
Computation of projection regression depth and its induced

median

Yijun Zuo∗

Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA

Abstract

Notions of depth in regression have been introduced and studied in the literature. The most famous
example is Regression Depth (RD), which is a direct extension of location depth to regression. The
projection regression depth (PRD) is the extension of another prevailing location depth, the projection
depth, to regression. The computation issues of the RD have been discussed in the literature. The
computation issues of the PRD have never been dealt with before. The computation issues of the
PRD and its induced median (maximum depth estimator) in a regression setting are addressed now.
For a given β ∈ Rp exact algorithms for the PRD with cost O(n2 log n) (p = 2) and O(N(n, p)(p3 +
n log n+ np1.5 + npNIter)) (p > 2) and approximate algorithms for the PRD and its induced median
with cost respectively O(Nvnp) and O(RpNβ(p

2+nNvNIter)) are proposed. Here N(n, p) is a number
defined based on the total number of (p− 1) dimensional hyperplanes formed by points induced from
sample points and the β; Nv is the total number of unit directions v utilized; Nβ is the total number
of candidate regression parameters β employed; NIter is the total number of iterations carried out in
an optimization algorithm; R is the total number of replications. Furthermore, as the second major
contribution, three PRD induced estimators, which can be computed up to 30 times faster than that
of the PRD induced median while maintaining a similar level of accuracy are introduced. Examples
and simulation studies reveal that the depth median induced from the PRD is favorable in terms of
robustness and efficiency, compared to the maximum depth estimator induced from the RD, which is
the current leading regression median.

Keywords: depth in regression, maximum depth estimator, computation, approximate and exact
algorithms.

1. Introduction

Notions of location depth have been introduced and extensively studied in the literature over the
last three decades. Depth notions have found applications in diverse fields and disciplines (see Zuo
(2018a) for a review). Among others (Simplicial depth (Liu (1990)), Zonoid depth (Koshevoy and
Mosler (1997), Mosler (2002, 2012)) and Spatial depth (Vardi and Zhang (2000), etc.), two prevailing
location depth notions are the Tukey halfspace depth (HD) (Tukey (1975)) (popularized by Donoho
and Gasko (1992)) and the projection depth (PD) (Liu(1992), Zuo and Serfling (2000)) (thoroughly
studied in Zuo (2003)), both of which are in the spirit of the projection-pursuit scheme.

∗Corresponding author
Email address: zuo@msu.edu (Yijun Zuo)

Preprint submitted to Elsevier January 18, 2021

One naturally wonders if the depth notion can be extended to a regression setting. Regression
depth (RD) of Rousseeuw and Hubert (1999) (RH99) is the most famous example, which directly
extends HD to regression, whereas projection regression depth (PRD), induced from Marrona and
Yohai (1993) (MY93) and introduced in Zuo (2018a) (Z18a), is an extension of the PD to regression.

Like their location counterparts, the most remarkable advantage of the notion of depth in regression
is the direct introduction of the median-type estimator, otherwise known as the maximum (or deepest)
regression depth estimator for regression parameters in a multi-dimensional setting. The maximum
(deepest) regression depth estimators serve as robust alternatives to the classical least squares or least
absolute deviations estimator of unknown parameters in a general linear regression model:

y = (1,x′)β + e, (1)

where ′ denotes the transpose of a vector, and random vector x = (x1, · · · , xp−1)
′ ∈ Rp−1 and

parameter vector β = (β0,β
′
1)

′ ∈ Rp (p ≥ 2) and random variables y and e are in R1. Let w = (1,x′)′.
Then y = w′β + e. We use this model or (1) interchangeably depending on the context.

The maximum depth estimator induced from the RD, T∗
RD, can asymptotically resist up to 33%

(Van Aelst and Rousseeuw (2000) (VAR00))(whereas the one from the PRD, T∗
PRD, can resist up to

50% (Zuo (2019a)(Z19a)) contamination without breakdown, in contrast to the 0% of the classical LS
estimator. An illustration of these facts is given in Figure 1, where the data set is given in Table 9
of Chapter 2 from Rousseeuw and Leroy (1987) (RL87). The original data set contains nine bivariate
points.

