.

(i) First, we show that m = ⌊n/2⌋ − p+ 2 points are enough to breakdown T ∗. Recall the
definition of T ∗(Z(n)). One has

T ∗(Z(n)) = arg min
β∈Rp+1

sup
∥v∥=1

∣∣∣∣Medi,w′
iv ̸=0

{
yi−w′

iβ

w′
iv

} ∣∣∣∣
MAD1≤i≤n{yi}

=

argminβ∈Rp+1 sup∥v∥=1

∣∣∣∣Medi,w′
iv ̸=0

{
yi−w′

iβ

w′
iv

} ∣∣∣∣
MAD1≤i≤n{yi}

. (17)

Select p − 1 points from Z(n) = {yi,x′
i}. They, together with the origin, form a (p − 1)-

dimensional subspace (hyperline) Lh in the (p+ 1)-dimensional space of (y,x).

(Note that since our model contains an intercept term, we assume that the observation
Zi = 0 has been deleted from Z(n) for it provides no information on the parameter β).
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Construct a non-vertical hyperplane H through Lh (that is, it is not perpendicular to the
horizontal hyperplane y = 0). Let β be determined by the hyperplane H through y = w′β.

We can tilt the hyperplane H so that it approaches its ultimate vertical position. Mean-
while we put all the m contaminating points onto this hyperplane H so that it contains no
less than m + (p − 1) = ⌊n/2⌋ + 1 observations. Call the resulting contaminated sample by

Z
(n)
m . Therefore the majority of (yi −w′

iβ)/w
′
iv now will be zero.

This implies that β is the solution for T ∗(Z
(n)
m ) at this contaminated data Z

(n)
m since

it attains the minimum possible value (zero) on the RHS of (17). When H approaches its
ultimate vertical position, ∥β∥ → ∞ (for the reasoning, see the proof of Proposition 2.4 of
Z18). That is, m = ⌊n/2⌋ − p+ 2 contaminating points are enough to break down T ∗.

(ii) Second, we now show that m = ⌊n/2⌋ − p + 1 points are not enough to breakdown

T ∗. Let Z
(n)
m be an arbitrary contaminated sample and βc := T ∗(Z

(n)
m ) and βo = T ∗(Z(n)),

where Z(n) = {Zi} = {yi,x′
i} are uncontaminated original points and w′

i = (1,x′
i). Assume

that βc ̸= βo (Otherwise, we are done). It suffices to show that ∥βc − βo∥ is bounded.

Note that since n − m = ⌊(n + 1)/2⌋ + p − 1, the denominator of (17) is the same for

contaminated Z
(n)
m or original Z(n). We thus focus on its numerator of the RHS of (17). Define

δ =
1

2
inf

{
τ > 0; ∃ a (p− 1)-dimensional subspace L of (y = 0) such

that Lτ contains at least p of uncontaminated Zi = (yi,x
′
i) in Z(n)

}
,

where Lτ is the set of all points z = (y,x′) that have the distance to L no greater than τ .
Since Z(n) is in general position, δ > 0.

Let Ho and Hc be the hyperplanes determined by y = w′βo and y = w′βc, respectively,
and M = maxi{|yi−w′

iβ|} for all original yi and xi in Z(n) with w′
i = (1,x′

i). Since βo ̸= βc,
then Ho ̸= Hc.

(A) Assume that Ho and Hc are not parallel. Denote the vertical projection of the
intersection Ho ∩Hc to the horizontal hyperplane y = 0 by Lvp(Ho ∩Hc), then it is (p− 1)-
dimensional. By the definition of δ, there are at most p−1 of points of Zi within Lδ

vp(Ho∩Hc).
Denote the set of all these possible Zi (at most p− 1) by Scap and |Scap| = ncap. where “| · |”
stands for the counting measure for a set. Denote the set of all remaining uncontaminated
Zi from the original {Zi, i = 1, · · · , n} by Sr and the set of all such i as I, then there are at
least n−m− ncap ≥ n− ⌊n/2⌋ = ⌊(n+ 1)/2⌋ such Zi in Sr.

