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a b s t r a c t

The Tukey depth is an innovative concept in multivariate data analysis. It can be utilized
to extend the univariate order concept and advantages to a multivariate setting. While it is
still an open question as towhether the depth contours uniquely determine the underlying
distribution, some positive answers have been provided. We extend these results to
distributions with smooth depth contours, with elliptically symmetric distributions as
special cases. The key ingredient of our proofs is the well-known Cramér–Wold theorem.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In one dimension, the univariate quantile function uniquely characterizes the underlying distribution [16] and has
permeated intomany applied statistical fields. In high dimensions, due to the lack of natural ordering, there is no universally
preferred definition of multivariate quantiles. Among the various notions of multivariate quantile (see [5] for a review), that
of Tukey’s depth [18] may be the most successful representative. The Tukey depth of a point is the minimal proportion of
data points whose removal makes it lie outside the convex hull of the remaining data points. Struyf and Rousseeuw [17]
proved that the Tukey depth completely determines empirical distributions by actually reconstructing the data points from
the depth contours. More generally, atomic distributions have been proved to be uniquely determined by the Tukey depth
as well; see [7,2]. Koshevoy [8] also proved that the Tukey depth determines absolutely continuous distributions satisfying
certain integrability conditions.
We study the properties of the Tukey depth contours and look into the probabilistic information of the underlying

distribution carried by the contours and show that any distribution with smooth depth contours is completely determined
by its Tukey depth. Proofs are based on the well-known Cramér–Wold theorem. As a special case, elliptically symmetric
distributions are proved to have smooth depth contours and thus are determined by their Tukey depth. Note that it is not
necessary that distributions with smooth depth contours are absolutely continuous; our results therefore are not covered
by that of Koshevoy [8].

2. Definitions and notation

Tukey [18] and Donoho and Gasko [1] defined the halfspace depth of a point x ∈ Rd with respect to an empirical
distribution Pn on Rd based on data {y1, y2, . . . , yn} as the smallest proportion of data points in any closed halfspace with

∗ Corresponding author.
E-mail addresses: lkong@ualberta.ca (L. Kong), zuo@msu.edu (Y. Zuo).

0047-259X/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2010.06.007



Author's personal copy

L. Kong, Y. Zuo / Journal of Multivariate Analysis 101 (2010) 2222–2226 2223

x on the boundary. The commonly used name ‘‘Tukey depth’’ reflects that Tukey [18] proposed using depth contours for
plotting bivariate data, although Hodges [4] first introduced this. In detail, let u be a vector on unit sphere Sd−1 of Rd; then
the Tukey depth of a point x can be written as

d(x, Pn) = min
u∈Sd−1

#{i : uTyi ≥ uT x}/n = min
u∈Sd−1

#{i : (yi − x) ∈ Hu}/n,

where Pn is the empirical distribution based on data {y1, y2, . . . , yn}, #{·} denotes the number of data points in {·} and
Hu = {x : uT x ≥ 0} is the closed halfspace containing 0 on its boundary with u pointing inside the halfspace and orthogonal
to the boundary. Let P be a probability distribution on Rd; then the Tukey depth of a point x ∈ Rd with respect to P is

d(x, P) = inf
u∈Sd−1

P{y : uTy ≥ uT x} = inf
u∈Sd−1

P{y : (y− x) ∈ Hu},

where Hu is defined as the above. In what follows we will use d(x) as an abbreviation of d(x, P) or d(x, Pn) if no confusion
arises.
The Tukey depth is independent of the coordinate system; that is, it is affine invariant; see [19,20,11,17]. In other

words, if we have two distributions P1 and P2 on Rd such that, for any data set A ⊂ Rd, P1(A) = P2(BA + b), where
BA + b = {Bx + b : x ∈ A}, B is a d × d non-singular matrix and b is a vector in Rd, then d(Bx + b, P2) = d(x, P1), for
any x ∈ Rd. The point(s) with the maximum Tukey depth provides a measure of centrality known as the Tukey median,
denoted by µT ; it is an alternative to the mean but more resistant to outliers; and it can be considered as a generalization
of the median, considering that it is actually the median in one dimension. The minimum value of the depth of µT on Rd is
1/(d+ 1); the breakdown point ofµT is at most 1/(d+ 1), and can be as high as 1/3 for a centrally symmetric distribution;
see Donoho and Gasko [1].
For p ∈ (0, 1), the p-th Tukey depth contour D(p) is the collection of x in Rd such that d(x) ≥ p; that is,

D(p) = {x : d(x) ≥ p and x ∈ Rd},

although a stricter usage might reserve this phrase for the boundary of Dp; see [3]. Immediately, we have that the depth
contours form a sequence of nested convex sets: each D(p) is convex and D(p1) ⊂ D(p2) for any p2 ≤ p1; see [21,1,10,12].
The innermost depth contour, whichmight be a singleton, is the Tukeymedian. The outmost depth contour for an empirical
distribution is the convex hull of the data set. As the Tukey depth is a generalization of univariate quantiles, the depth
contours are essentially multivariate quantile contours [5].