−5 0 5 10 15

−
5

0
5

1
0

1
5

x−axis

y
−

a
x
is

Regression with no point contaminated

Line types

LS
T*RD
T*PRD

LS

T*RD T*PRD

(a) no-contamination

−5 0 5 10 15

−
5

0
5

1
0

1
5

x−axis

y
−

a
x
is

Regression with one point contaminated

Line types

LS
T*RD
T*PRD

LS

T*RD T*PRD

(b) 1-point-contaminated

−5 0 5 10 15

−
5

0
5

1
0

1
5

x−axis

y
−

a
x
is

Regression with three points contaminated

Line types

LS
T*RD
T*PRD

LS

T*RD T*PRD

(c) 3-points-contamination

Figure 1: Three regression lines for data with or without contamination (solid red for the LS, dashed blue for the
T∗

RD and dotted black for the T∗
PRD). (a) Original nine-point data set, the T∗

RD and the T∗
PRD are identical. (b)

Contaminated data set with one original point (12, 1)′ moved to (12, 12)′, leading to a drastic change in the LS line
while both the T∗

RD and the T∗
PRD are unchanged and resist the contamination. (c) Contaminated data set with three

original points moved to the points with 3 as their x-coordinates, the T∗
RD breaks down while both the T∗

PRD and the
LS lines are still informative.

For any β ∈ Rp and joint distribution P of (x′, y) in Rp, RH99 defined the regression depth of
β–denoted hereafter by RD(β;P)– to be the minimum probability mass that needs to be passed when
tilting (the hyperplane induced from) β in any way until it is vertical. The maximum regression depth
estimating functional T∗

RD (also denoted by β∗
RD) is then defined as

T∗
RD(P) = argmax

β∈Rp
RD(β;P). (2)

Various characterizations of RD(β;P) have been given in the literature, e.g. Zuo (2018b).

By modifying the P-estimate of Marrona and Yohai (1993) (MY93) to achieve the scale invari-
ance property, Z18a introduced projection regression depth (PRD), defined based on the so-called

2

“unfitness” (UF) for a given candidate regression parameter β ∈ Rp:

UF(β;F(x′,y)) = sup
v∈Sp−1

|R(F(w′v, y−w′β))|
/
S(Fy), (3)

PRD(β;F(x′,y)) = 1/(1 + UF(β;F(x′,y))), (4)

where FZ′ stands for the distribution of the p-dimensional random vector Z ∈ Rp, w = (1,x′)′ ∈ Rp,
Sp−1 = {u ∈ Rp : ∥u∥ = 1}, R will be restricted to the univariate regression functional of the
form R(F(w′v, y−w′β)) = T

(
F y−w′β

w′v

)
and it is regression, scale, and affine equivariant (see page 116 of

RL87 for definitions). T could be a univariate location functional that is location, and scale (or called
affine) equivariant; S is a scale functional that is translation invariant and scale equivariant (see pages
158-159 of RL87 for definitions), and S(Fy) does not depend on v and β, see Z18a.

It is not difficult to see that UF(β;F(x′,y)) and PRD(β;F(x′,y)) are the regression counterparts
of the outlyingness function O(β;Fx) and the projection depth function PD(β;Fx) (Zuo (2003)),
respectively.

Examples of T in (3) include mean, quantile, median (Med), and location functionals in Wu and
Zuo (2009). Examples of S in (3) include standard deviation, median absolute deviations from the
median (MAD), and scale functionals in Wu and Zuo (2008).

For the consideration of robustness, in the sequel, (T, S) is fixed and it is the pair (Med,MAD),
unless otherwise stated. Hereafter, we write Med(Z) rather than Med(FZ). For this special choice of
T and S such that

R(F(w′v, y−w′β)) = Medw′v ̸=0

(y −w′β

w′v

)
,

S(Fy) = MAD(Fy).

We have

UF(β;F(x′,y)) = sup
v∈Sp−1

∣∣∣Medw′v ̸=0

(y −w′β

w′v

)∣∣∣/MAD(Fy), (5)

and

PRD
(
β;F(x′,y)

)
= inf

v∈Sp−1,w′v ̸=0

MAD(Fy)

MAD(Fy) +
∣∣∣Med

(
y−w′β
w′v

)∣∣∣ . (6)

Applying the min-max (or max-min) scheme, we obtain the maximum (deepest) projection regression
depth estimating functional (also denoted by β∗

PRD) w.r.t. the pair (T, S)

T∗
PRD(F(x′,y)) = argmin

β∈Rp
UF(β; F(x′,y)) = argmax

β∈Rp
PRD

(
β; F(x′,y)

)
. (7)

When a sample Zn = {(x′
i, yi)

′, i = 1, · · · , n} of Z := (x′, y)′ ∈ Rp is given, an empirical distribu-
tion Fn

Z based on Zn is obtained. Replacing F(x′,y) above by Fn
Z we obtain all empirical versions.

