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DISCUSSION

BY ROBERT SERFLING1 AND YIJUN ZUO2

University of Texas at Dallas and Michgan State University

With delight we most heartily congratulate Hallin, Paindaveine and Šiman
(HPS) on a superb and stimulating paper. It uniquely impacts our thinking about re-
gression quantiles, multivariate quantiles, and the halfspace depth. Here we exam-
ine this highly significant contribution from the standpoints of some perspectives
on multivariate quantile and depth functions, some criteria to consider in choosing
such functions, and some further points about the much-studied halfspace depth.
We also raise a few technical issues and questions for consideration.

General perspectives on quantile and depth functions. In thinking about
any new contribution to multivariate quantile functions, we may draw upon the
following perspectives, which also clarify the univariate case in some respects.

(P1) In multivariate analysis, orientation to a “center” compensates for lack of a
natural order.

(P2) In the context of quantiles, the role of “center” is naturally given to the “me-
dian.”

(P3) The inverse of a quantile function is not the distribution F but rather the rank
function.

(P4) Depth, outlyingness, quantile, and rank functions are equivalent (DOQR
paradigm).

(P5) Quantile functions are best viewed as parameters or characteristics of the
distribution F .

(P6) Equivalence between distribution and quantile functions is not an essential
requirement.

Let us briefly elaborate on some of these points.
(P3). In the univariate case, a natural linear order makes it convenient and

straightforward to define distribution and quantile functions as mutual inverses,
F and F−1. However, for extension to higher dimension, the equivalent median-
oriented formulation is the most appropriate point of departure. That is, via
u = 2p − 1, the usual quantile function F−1(p), 0 < p < 1, may be represented
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as Q(u,F ) = F−1(1+u
2 ), −1 < u < 1. Each point x ∈ R has a quantile representa-

tion x = Q(u,F ) for some choice of u, the median corresponding to Q(0,F ). For
u �= 0, the index u indicates through its sign the direction of x from the median
and through its magnitude the outlyingness of x from the median. Moreover, as the
(unique when F is continuous) solution of the equation x = Q(u,F ), the index
u defines the usual (centered) rank function, R(x,F ) = 2F(x) − 1, which is thus
the inverse of Q. It is a convenient coincidence that R and F are equivalent in the
univariate case.

Passing to a distribution F on R
d , we may introduce associated quantile func-

tions by various means, and by (P1) and (P2) it is their median-oriented formu-
lations that are most apropos. A quantile function, indexed by u in the unit ball
B

d−1(0) in R
d , attaches to each point x a quantile representation Q(u,F ) and

generates nested contours {Q(u,F ) :‖u‖ = c}, 0 ≤ c < 1. For u = 0, the most
“central” point Q(0,F ) is interpreted as a d-dimensional median MF . Otherwise
the index u represents a direction in some sense, for example, direction to Q(u,F )

from MF , or expected direction to Q(u,F ) from random X ∼ F . The magnitude
‖u‖ measures outlyingness, with higher values corresponding to more extreme
points. The index u as solution of the equation x = Q(u,F ) thus defines on R

d a
rank function R(x,F ) which is the inverse of Q(u,F ).

(P4). From (P3) we see that quantile and rank functions, Q and R, are mutually
inverse, and that an outlyingness function is generated via O(x,F ) = ‖R(x,F )‖.
Also, an associated depth function D(x,F ) measuring centrality, and thus inverse
to O(x,F ), is defined by some one-to-one correspondence such as D = a + bO

or D = 1/(1 + O). Since Q and R are mutually inverse and D and O are mutu-
ally inverse, and these are linked by O = ‖R‖, these four functions are essentially
equivalent and generate the same system of contours in R

d . Of course, the four
functions have different practical roles, each with a special appeal and purpose.
However, these roles are linked, and when we examine any one of D, O , Q or R,
it is important to consider it as but one element of a particular DOQR combina-
tion that is most productively viewed in its entirety. For detailed discussion and
illustration with particular DOQR combinations, see [14].

Useful constructs are the associated contours, which represent equivalence
classes of points of equal outlyingness (or equal depth). Using depth function con-
tours, extensions of the univariate boxplot yield for F on R

d notions of a “middle
half” or a “middle 90%” of the population. See [7] for some general discussion.
The contours do not replace, however, the underlying pointwise functions, which
have their own special applications. For example, the hypothesis H0 : MF = θ0
may be tested by the sample rank function evaluated at θ0, that is, R(θ0,Xn),
which represents a notion of multivariate sign test statistic. See also [7] for a great
variety of nonparametric multivariate statistical methods formulated using point-
wise depth functions.