3. Retrieval theorem and characterization theorem

Denote the boundary of a bounded convex set E in Rd by ∂E. Let e be a point on ∂E. A tangent hyperplane of E at the
point e is any hyperplane passing through the point e and having no intersection with the interior of E. Such a hyperplane
determines the corresponding tangent halfspace at the point e, the halfspace that has the tangent hyperplane as its boundary
and whose interior does not contain any point of E. In other words, a tangent halfspace of E at the point e can only have
intersection with E on the tangent hyperplane of E at e. Obviously, the tangent hyperplane and hence the tangent halfspace
at a point are not unique; for example, any vertex of a polygon has infinite tangent halfplanes and tangent halfspaces.
Let X be a random variable in Rd with distribution P . Themaximal mass of P at a hyperplane, denoted by∆(P), is defined

as

∆(P) = sup
{
P[sTX = c] : s ∈ Sd−1, c ∈ R

}
.

In the univariate case, ∆(P) = 0 is equivalent to P being continuous, no point having positive probability mass. If P is an
empirical distribution with finite sample size n, then∆(P) is at least 1/n. For more details, see [6,5]. The following theorem
is essential in interpreting the depth contours when retrieving probabilistic information from them. In this sense, we call it
the retrieval theorem.

Theorem 3.1. Let P be the distribution of a random variable X in Rd and 0 < p < d(µT ). If H is a tangent halfspace of the p-th
depth contour D(p), then p ≤ P(H) ≤ 2p+∆(P). Moreover, p ≤ P(H) ≤ p+∆(P), if the boundary of H is the unique tangent
hyperplane of D(p) at some point on D(p); in particular, P(H) = p if ∆(P) = 0.

Theorem 3.1 provides a practical guideline for the recovery of the probabilistic information from the Tukey depth
contours. When the tangent hyperplane to the p-th depth contour D(p) is unique, we can uniquely identify the probability
mass, which is exactly p, of the tangent halfspace whose direction is perpendicular to the tangent hyperplane pointing
outside of D(p) for distributions with ∆(P) = 0. This is a long-standing open problem: does the depth function uniquely
characterize the probability distribution? Positive answers have been established for partial cases: the Tukey depth uniquely
characterizes empirical distributions [14], and more generally atomic distributions [7,2], and also absolutely continuous
distributions satisfying certain integrability conditions [8]. The condition in [8] is that exp(vT x) for any v ∈ Rd is integrable
with respect to that distribution,which includesmany usual distributions, for example, themultivariate normal distribution.
A special case is absolutely continuous distributionswith compact support. Certain progress in this line has beenmadeby our
following results regarding distributionswith smooth depth contours. Under somemild conditions, if the depth contours are
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smooth, they canuniquely determine the underlying distribution. The conditions here are not covered either byKoshevoy [8]
or us. Our conditions here are not covered by Koshevoy [8].
Before going to the characterization theorem, we need to recall and introduce some preliminary concepts. A boundary

point of a convex set that admits more than one tangent hyperplane is called a rough (singular) point, also known as a corner
point. It is known (see Theorem 2.2.4 of Schneider [15]) that such points are quite exceptional; in particular, for any closed
convex set in Rd, rough points are at most countable. Convex, closed subsets of Rd without rough points are called smooth,
consistent with the natural geometric perception of the boundary in this case. Let P be a probability distribution in Rd of
a random variable X . We say that P has contiguous support if there is no intersection of any two halfspaces with parallel
boundaries that has nonempty interior but zero probability and divides the support of P into two parts.

Theorem 3.2. If the p-th Tukey depth contour D(p) of the probability distribution P of a random variable X inRd with contiguous
support and ∆(P) = 0 is smooth for every p ∈ (0, 1/2), then there is no other probability distribution with the same depth
contours.