While both the RD and the PRD enjoy desirable properties such as high breakdown robustness,
these regression depth functions prove difficult to compute in practice since they involve the projection-
pursuit scheme (see Z18a). The computation of the RD has been discussed in RH99, in Rousseeuw
and Struyf (1998) (RS98), and in Liu and Zuo (2014) (LZ14). The computation issues of the PRD
and the T∗

PRD have never been addressed. Presenting exact and approximate algorithms for the PRD
and discussing the algorithms for the computation of the T∗

PRD are the two main goals of this article.

3

The third goal is to introduce several PRD induced estimators which can be computed much faster
than that of the T∗

PRD.

The rest of this article is organized as follows. Section 2 presents the computation problem and
addresses the exact and approximate computation algorithms for the UF(β, Fn

Z), and equivalently for
the PRD(β, Fn

Z). Furthermore, theoretical results are established and exact and approximate algo-
rithms are presented along with abounded examples. Section 3 is devoted to (i) the computation of
the T∗

PRD(β, Fn
Z), (ii) examples of the exact computation of the PRD as well as the approximate

computation of the T∗
PRD, and (iii) comparisons of performance between the T∗

PRD against leading
competitors such as LS, β∗

RD , and ltsReg. Section 4 introduces three depth induced regression esti-
mators that can run much faster than T∗

PRD in addition to maintaining small empirical mean squared
errors. Section 5 investigates the finite sample relative efficiency of the T∗

PRD. Brief concluding
comments end Section 6 and the article.

2. Computation of PRD

2.1. The computation problem

To compute the PRD(β;Fn
Z), it suffices to compute the UF(β;Fn

Z). Namely, to compute the
following quantity:

UF(β;Fn
Z) = sup

v∈Sp−1

∣∣∣Medw′
iv ̸=0

{yi −w′
iβ

w′
iv

}∣∣∣/Sy, (8)

wherew′
i = (1,x′

i) and Sy = MAD{yi}. Hereafter, we assume that (A1): P (w′v = 0) = 0, ∀ v ∈ Sp−1

and (A2) P (r(β) = 0) = 0, where r(β) = y − w′β, ∀ β ∈ Rp. (A1)-(A2) hold automatically if
(x′, y)′ has a density or if x does not concentrate on a single (p−2) dimensional hyperplane in x space
and any (p−1) dimensional hyperplane determined by r(β) = 0 in (x′, y)′ space does not contain any
probability mass.

For simplicity of description, we write t′i = w′
i/ri(β), where ri(β) = yi −w′

iβ. Now the computa-
tion of UF(β;Fn

Z) in (8) is equivalent to the computation of

UF(β;Fn
Z) = sup

v∈Sp−1

∣∣∣∣Medt′iv ̸=0

{ 1

t′iv

}∣∣∣∣/Sy. (9)

Again for simplicity, we write kvi = 1/t′iv and uv
i = t′iv. The latter two are well defined almost

surely (a.s.) under (A1)-(A2). Without loss of generality (w.l.o.g.), we assumes that Sy = 1 (since
it does not depend on v or β). The UF(β;Fn

Z) in (9) is then

UF(β;Fn
Z) = sup

v∈Sp−1

∣∣∣∣Medi
{
kvi

}∣∣∣∣ := sup
v∈Sp−1

∣∣g(v)∣∣. (10)

The exact computation of (10) above is still very challenging if not impossible. Let kv(1) ≤ kv(2) · · · ≤
kv(n) be ordered values of kvi . Partition Sp−1 into two disjoint parts

S1 = {v ∈ Sp−1 : kv(1) < 0 and kv(n) > 0}; S2 = {v ∈ Sp−1 : kv(1) > 0 or kv(n) < 0}. (11)

It is readily seen that both S1 and S2 are symmetric about the origin. That is, if v ∈ Si then, −v ∈ Si.
Now the UF(β;Fn

Z) in (10) can be expressed as follows:

UF(β;Fn
Z) = max

{
sup
v∈S1

|g(v)|, sup
v∈S2

|g(v)|
}
. (12)

Exact computation of the UF(β;Fn
Z) in (12) is a challenging task, whereas approximate computa-

tion is relatively straightforward (but it is still difficult to assess its accuracy without the benchmark
of the exact result). We shall address the two approaches separately in the sequel.