For each (yi,xi) with i ∈ I, construct a two dimensional vertical plane Pi that goes
through (yi,xi) and (yi + 1,xi) and is perpendicular to Lvp(Ho ∩ Hc). Denote the angle
formed by Ho and the horizontal line in Pi by α0 ∈ (−π/2, π/2), similarly by αc for Hc

and Pi. These are essentially the angles formed between Ho and Hc with the horizontal
hyperplane y = 0, respectively.

We see that for i ∈ I and each (yi,xi), |w′
iβo| > δ| tan(αo)| and |w′

iβc| > δ| tan(αc)| (see
Figure 15 of Rousseeuw and Leroy (1987) (RL87) of a geographical illustration for better
understanding, x there is w here) and ∥βo∥ = | tan(αo)| and ∥βc∥ = | tan(αc)|.
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For a given v ∈ Sp−1 such that w′
iv ̸= 0 for all i = 1, · · · , n. Write KM = mini{|w′

iv|}
for the given v and KS = supi,v∈Sp−1{|w′

iv|}, where wi = (1,xi
′)′ are based on the original

uncontaminated xi. Then KM > 0.

Now for each i ∈ I and the given v, denote roi := (yi − w′
iβo)/w

′
iv and rci := (yi −

w′
iβc)/w

′
iv. For the given v and any i ∈ I, it follows that (see Figure 15 of RL87)

|roi − rci | =

∣∣∣∣w′
iβo −w′

iβc

w′
iv

∣∣∣∣ ≥ δ| tan(αo)− tan(αc)|
|w′

iv|

≥
δ
∣∣| tan(αo)| − | tan(αc)|

∣∣
|w′

iv|
=

δ
∣∣∥βo∥ − ∥βc∥

∣∣
|w′

iv|

≥
δ
∣∣∥βo − βc∥ − 2∥βo∥

∣∣
|w′

iv|

If we assume that ∥βo −βc∥ ≥ 2(∥βo∥+MK/δ), where K ≥ (KS +KM )/2KM , then by
the inequality above we have for i ∈ I and the given v

|roi − rci | ≥
δ
∣∣∥βo − βc∥ − 2∥βo∥

∣∣
|w′

iv|
≥ 2MK/|w′

iv|

which implies that for any i ∈ I and the given v,

|rci | ≥ |roi − rci | − |roi | ≥
2MK

|w′
iv|

− M

|w′
iv|

≥ (2K − 1)M

KS
≥ M

KM
,

which further implies that for the contaminated (yi,x
′
i) in Z

(n)
m and the given v, we have∣∣∣∣Medw′

iv ̸=0

{
yi −w′

iβc

w′
iv

} ∣∣∣∣ ≥ M

KM
,

since there are at least ⌊(n+ 1)/2⌋ many i in I.

On the other hand, for the given v, if we compare all{
rci
(
βo;Z

(n)
m

)
:= (yi −w′

iβo)/(w
′
iv)

}
, where (yi,x

′
i) is from Z(n)

m ,

with all {
roi
(
βo;Z

(n)
)
:= (yi −w′

iβo)/(w
′
iv)

}
, where (yi,x

′
i) is from Z(n),

it is readily seen that there are at least N terms are the same, where N = ncap + |Sr| =
n − m (ncap original points in Scap plus |Sr| original points in Sr). Therefore, among all

{
∣∣rci (βo;Z

(n)
m

)∣∣}, there are at least n−m ≥ (p− 1) + ⌊(n+ 1)/2⌋ terms each of which is no

greater than M/KM since for all i,
∣∣roi (βo;Z

(n)
)∣∣ ≤ M/KM . That is, for (yi,x

′
i) from Z

(n)
m

and the given v ∣∣∣∣Medi,w′
iv ̸=0

{
yi −w′

iβo

w′
iv

} ∣∣∣∣ ≤ M/KM . (18)
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Assume that v is the direction at which βc attains the minimum of the numerator of the

RHS of (17). That is, for (yi,x
′
i) from Z

(n)
m

inf
β∈Rp+1

sup
∥v∥=1

∣∣∣∣Medi,w′
iv ̸=0

{
yi −w′

iβ

w′
iv

} ∣∣∣∣ = ∣∣∣∣Medi,w′
iv ̸=0

{
yi −w′

iβc

w′
iv

} ∣∣∣∣,
Hence it follows that for (yi,x

′
i) from Z

(n)
m and the v∣∣∣∣Medw′

iv ̸=0

{
yi −w′

iβc

w′
iv

} ∣∣∣∣ ≤ ∣∣∣∣Medw′
iv ̸=0

{
yi −w′

iβo

w′
iv

} ∣∣∣∣ ≤ M

KM
,

The first inequality follows from the definition of βc and v, the second one follows from the
inequality (18) established above. Now we reach a contradiction.