(P5). The univariate median has many interesting equivalent characterizations,
a number of which have been generalized to yield distinctive, meaningful notions
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of multidimensional median. The same is true for all the univariate quantiles. These
extensions comprise a host of parameters of a multivariate F , each having special
appeal. It is indeed useful and productive, therefore, to allow a variety of multivari-
ate quantile functions and corresponding DOQR combinations. We may think of a
quantile (or rank, depth or outlyingness) function as a “foundational” parameter, in
terms of which important descriptive measures for location, spread, skewness, kur-
tosis, etc., may be defined. For illustration using the spatial quantile function, see
[1] and [12]. We also mention the variety of depth-trimmed means that have been
formulated and studied, for example using halfspace depth [8, 9, 11] or projection
depth [21].

(P6). For the role of a quantile function Q as a (sophisticated) “parameter” of
F as per (P5), it is not necessary or even germane that Q determine F . For ex-
ample, even though the spatial quantile function does determine F [4], this aspect
plays no particular role in applications. Also, there are various partial results on
the degree to which the halfspace depth contours determine F [5], but these have
no specific role with data. In general, a “parameter” need not carry any further
information about F beyond that which is useful for a particular goal or purpose.
Similar remarks apply to sample versions: particular statistics of interest need not
retain all of the “information” in the data, and if they happen to do so, this does
not guarantee that the information is organized in the most useful way.

Some criteria for multivariate quantile and related functions. Here we
mention without elaboration some criteria which speak for themselves and arise
quite typically in practical considerations. They are listed in no particular order,
because their relative priorities depend upon the particular context and user.

(C1) Equivariance of quantile and rank functions, invariance of depth and outly-
ingness functions. (See [14] for elaboration.)

(C2) Relationship between “median” and “center” relative to various notions of
“symmetry.”

(C3) Robustness.
(C4) Computational ease with respect to both d and n.
(C5) Intuitive appeal.
(C6) Basis for meaningful descriptive measures for location, spread, asymmetry,

kurtosis, etc.
(C7) Availability of applicable distribution theory, both fixed sample size and as-

ymptotic.
(C8) Smoothness of contours.
(C9) Broadness of applicability in nonparametric sense.

Two new points about halfspace depth. The quantile function constructed by
HPS corresponds to the halfspace depth, and by the DOQR paradigm P4 the prop-
erties and behavior of the halfspace depth therefore carry over to the entire DOQR
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combination. The halfspace or Tukey depth has received considerable study and
some of its properties and roles are alluded to by HPS as well as in the above
discussion. Here we mention two further aspects that may give pause to unquali-
fied adoption of the halfspace DOQR combination as the predominant method of
choice.

(H1) “Multivariate Tukey” �= “univariate Tukey.”
(H2) The Tukey outlyingness function is not competitive with respect to masking

breakdown point.

Brief elaboration follows.
(H1). What is now called the halfspace depth was introduced by Tukey [15] as

a method of constructing multivariate analogues of the univariate order statistics
and a multivariate notion of “centrality.” The corresponding outlyingness function
reduces in the univariate case to a function based on tail probabilities. On the other
hand, Mosteller and Tukey [10] emphasize measuring univariate outlyingness of
a point x by a scaled deviation, for example, (x − Median)/MAD. This is quite
different from looking at tail probabilities and its multivariate generalization turns
out to be the so-called projection outlyingness introduced in [6] and studied in
detail in [17]. The main relevance of H1 in the present context is that even Tukey
did not put all his eggs in the halfspace depth basket that he invented.

(H2). In a recent study [2] of several nonparametric depth-based multivariate
outlier identifiers with respect to a masking breakdown point robustness criterion,
the halfspace depth was found to be singularly deficient. For classifying points as
outliers or not using a chosen threshold high enough to have a low false positive
rate, based on the distribution of halfspace outlyingness in a contaminated normal
model, just a few outliers suffice for “masking breakdown”: some arbitrarily large
outliers become masked (undetected).

Here we suggest a possible explanation. For F d-variate normal, the halfspace
depth is given [3] by DH(x,F ) = �(−‖x‖), with � the univariate standard nor-
mal c.d.f. A corresponding outlyingness function designed to take values in [0,1]
is OH(x,F ) = 1 − 2�(−‖x‖). It then follows [2] that for X ∼ F the c.d.f. of
OH(X,F ) is given by

FOH(X,F )(λ) = P

(
χ2

d ≤
[
�−1

(
1 + λ

2

)]2)
.