4

2.2. Exact Computation

2.2.1. Theoretical results

For a given sample Z(n) := {(x′
i, yi)

′, i = 1, · · · , n}, a β in Rp and a v ∈ Sp−1, since kv(1) ≤ kv(2) ≤ · · · ≤
kv(n) are ordered values of kvi = 1/t′iv, then 1/t′i1v ≤ 1/t′i2v ≤ · · · ≤ 1/t′inv for some {i1, · · · , in},
a permutation of {1, 2, · · · , n}. Similarly, uv

(1) ≤ uv
(2) ≤ · · · ≤ uv

(n) corresponds to a permutation

{ji, · · · , jn} such that uv
j1

≤ uv
j2

≤ · · · ,≤ uv
jn

for uv
i = t′iv.

Proposition 2.1: Assume (A1) and (A2) hold. Let N−
v :=

∑n
i=1 I(k

v
i < 0). The unfitness of β in

(8) can be computed equivalently via (12) which can be computed as follows.

Denote n1 := ⌊(n+ 1)/2⌋ and n2 := ⌊(n+ 2)/2⌋, where ⌊·⌋ is the floor function.

(i) For v ∈ S2,

sup
v∈S2

|g(v)| =


maxv∈S2

(t′in1
+t′in2

)v
/
2

v′tin1t
′
in2

v if N−
v = 0,

−minv∈S2

(t′in1
+t′in2

)v
/
2

v′tin1
t′in2

v if N−
v = n.

(ii) For v ∈ S1, let m be a non-negative integer.

if n = 2m+ 1,

sup
v∈S1

|g(v)| =


−1

/
maxv∈S1

t′in1
v if kv(n1) < 0,

1
/
minv∈S1 t

′
in1

v if kv(n1) > 0,

if n = 2m+ 2,

sup
v∈S1

|g(v)| =



∣∣∣∣maxv∈S1

(t′in1
+t′in2

)v
/
2

v′tin1
t′in2

v

∣∣∣∣ if kv(n1) < 0 and kv(n2) > 0,

maxv∈S1

(
t′in1

+t′in2

)
v
/
2

v′tin1
t′in2

v if kv(n1) > 0,

−minv∈S1

(
t′in1

+t′in2

)
v
/
2

v′tin1
t′in2

v if kv(n2) < 0.

Proof: Note that under (A1)-(A2) Si (i = 1, 2) are a. s. closed sets. In light of the definitions of the
regular univariate sample median and Si, the proof follows immediately. Details are straightforward
to verify and thus are omitted. �

Remarks 2.1: The proposition gives a clear foundation for the exact computation of the UF(β;Fn
Z),

or equivalently the PRD((β;Fn
Z) =

(
1 + UF(β;Fn

Z)
)−1

.

(I) the UF(β;Fn
Z) can be computed exactly via the optimization over closed sets Si. There are

unified formulas over Si for distinct cases of permutations. The two types of optimization
problems that exist in the proposition are

(i) Type I: min (or max) of c′v for v over a closed subset set of Sp−1 and c ∈ Rp.

(ii) Type II: min (or max) of b′v
v′Av for v over a closed subset set of Sp−1 and b ∈ Rp, A ∈ Rp×p

(A could be treated as symmetric and positive-definite over the set).

5

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

u1

u2
 u (i j)Xi

Xj

projected values change their orders

(a) circular-sequence demonstration

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

an angular region within a unit circle

(b) angular region demonstration

Figure 2: (a) u (or ij) is perpendicular to the line segment connecting the points Xi, Xj and between u1 and u2. When
the two points are projected to u1, u2 and u, the Xi precedes the Xj on u1 whereas on u2 it is reversed. On u they
overlap. (b) a unit circle is cut into pieces (angular regions) by the median sequence. Over each piece, the median of
the projected values is the average of the middle two (or one) of the projected values of the same two (or one) fixed
points (see Figure 3).

(II) b, c, and A above are determined by {ti} and depend on v only through the permutation
i1, · · · , in which is induced by the projection of {ti} onto v. That is, for a given sample and
β ∈ Rp, and a v ∈ Sp−1 [or more generally a fixed permutation i1, · · · , in (of {1, 2, · · · , n}) over
a set of v]; b, c, and A are constant vectors and a matrix.

Hence, with the constraints discussed in the sequel, Type I optimization can be solved by
linear programming and Type II optimization can be solved by gradient-type, Newton-type,
or interior-point methods (see, e.g. Numerical Recipes (2007) Chapter 10, Freund (2004), and
Boyd and Vandenberghe (2004)), among others. �

To facilitate the explanation of the basic idea to achieve the exact computation via Proposition
2.1, we first invoke the concept of a “circular sequence” (see, e.g. Edelsbrunner (1987)).