Therefore, ∥βo − βc∥ < 2(∥βo∥ + MK/δ) and thus ∥βo − βc∥ is bounded. That is, m
contaminating points are not enough to breakdown T ∗.

(B) Assume that Ho and Hc are parallel. That is, βc = ρβo. If ρ is finite, then
∥βc − βo∥ is automatically bounded. We are done. Now consider the case that |ρ| → ∞,
that is, |ρ| can be arbitrarily large.

(B1) Assume that Ho is not parallel to y = 0.

The proof is very similar to part (A). Denote the intersection of Hc and the horizontal
hyperplane y = 0: Hc ∩ {y = 0} by Lc. Then Lδ

c contains at most p − 1 uncontaminated
points from {Z(n)}. Denote the set of all the remaining uncontaminated points in {Z(n)}
as Sr. Hence |Sr| ≥ n − m − (p − 1) ≥ ⌊(n + 1/2⌋. Denote again by I the set of all i
such that Zi ∈ Sr. Again let the angle between Hc and y = 0 be αc, then it is seen that
∥βc∥ = | tan(αc)| and |w′

iβc| > δ| tan(αc)| for any i ∈ I.

Assume that vc is one unit vector at which βc attains the inf of the numerator of the
HRS of (17). Define KM = mini{w′

ivc}, then KM > 0. Write

rci = (yi −w′
iβc)/(w

′
ivc),

for all xi (and hence wi) from Z
(n)
m = (yi,xi). Write My = maxi |yi|. It follows that for i ∈ I∣∣rci ∣∣ ≥ ∣∣|w′

iβc| − |yi|
∣∣/KS ≥ | δ| tan(αc)| −My|/KS .

Since |Sr| ≥ ⌊(n+ 1/2⌋, then for all (yi,x
′
i) (and hence wi) from Z

(n)
m = (yi,x

′
i)∣∣∣∣Medi

{
yi −w′

iβc

w′
ivc

} ∣∣∣∣ ≥ | δ| tan(αc)| −My|/KS .

Now introduce rci
(
βo;Z

(n)
m

)
and roi

(
βo;Z

(n)
)
as in the proof of part (A). Therefore, among

all {
∣∣rci (βo;Z

(n)
m

)∣∣}, there are at least n−m ≥ (p− 1) + ⌊(n+ 1)/2⌋ terms each of which is

no greater than M/KM since for all i,
∣∣roi (βo;Z

(n)
)∣∣ ≤ M/KM . That is, for (yi,x

′
i) from

Z
(n)
m and the given vc ∣∣∣∣Medi

{
yi −w′

iβo

w′
ivc

} ∣∣∣∣ ≤ M/KM . (19)
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On the other hand, it is not difficult to see that for (yi,x
′
i) from Z

(n)
m

inf
β∈Rp+1

sup
∥v∥=1

∣∣∣∣Medi,w′
iv ̸=0

{
yi −w′

iβ

w′
iv

} ∣∣∣∣ =

∣∣∣∣Medi

{
yi −w′

iβc

w′
ivc

} ∣∣∣∣
≤

∣∣∣∣Medi

{
yi −w′

iβo

w′
ivc

} ∣∣∣∣ ≤ M

KM
,

where the first inequality follows directly from the definitions of βc and vc and the second
one directly from (19).

If |ρ| could be arbitrarily large, then since δ| tan(αc)| − My = δ|ρ|∥βo∥ − My could be
arbitrarily large, so that | δ| tan(αc)| − My|/KS > M/KM , which leads to a contradiction.
Hence ∥βo − βc∥ is bounded. It means that m contaminating points are not enough to
breakdown T ∗.