Now let us consider the associated density function,

fOH(X,F )(λ) =
√

2π(1/2)d/2

�(d/2)

[
�−1

(
1 + λ

2

)]d−1

.

For d = 1 this is simply the uniform density on [0,1]. Unfortunately, however, for
d ≥ 2, this density has a very undesirable property: it is monotone increasing to in-
finity. Therefore, for any (high) choice of outlier threshold λ, say for false positive
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rate 1% in a contaminated normal model, not only will the false positives reach far
into the tail where the true outliers are found, but also a typical sample will have
massively many points just below the threshold. Consequently, true outliers, false
positives and nonoutliers with be neighboring in rather large quantity, making it
easy for outliers to become masked.

The above finding is consistent with the study of robustness of halfspace depth
in [18], where it is shown that the halfspace depth of a point does not contain
all the information about its relative “distance” with respect to the center of the
data cloud and cannot be employed directly to identify outliers among the sample
points. Indeed, outliers and points on the boundary of the convex hull may all have
the same depth 1/n. This is reflected in the low breakdown point of the pointwise
halfspace depth. See [18], Example 1.

The weakness of halfspace depth with respect to robustness criteria is a serious
limitation. In some applications, more robust competitors are needed.

General views on HPS. In the DOQR paradigm of (P3) above, every point x
in R

d has a quantile representation endowing each x with a vector u in B
d−1(0)

having a meaningful directional interpretation. Thus quantile functions Q(u,F )

range pointwise through R
d , facilitating notions of multidimensional median, di-

rectional ranks relative to F , depth-trimmed means, depth-trimmed scatter func-
tionals, and a host of descriptive measures, all quite similar to well-established
univariate quantile-based analysis. Conversely, starting with the direction d-vector
u in B

d−1(0), a quantile function Q(u,F ) maps directions in B
d−1(0) onto points

x in R
d .

On the other hand, in the HPS scheme, the term “quantile” is given to a (d − 1)-
dimensional regression hyperplane associated with a direction vector u in B

d−1(0),
rather than to a d-vector in R

d . Now we ask, is this a replacement of Q in the above
DOQR paradigm, or is it a very interesting adjunct? The answer is found by think-
ing about the contours, that is, the upper envelopes of the HPS τ -quantile regions
for fixed ‖τ‖. As shown by HPS, these are simply the contours of the halfspace
depth. Now, as shown in [13] and [14], a system of nested contours generates a
quantile function. That is, for D(x,F ) possessing nested contours enclosing the
“median” MF and bounding “central regions” of form {x :D(x,F ) ≥ α}, α > 0,
the depth contours induce Q(u,F ), u ∈ B

d−1(0), with each x ∈ R
d given a quan-

tile representation, as follows. For x = MF , denote it by Q(0,F ). For x �= MF ,
denote it by Q(u,F ) with u = pv, where p is the probability weight of the cen-
tral region with x on its boundary and v is the unit vector toward x from MF . In
this case, u = R(x,F ) indicates direction toward x = Q(u,F ) from MF , and the
outlyingness parameter ‖u‖ = ‖R(x,F )‖ is the probability weight of the central
region with Q(u,F ) on its boundary. All of the various depth functions consid-
ered in [7] and [19], for example, induce associated outlyingness, quantile, and
rank functions. Of course, the mapping linking the two indexings τ and u is not
immediately transparent.
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Thus the HPS quantiles induce the halfspace depth contours, which in turn in-
duce the full halfspace DOQR combination. So, in the HPS scheme, one need not
give up the usual notion of multivariate quantiles. Rather, one still may arrive at
the DOQR setup for use in its intended range of applications, while at the same
time enjoying additional benefits provided by the hyperplanes. These may be re-
garded as an adjunct to the DOQR paradigm in the halfspace case. It then becomes
of interest to explore the possibility of such adjuncts relative to other choices of
depth function.

Salient features of the HPS quantile approach, in terms of (P1)–(P6) and (C1)–
(C9), are thus evaluated in terms of the halfspace depth. On balance, the halfspace
depth is among a handful of leading depth functions, of which no single one pre-
dominates, the priorities among different perspectives and criteria depending on
the context and the user. Overall, the halfspace depth is strong relative to (C1)–(C9)
except for some limitations with respect to (C3), (C4) (but see below) and (C8).