Although the assumption of smoothness may sound optimistically mild, the examples in Rousseeuw and Ruts [14]
showed that distributions with depth contours having a few rough points are not that uncommon. It may be argued that all
these examples have a somewhat contrived flavor, especiallywhen the support of the distribution is some regular geometric
figure. It is not impossible that typical population distributions have smooth depth contours; however, we were not able
to find a suitable formal condition reinforcing this belief, beyond the somewhat restricted realm of elliptically contoured
distributions. Recall that the distribution P of a random variable X is called elliptically symmetric if it can be transformed by
an affine transformation to a circularly symmetric distribution. If the elliptically symmetric distribution P has density, then
the density function is in the form of

f (x) = c|Σ |−1/2h
(
(x− µ)TΣ−1(x− µ)

)
,

where h is a nonnegative scalar function, µ is the location parameter and Σ is a d × d positive definitive matrix, denoted
by X ∼ Ed(h;µ.Σ) following the notion of Liu and Singh [9]. Zuo and Serfling [21] proved that, if X ∼ Ed(h;µ,Σ), then the
p-th depth contour can be written as

D(p) = {x : (x− µ)TΣ−1(x− µ) ≤ c2p },

where cp is a constant. Note that the results were formulated for more general depth functions. In the case of the Tukey
depth, the constant cp satisfies P[uTΣ−1/2(X − µ) ≤ cp] = p for any unit direction u ∈ Sd−1; see [5] for details.

Corollary 3.1. If X ∼ Ed(h;µ,Σ), then, for any p ∈ (0, 1/2), the p-th depth contour D(p) is smooth; and thus the underlying
distribution of X is uniquely determined by its depth contours.

The proof of Corollary 3.1 is trivial in the view of the results of Zuo and Serfling [21] and is omitted here. As a
consequence, we are able to determine the underlying elliptically symmetric distributions by their depth contours. In
particular, this confirms the following fact: normal contours uniquely determine the underlying normal distribution, as
a normal distribution is elliptically symmetric. For other distributions, this may or may not be true. However, we do have
Theorem 3.2, if the depth contours are smooth.
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Appendix. Proofs of the theorems

A.1. Proof of Theorem 3.1

The inequality P(H) ≥ p follows from the fact that the Tukey depth of any point in D(p) is at least p. As H is a tangent
halfspace of D(p), there exists a point, denoted by y, in H such that y belongs to D(p) as well. More specifically, y ∈ ∂H , the
boundary of H and y ∈ ∂D(p), the boundary of D(p). Note that such a point y may not be unique. The fact that y ∈ D(p)
implies that d(y) ≥ p. Therefore, any halfspace containing y has at least probability mass p. As a result, P(H) ≥ p.
Suppose that ∂H is the unique tangent hyperplane of D(p) at some point y ∈ ∂D(p). Let Q (p, s) = Q (p, s, X) = inf{u :

P[sTX ≤ u] ≥ p}, where ‖s‖ = 1. Hereafter we always assume that s is a unit direction; i.e. ‖s‖ = 1. We claim that there is
a direction s such that sTy = Q (p, s). Otherwise, there must exist an ε > 0 such that sTy−Q (p, s) ≥ ε for any direction s as
the situation sTy − Q (p, s) ≤ ε for some direction s obviously does not exist. The ball centered at y with radius ε/2 would
then belong to {x : sT x ≥ Q (p, s)} for any s and thus belong to D(p) as well. The definition of D(p), any point of D(p) has
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depth at least p, implies that D(p) = ∩‖s‖=1{x : sT x ≥ Q (p, s)}; for a detailed proof, see [5]. Therefore, y is an interior point
of D(p), which is a contradiction with the fact that y ∈ ∂D(p).
Actually such a direction s satisfies H = {x : sT x ≤ Q (p, s)} and hence is unique. As y ∈ ∂H , H can be rewritten as

{x : tT x ≤ tTy} for some direction t . We need to show that t = s. The uniqueness of the tangent hyperplane at point y
implies that any other hyperplane {x : uT x = uTy} passing through y in a direction u, u 6= t , has common points with
the interior of D(p). In particular, if t 6= s, let u = s and x be one of the common points. An ε-ball centered at such a
point x is contained in {x : sT x ≤ sTy} and D(p) when ε is small enough. The hyperplane {x : sT x = Q (p, s)} is parallel
to the hyperplane {x : sT x = sTy} with a perpendicular distance at least 2ε > 0, which is contradictory to the fact that
sTy = Q (p, s). Therefore, H = {x : sT x ≤ Q (p, s)}. On the other hand, if X is a random variable with the distribution P , we
have

P(H) = P[sTX ≤ Q (p, s)− εn] + P[Q (p, s)− εn ≤ sTX ≤ Q (p, s)].