(B2) Assume that Ho is parallel to y = 0. Then, it means that βc = ρβo =
(ρβo1, 0, · · · , 0). Assume that βo1 ̸= 0. Otherwise, we are done. Now we can repeat the
argument above since n−m ≥ (p− 1) + ⌊(n+ 1)/2⌋. On the one hand we can show that for

all (yi,x
′
i) from Z

(n)
m∣∣∣∣Medi

{
yi −w′

iβc

w′
ivc

} ∣∣∣∣ ≤
∣∣∣∣Medi

{
yi −w′

iβo

w′
ivc

} ∣∣∣∣ ≤ M

KM
,

where, βo and βc, M and KM and vc are defined as before.

On the other hand, we have for all (yi,x
′
i) from Z

(n)
m = (yi,x

′
i)∣∣∣∣Medi

{
yi −w′

iβc

w′
ivc

} ∣∣∣∣ ≥ ∣∣ |ρβo1| −My

∣∣/KS ,

where KS andMy is defined as before.

Again if |ρ| could be arbitrarily large, then since |ρβo1| −My could be arbitrarily large so
that

∣∣|ρβo1| −My

∣∣/KS > M/KM yields a contradiction. Hence ∥βo − βc∥ is bounded. That
is, m contaminating points are not enough to breakdown T ∗. �

Remarks 3.5

(I) MY93 also discussed the FSBP of their P-estimates, the RBP of the P-estimates has
never been established, nevertheless. MY93 established an upper bound for the norm of their
P-estimates which holds true with some probability that could be very close to one by taking
sufficiently large number of subsamples in the computation of their P-estimates. Although
P-estimates are defined differently from T ∗ here, the idea of the proof above, however, seems
applicable to the P-estimates to obtain a concrete (and with probability one) RBP.

(II) The main idea of the proof above was adapted from the proof of the RBP of the
LMS in Rousseeuw (1984). The latter, however, only addressed part (A), and part (B) was
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overlooked, where it was assumed implicitly that Hc ∩ Ho ̸= ∅. The same assumption was
made in the proof of the RBP of the LTS (page 132 of RL87). One may ask how often in
practice Hc ∩Ho = ∅? The argument seems reasonable at first. However, one cannot afford
to miss any conceivable contamination case when establishing RBP.

(III) Although T ∗
n possess a very high RBP (the same as that of LMS), it is still not the

best possible RBP for any regression equivariant estimator. For the latter, it is (⌊n−p
2 ⌋+1)/n

(see page 125 of RL87). To attain the upper bound of RBP, one can modify the T ∗
n so that

its RBP attains the upper bound. Indeed, there are several variants of the T ∗
n below.

First, in the definition of T ∗
n , consider the median of all

{
|yi−w′

iβ

w′
iv

|
}
. That is, consider the

median of the absolute values instead of the absolute value of the median. Call the resulting
estimator T1∗n. Second, replace the median of the absolute values by the hth ordered absolute
values. If h = ⌊n/2⌋ + 1, call the resulting estimator T2∗n. If h = ⌊n/2⌋ + ⌊(p + 1)/2⌋, call
the resulting estimator T3∗n. One can show that the RBP of T1∗n or T2∗n is the same as T ∗

n

but that of T3∗n attains the upper bound. Thirdly, other variants include replacing the hth
ordered absolute values with the sum of first hth ordered absolute values, then the resulting
estimators have the same RBP of T2∗n and T3∗n, respectively, corresponding to the two choices
of h: h = ⌊n/2⌋+ 1 or h = ⌊n/2⌋+ ⌊(p+ 1)/2⌋.

(IV) To the best of knowledge of this author, the RBP of T ∗
RD (the deepest regression

estimator defined in RH99), has not yet been established explicitly.

(V) The RBP result is established under the assumption that Z(n) is in general position.
In more general cases, one can use a number c(Z(n)) (which is the maximum number of
observations from Z(n) contained in any (p − 1) dimensional subspace) to replace p in the
derivation of the final RBP result. �

4 Computation, robustness illustration, and simulation

4.1 Computation

The deepest projection regression depth estimator T ∗
n faces a common problem for any es-

timators with high breakdown point robustness. That is, it is very challenging to compute
them in practice while enjoying the best possible ABP.