From the standpoint of depth functions, a key contribution of HPS is to
strengthen the appeal of the halfspace approach by providing it with two very
important gains in its assets:

• Relative to criterion (C4), a significant new computational pathway to halfspace
depth contours.

• Relative to criterion (C5), a significant linkage with multi-output regression
quantiles.

Some miscellaneous issues and questions. We augment the preceding general
views and comments with some specific issues and questions.

• Connections with univariate quantiles and quantile analysis. In the univariate
case, the HPS lower quantile hyperplane reduces to (−∞,F−1(τ ))∪ (F−1(1 −
τ),+∞), the complement of the “τ depth contour.” This set comprises the upper
and lower tails of probability τ , with total probabiility 2τ , consistent with the
conventional univariate case. However, the discussion of equation (3.2a) seems
to indicate that this probability should be just τ , seemingly a contradiction.

The discussion of the univariate case following Definition 2.1 is a bit sketchy,
using vector τ notation instead of scalar τ and also throwing in a rather assertive
statement, without qualification or elaboration, that depth contours should be as-
sociated with contour-valued rather than point-valued quantiles. Regarding the
latter, we have shown in our discussion of (P3) how these contours do not dis-
pense with the points that comprise them, and it would be awkward to insist that
all of univariate quantile usage be revised to use only contours and avoid point-
wise quantiles. We endorse keeping everything in sight, both in the univariate
case and in multivariate extensions.

Equation (3.9) imposes a restriction on τ that makes empirical versions well-
defined, but this leaves them evidently undefined for τ values in (0,N/n) and
(1 −P/n,1). However, classical univariate empirical quantiles are well defined
for all τ ∈ (0,1).
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• Moment and regularity assumptions. We note that the regularity and moment
conditions imposed by Assumptions (A) and (A′

n) are uncompetitively strong
for a quantile and depth function methodology. After all, univariate quantile
analysis requires neither regularity nor moment assumptions to get started, and
such results as Bahadur representations for sample quantiles require second-
order regularity but not moment assumptions. Likewise, halfspace depth is well-
defined without moment assumptions. Thus Assumptions (A) and (A′

n) repre-
sent an additional price to be paid for the hyperplane quantiles and behavior of
sample versions.

• The assumption of “general position.” Since depth contours are well-defined
for any data set (not necessarily in general position), we query whether this
assumption is necessary in Theorem 4.2. Also, in that theorem, 
/n must be less
than the maximum halfspace depth (see [3] for related discussion on maximum
possible halfspace depth).

• Compactness of the R(τ) regions. The discussion following Theorem 4.2 in-
cludes the statement that the supremum of all τ such that R(τ) �= ∅ belongs to
the interval [1/(k +1),1/2]. Here 1/(k +1) should be replaced by 1/n, since in
R

k we may suppose that the data points are in general position and on the ver-
tices (corners) of the hyperpolygon, and then for halfspace depth the supremum
of all τ is 1/n < 1/(k + 1).

We note in passing that for halfspace depth the characterization that this
supremum is 1/2 if and only if the distribution of Z is angularly symmetric
has been treated earlier in detail in [16] and [20].

• Potential practical applications of the hyperplane quantiles. Applications of
halfspace depth, its contours, and its related Q, O, R functions, are quite well
established and familiar. It is of interest to know how the hyperplane quantiles
and their sample versions would be used in practice. What added methodology
is acquired using these particular entities? And if existing pointwise depth and
quantile methods are to be de-emphasized or reformulated, how do the hyper-
plane methods accomplish all the same goals?

Summary. This paper extends regression quantiles to the multivariate setting
and links with the well-established halfspace depth. With respect to the latter, sig-
nificant new insights and computational approaches are provided. The paper treats
its topic with great thoroughness and flair and, indeed, is a tour de force.

In a larger view, the DOQR paradigm in the halfspace case is augmented by
an additional entity, a directional hyperplane. It is of interest to know more about
practical applications of the “H” in this extended “DOQRH” paradigm, and it may
also be of interest to explore whether a “DOQRH” paradigm has meaningful for-
mulation in the context of other depth functions.

The research community truly owes Marc, Davy and Miroslav a great debt of
gratitude for their outstanding work that changes our perceptions, adds to our tools,
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and stimulates interesting further inquiries. We look forward to further develop-
ments!
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