Note thatP[sTX ≤ Q (p, s)−εn] < p considering the definition ofQ (p, s), and as εn → 0,P[Q (p, s)−εn ≤ sTX ≤ Q (p, s)] →
∆(P). Let εn → 0; then P(H) ≤ p+∆(P).
It remains to prove the inequality P(H) ≤ 2p + ∆(P) when the tangent halfspace H is not unique. For simplicity, only

the bivariate case, where d = 2, is proved here. The argument for d > 2 is a little bit more difficult but quite similar. The
key is to use projection to reduce the dimension of the distribution. Let TD(p)(y) be the directions of all tangent hyperplanes
of the convex set D(p) at the point y, where the direction of a tangent hyperplane is defined as a direction perpendicular
to the hyperplane and pointed outside of D(p). It is trivial that TD(p)(y) is an infinitely large pie slice, a convex cone in high
dimension. If we only includes unit directions in TD(p)(y), then it is a closed arc. Hereafter, we assume that TD(p)(y) is the
closed arc. Suppose u is one endpoint of TD(p)(y). Theorem 24.1 of [13] implies that there is a sequence yn ∈ ∂DA(p) such
that yn → y and yn has a unique tangent hyperplane with direction sn such that sn → u. The convergence sTnX → uTX
and sTnyn → uTy make that lim infn→∞ P[sTnX < sTnyn] ≥ P[uTX < uTy]. Using the fact proved in the first part, we
obtain sTnyn = Q (p, sn), because each yn has a unique tangent hyperplane, which means that P[sTnX < s

T
nyn] < p. Thus

P[uTX < uTy] ≤ p. Meanwhile, if v is the other endpoint of the arc TD(p)(y), then P[vTX < vTy] ≤ p by similar derivation.
Finally, t ∈ TD(p)(y) implies that H ⊆ {x : uT x < uTy} ∩ {x : vT x < vTy} ∩ {y}, and thus

P(H) ≤ P({x : uT x < uTy})+ P({x : vT x < vTy})+ P({y}) ≤ 2p+∆(P).

A.2. Proof of Theorem 3.2

For simplicity, we assume that the origin is the point with maximal depth, the Tukey median. In a general case, the
affine equivariance of depthmakes it viable to transform the origin to be the Tukeymedian. We claim that, for any direction
s ∈ Sd−1 and constant c ≤ 0,

P({x : sT x ≤ c}) = P[sTX ≤ c] = p∗,

where p∗ = sup{d(x) : sT x = c}, the maximal depth on the hyperplane {x : sT x = c}.
To show the claim, wewill look into p∗ = 0 and p∗ > 0 respectively. If themaximumdepth p∗ = 0, then d(x) = 0 for any

point x ∈ {x : sT x = c}. Apparently, in this case c 6= 0 asµT = 0. The convexity of the set with positive depth {x : d(x) > 0}
makes it that d(x) = 0 for any point belonging to the halfspace {x : sT x ≤ c}. Meanwhile, the set {x : d(x) > 0} can be
rewritten as the intersection of all halfspaces with positive probability mass and hence is a subset of any such halfspaces;
see [5]. The halfspace {x : sT x ≤ c} has no intersection with the set {x : d(x) > 0}, and thus has non-positive probability
mass. That is, P({x : sT x ≤ c}) = p∗. In the case of p∗ > 0, to verify the claim it is sufficient to show that {x : sT x = c} is
tangent to the p∗-th depth contour D(p∗). In other words, the intersection {x : sT x = c} ∩ D(p∗) is a singleton, only a point,
as D(p∗) is smooth. Otherwise, the intersection {x : sT x = c} ∩ D(p∗) would be a compact convex set on the hyperplane
{x : sT x = c}with nonempty interior; and so would the intersection {x : sT x ≤ c} ∩D(p∗). Let y be one of the interior points
on {x : sT x = c} ∩ D(p∗). Then d(y) = p∗, that is, P({x : tT x ≤ tTy}) = p∗ for some direction t ∈ Sd−1. Actually, for any
x ∈ {x : sT x ≤ c} ∩ D(p∗), d(x) = p∗. As y is also an interior point of D(p∗), there exists a point z ∈ D(p∗) ∩ {x : tT x ≤ tTy}
such that tT (z − y) < 0. Thus P({x : tT x ≤ tT z}) ≥ p∗, which implies that P({x : sT z < tT x < tTy}) = 0, a contradiction
with the condition that P is contiguous. Therefore, {x : sT x = c} ∩ D(p∗) is a singleton; and equivalently {x : sT x = c} is
tangent to D(p∗), denoting the tangent point by y. Obviously d(y) = p∗. From Theorem 3.1, we have P({x : sT x ≤ c}) = p∗.
Our claim was proved, which means that, for any s ∈ Sd−1, the distribution of sTX is uniquely determined by D(p). The

Cramér–Wold theorem allows the theorem to hold true.
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