Exact computation of T ∗
n is certainly difficult (it involves two layers of optimizations (min-

imization of the maximized unfitness), if not impossible. But one can at least compute T ∗
n

approximately. Here sub-sampling schemes and the MCMC technique could be employed in
the optimization process, as done in Shao and Zuo (2017) for halfspace depth in Rd.

The rough idea is as follows. Randomly select Nβ of β’s over a very wide range in parameter
space Rp, calculate all UF(β, Fn

Z ). Sort the latter and select p+1 β’s with smallest unfitness.
Over the simplex formed by these p + 1 β points (in parameter space), search for the point
β with the smallest unfitness (equivalent the deepest regression line or hyperplane).

In the above process, we have implicitly take the advantage of the property of PRD(β;FZ)
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or UF(β;FZ). That is, PRD(β;FZ) satisfies the property (P3) of Z18 (monotonicity relative
to the deepest point). Therefore the depth region of β (the set of all β’s with its depth no
less than a fixed value) is convex and nested. Hence, the deepest point(s) must lie in the
convex simplex formed by the p + 1 β points. When there is more than one deepest point,
we can take the average of them, the resulting point will possess the maximum depth.

The following is an approximate algorithm (AA) for the computation of T ∗
n .

(A) Randomly select a set of points βj ∈ Rp over a very wide range of region, j =
1, · · · , Nβ, where Nβ is a tuning parameter of the total number of the random points.

(B) For each βj , randomly select a set of unit directions vk ∈ Sp−1, k = 1, · · · , Nv. Nv

is another tuning parameter. Compute the approximate unfitness of βj w.r.t. {Zj
ik =

(yi −w′
iβj)

/
(w′

ivk)} for a fixed j, and all i and k, where, i = 1, · · · , n, k = 1, · · · , Nv

(C) Order the βj ’s according to their depth (or equivalently unfitness) and select the
deepest p + 1 βj ’s. Search over the closed convex hull formed by these p + 1 points
via common optimization algorithms (e.g. the downhill simplex method, or the MCMC
technique) to get the final deepest β or our approximate T ∗

n .

(D) To mitigate the effect of randomness, repeat the steps above (many times) so that
the one of T ∗

n with the maximum updated projection regression depth is adopted.

Remarks 4.1:

(I) The candidate (random point) β can be produced by randomly selecting p points from
Z(n) = {(xi, yi), i = 1, · · · , n} which (by the general position) determine a unique
hyperplane y = w′β containing all p points.

(II) If Med and MAD are used for the (T, S), then, the random directions could be selected
among those which are perpendicular to the hyperplanes formed by p points from Z(n).

(III) For a better approximation of depth (unfitness) of βj , tuning (increasing) Nv. For a
better approximation of T ∗

n , tuning Nβ. Continue iterations until it satisfies a stopping
rule (e.g. the difference between consecutive depths is less than a cutoff value).

(IV) The overall worst case time complexity of the algorithm is: step (A)+(B): O(NvNβn),
where the linear method is employed to compute the univariate median; step (C):
O(Nβ log(Nβ) + NvNβn), where over the closed convex hull, step (A) and (B) are
assumed to be repeated; step(D) O(R(NvNβn+Nβ log(Nβ))), where R is the number
of replications. The overall cost of the algorithm is O(RNβ(Nvn+ log(Nβ))).

(V) Theoetically speaking, the AA is suitable for any p. But in high dimensions, the Nβ

and Nv should be dependent on p to get better approximation. A larger Nβ is more
important than a large Nv since a rough approximation of UF(β;Fn

Z ) is allowed as
long as the first (p+1) deepest β’s are correctly identified or the most importantly the
convex hull formed contains the deepest point. To guarantee the latter, in practice p is
limited, say 2 ≤ p < 5 for the AA unless tuning parameters are chosen dependent on p.
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4.2 Robustness illustration

With the approximate algorithm above, we are now in a position to better appreciate the
outstanding breakdown robustness of the deepest projection depth estimator T ∗

PRD. We
illustrate below the performance of the regression lines of the classical least squares, the T ∗

RD

of RH99, and the T ∗
PRD w.r.t. contamination in a data set.

Example 4.2.1.: A small data set (given in Table 9 of RL87) (only for illustration pur-
pose). The original data set contains nine bivariate points, but one point (0,0) provides no
information for the regression and therefore is deleted, yielding an eight-point data set.

−5 0 5 10 15

−
5

0
5

10
15

x−axis

y−
ax

is

uncontaminated

Line types

LS
T*RD
T*PRD

LS

T*RD T*PRD

−5 0 5 10 15

−
5

0
5

10
15

x−axis

y−
ax

is

contaminated

Line types

LS
T*RD
T*PRD

LS

T*RD T*PRD

Figure 1: Three regression lines for data without or with contamination (red solid line for
LS, blue dashed line for T ∗

RD and black dotted line for T ∗
PRD). Left: Original eight-point

data set. T ∗
RD and T ∗

PRD are identical. Right: Contaminated data set with one original point
moved form (12, 1) to (12, 12), leading to a drastically change in the LS line while both T ∗

RD

and T ∗
PRD are unchanged and resist the contamination.

Regression lines given by the three approaches are plotted w.r.t. the original data versus
(i) 12.5% contaminated data set (one data point is contaminated) in Figure 1 left and right
and versus (ii) 37.5% contaminated data set (three points out of eight are contaminated) in
Figure 2 left and right, respectively.

Inspecting Figure 1, reveals that (i) for the original data, the least squares line is affected
by the point with large x-coordinate (an outlier in the x-direction, or a leverage point). It
is drawn by this leverage point, whereas both deepest regression depth lines resist against
the leverage point and capture the horizontal line y = 0, (ii) When the leverage point is
moved upward to (12, 12), then the entire least squares line is attracted by this movement
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and moved upward (which means that a single point can ruin the LS line), whereas both
deepest regression depth lines are resistant to this single point contamination.

Figure 2, on the other hand, reveals that (i) for the uncontaminated data, the situa-
tion is the same as in Figure 1 left, and (ii) for the contaminated data (three points are
contaminated), the least squares line again is affected by the leverage point as well as the
contaminated points, but not too much from the latter (since the x and y coordinates of the
contaminated points are moderate), the deepest line of T ∗

PRD is affected by the contamina-
tion but still informative and useful, whereas the one from T ∗

RD is useless (breaks down as
expected due to more than 1/3 of contamination). Note that the RD of this vertical line
is 4/8 while there are other lines that have this depth. To deal with the non-uniqueness
problem while in order to have the affine equivariance of the final deepest regression line, one
can take an average of lines with the maximum depth. But the resulting line will still have
a unbounded slope, hence is useless.
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Figure 2: Three regression lines for data without or with contamination (red solid line for
LS, blue dashed line for T ∗

RD and black dotted line for T ∗
PRD). Left: Original eight-point data

set, T ∗
RD and T ∗

PRD are identical. Right: Contaminated data set with three original points
moved to the points with 3 as their x-coordinates, T ∗

RD breaks down.

Example 4.2.2.: We generate a bivariate normal data set with size 100 and µ and Σ are

µ =

(
0
0

)
, Σ =

(
1 −0.8

−0.8 1

)
; µ1 =

(
10
10

)
, Σ1 =

(
0.1 0
0 0.1

)
.

Then we consider a 34% replacement normal points contamination with µ1 and Σ1. The
performance of the three lines is displayed in Figure (3).

21



−5 0 5 10 15

−
5

0
5

10
15

uncontaminated

x−axis

y−
ax

is

Line types

LS
T*RD
T*PRD

−5 0 5 10 15

−
5

0
5

10
15

contaminated

x−axis

y−
ax

is

Line types

LS
T*RD
T*PRD

Figure 3: Three regression lines for data without or with contamination (red solid line for LS,
blue dashed line for T ∗

RD and black dotted line for T ∗
PRD). Left: Original 100 normal points,

lines from LS, T ∗
RD and T ∗

PRD are very similar. Right: Contaminated data set with 34%
points contaminated, both LS and T ∗

RD “break down” while TPRD resists the contamination
and is still useful.

We compute the three lines w.r.t. un-contaminated data. The three (slope, intercept)
lines are (-0.11788718, -0.03614133), (-0.3066041, -0.1899350), and (-0.2943452 -0.2073059)
for LS, TRD, and TPRD, respectively. They do not differ very much as shown in the left side
of Figure 3, or all three seem to be useful.

On the other hand, we also compute the three lines w.r.t a 34% replacement contamina-
tion. The three lines are (0.8283450, 0.7727246), (0.9657038, 0.8559868 ), and (0.03350186,
-0.02969263) for LS, TRD, and TPRD, respectively. They differ very much as shown in the
right side of Figure 3. Both LS and TRD lines break down (attached to the cloud of contam-
ination) whereas TPRD can resist the 34% contamination (in fact up to 50%) and continue
to provide a useful regression line.

4.3 Finite-sample relative efficiency

Robustness does not work in tandem with efficiency. T ∗
PRD (or T ∗

n in the empirical case) has
the best possible ABP while it has to pay a price of a relatively low efficiency. Its efficiency,
however, could be improved (as shown below) by replacing, the univariate median, the chief
source of low efficiency, with a much more efficient depth trimmed or weighted mean (Zuo
(2006), Zuo, Cui and He (2004) (ZCH04)) meanwhile keeping it as robust as before, just as
its location counterpart, the projection median, does (Zuo (2003)).

On the other hand, the deepest regression line in RH99 (T ∗
RD) has no such freedom

to improve its low efficiency since it is fixed and unlike T ∗
PRD, which represents a class of
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functionals (estimators) with the different choices of univariate functionals T (used in T ∗
PRD)

that can be highly efficient yet as robust as the univariate median.

In the following we investigate via simulation the finite-sample relative efficiency of the
deepest lines T ∗

RD and T ∗
PRD w.r.t. the classical least squares line. We generate NR samples

from the simple linear regression model: yi = β0 + β1xi + ei, i = 1, 2, · · · , n, with different
sizes n (see Table 1), where ei ∼ N(0, σ2). In light of the regression equivariance, we can
assume w.l.o.g. that β = (β0, β1)

′ = (0, 0)′. We generate xi from standard normal and t(2)
independently with yi, which are N(0, 1) points. The relative efficiency of the slope and
intercept of the lines T ∗

RD and T ∗
PRD w.r.t. those of the least squares line are listed in Table

1 with various n, where T in the definition of T ∗
PRD is the sample median.

Inspecting the Table 1 reveals that (i) for Gaussian xi’s the intercept of T ∗
RD is slightly

more efficient than that of T ∗
PRD when n ≥ 20, while the slope of T ∗

PRD is more efficient
than that of T ∗

RD uniformly for all n , whereas for t(2) xi’s, T
∗
PRD is more efficient than T ∗

RD

both in slope and intercept uniformly for all n; (ii) the efficiency of the deepest regression
lines differs when the xi are generated from different distributions; (iii) slopes have higher
efficiency for Gaussian x′is than for t(2) x′is; and (iv) for Gaussian x′is slopes have higher
efficiency than intercept for n > 10, this relationship is reversed for t(2) x′is for all n.

Relative efficiency (based on NR = 5, 000 replications) of the deepest lines T ∗
RD and T ∗

PRD

compared to the least squares line when the xi are from Gaussian or t distributions

Gaussian xi t(2) xi

n slope intercept slope intercept

(T ∗
PRD; T

∗
RD) (T ∗

PRD; T
∗
RD) (T ∗

PRD; T
∗
RD) (T ∗

PRD; T
∗
RD)

10 (0.6990; 0.6341) (0.7044; 0.6696) (0.6060; 0.5404) (0.6950; 0.6789)
20 (0.7267; 0.7156) (0.6884; 0.6941) (0.6217; 0.6048) (0.7111; 0.7020)
40 (0.7513; 0.7321) (0.7057; 0.7124) (0.6154; 0.5967) (0.7354; 0.7142)
80 (0.7606; 0.7514) (0.7042; 0.7107) (0.5876; 0.5759) (0.7285; 0.7063)
100 (0.7471; 0.7385) (0.7024; 0.7114) (0.5837; 0.5685) (0.7286; 0.7155)

Table 1: Median used for T in T ∗
PRD

The efficiency of the slope and intercept of the line T ∗
PRD could be improved by replacing

median employed in the definition of T ∗
PRD with a more efficient projection depth weighted

mean (PWM) yet have the same level of robustness as the median, see Zuo (2003) and Zuo,
Cui and He (2004) (ZCH04), and Wu and Zuo (2009):

PWM(xn) =

∑n
i=1w(PDn(xi))xi∑n
i=1w(PDn(xi))

,

where w(r) = I(r < c)
(
exp

(
−k(1− r/c)2

)
− exp(−k)

)
/(1− exp(−k))+ I(r ≥ c), PDn(xi) =

1/(1 + |xi − Med(xn)|/MAD(xn)) and xn = {x1, · · · , xn} with xi ∈ R. For discussions of
weight function w and parameters k and c, see ZCH04.
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Relative efficiency (based on NR = 1, 000 replications) of the deepest line T ∗
RD and T ∗

PRD

compared to the least squares line when the xi are from Gaussian or t distributions

Gaussian xi t(2) xi

n slope intercept slope intercept

(T ∗
PRD; T

∗
RD) (T ∗

PRD; T
∗
RD) (T ∗

PRD; T ∗
RD) (T ∗

PRD; T
∗
RD)

10 (0.6496; 0.6065) (0.6780; 0.6676) (0.6561; 0.5874) (0.7070; 0.6930)
20 (0.7196; 0.6982) (0.7346; 0.7316) (0.5813; 0.5582) (0.7311; 0.7010)
40 (0.7581; 0.7289) (0.7784; 0.7655) (0.5972; 0.5722) (0.7207; 0.6869)
80 (0.7816; 0.7482) (0.7177; 0.7054) (0.5992; 0.5686) (0.7323; 0.7098)
100 (0.7505; 0.7462) (0.7166; 0.7138) (0.6201; 0.5978) (0.7065; 0.6931)

Table 2: PWM (see ZCH04) used for T in T ∗
PRD

Generally speaking, tuning c to render it smaller to get higher efficiency from PWM. The
same is true for parameter k. Namely, keeping the number of inner points as large as possible
to gain higher efficiency and down-weighting outliers slower to gain higher efficiency. In our
simulation, we set k = 3 and c = 3.5. Other parameters that could be tuned include Nv

and Nβ (see Section 4.1). In our simulation, we set Nv = 100 + 2 ∗ n, where 100 are random
directions and 2n directions (they are vi ± (10−10, 0)′, where w′

ivi = 0, see the RHS of (17),
i = 1, · · · , n) are strategically chosen. Nβ is increasing with n but no greater than n(n−1)/2.
With these parameters, the results from T ∗

RD and T ∗
PRD are listed in Table 2.

Inspecting Table 2 reveals that (i) with the PWM employed in the definition of T ∗
PRD,

T ∗
PRD becomes more efficient than T ∗

RD both in slope and intercept uniformly for all n both
for Gaussian xi and t(2) xi (note that by tuning the parameters, one can even gets higher
efficiency for T ∗

PRD). (ii) The efficiency of the deepest lines depends on the distribution of xi.
(iii) The efficient of the intercept is higher than that of slope for t(2) xi’s. This is no longer
true for Gaussian xi’s and when n > 40.

5 Discussions and concluding remarks

This article investigates the robustness property of the deepest projection regression depth
functional T ∗

PRD. T
∗
PRD is closely related to (but different from) the P-estimates in MY93. In

fact, it is the modification of the latter, to achieve the scale invariance of the induced depth
function and scale equivariance of T ∗

PRD.

Like MY93 for the P-estimates, an upper bound for the maximum bias of T ∗
PRD is es-

tablished, which covers Theorems 3.4, 3.5, and 4.1 of MY93. In contrast to MY93 for their
P-estimates, the influence function of T ∗

PRD and the finite sample breakdown point of T ∗
n are

revealed here as well.

The competitor T ∗
RD in RH99 has an advantage over T ∗

PRD in terms of computation in
practice, though both confront a challenging computation problem. The computing issue

24



of T ∗
RD has been briefly addressed in RH99 (that of its location counterpart, the halfspace

median, has been addressed in Liu, et al (2017), among others). That of T ∗
PRD is yet to be

thoroughly investigated elsewhere.

T ∗
PRD, on the other hand, is superior to T ∗

RD in terms of breakdown point robustness and
is not inferior to T ∗

RD in terms of relative efficiency.
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