Given n general points, t1, t2, · · · , tn (obtained from Z(n) and a β) in Rp, and any unit vector v,
assume that uv

i1
≤ uv

i2
≤ · · · ≤ uv

in
(recall uv

j = t′jv). Then {i1, i2, · · · , in} forms a permutation of
{1, 2, · · · , n} (e.g., see (b) of Fig. 3, where “4321” represents a permutation from the projection of 4
points (labeled as 1, · · · , 4) to the direction labeled as “34”).

If one rotates v counter-clockwise (in R2), then one will get a sequence of permutations. This
periodic sequence of permutations is called a circular sequence (see the permutations in Fig. 3). In Rp

(p > 2), when the unit vector v rotates on the unit sphere, we again get a sequence of permutations
from the subscripts of ordered projected values, or a circular/spherical sequence.

Some observations on circular/spherical sequences

O1 The permutation obtained from the projection of the n points on v is exactly the reverse of
the permutation obtained from the projection of them on −v.

O2 Two successive permutations of a circular/spherical sequence differ only by switching p
integers in the sequence (see (a) of Fig. 2).

O3 The permutation changes only whenever the rotation of v passes through a direction per-
pendicular to a (p − 1)-dimensional subspace formed by p data points in a given data set that
is in general position (defined later) (see Fig. 3 and (a) of Fig. 2).

6

Proposition 2.2: Assume (A1) and (A2) hold. Let V ⊂ Sp−1 be a piece of a unit circle/sphere
such that ∀ v ∈ V , uv

j1
≤ uv

j2
≤ · · · ≤ uv

jn
. That is, over V , j1, j2, · · · , jn is a fixed permutation of

{1, 2, · · · , n}. Then (i) N−
v is a constant over V ; (ii) there are no vi ∈ V (i = 1, 2) such that v1 ̸= v2

and vi ∈ Si.

Proof:

(i) When v moves over V , in order for N−
v to change its value, it is obvious that at least one kvi

changes from less than zero to greater than or equal to zero. That is, v must cross a v0 such that
kv0
i = 0. The latter happens with probability zero under (A2).

(ii) Assume that there is a v ∈ S2 ∩ V , then N−
v is either 0 or n. By (i) there exists no v1 ∈ V

such that v1 ∈ S1, since the latter means 0 < N−
v1

< n, a contradiction. That is, V ⊂ S2. Similarly,
if there is a v ∈ S1 ∩ V , one can conclude that V ⊂ S1. �

To get the exact value of the UF(β;Fn
Z) utilizing Proposition 2.1, it seems that one has to know

the set Si first, i = 1, 2 (or more accurately their boundaries). S2 can be empty. In fact, when the
convex hull formed by all tis contains the origin, then S1 = Sp−1. Fortunately, we do not have to
identify Si, i = 1, 2.

Since there is no unique formula over Si in the Proposition, the exact computation task requires
us to further partition Si into disjoint pieces. For example, we could partition S1 into five pieces and
S2 into two pieces, according to the cases listed in Proposition 2.1. The latter task is not as easy
as identifying Si. For example, identifying all v ∈ S1 such that kv(n1) > 0 for an even n case is not
straightforward at all. We seek other approaches below.

For a given sample Z(n) and a β ∈ Rp and a v ∈ Sp−1, there is a unique permutation i1, · · · , in of
{1, 2, · · · , n} induced by kvi = 1/t′iv. The kvij (j = 1, · · · , n) is all we need for the calculation in (10)

or Proposition 2.1. However, a permutation i1, · · · , in corresponds to a set of v ∈ Sp−1, with each
member of the set capable of producing the same permutation via kvi .

That is, a fixed permutation corresponds to a unique piece of Sp−1 (or of the surface of the unit
sphere). There are in total at most n! possible permutations hence n! disjoint pieces that partition
the Sp−1 (or the surface of the unit sphere). By Proposition 2.2, each piece belongs to either S1

or S2. Selecting one v from each piece is sufficient for the exact computation of the UF(β;Fn
Z) via

Proposition 2.1. The cost is approximately of order O(nn+1/2) without counting optimization cost,
which is computationally unaffordable. We seek to merge some pieces.

In light of Observation 3 (O3) on v induced permutations (in regards to the circular or spherical
sequence), when v moves on the surface of the unit sphere, its induced permutation changes only when
it crosses a hyperplane (H0) that goes through the origin and is perpendicular to another hyperplane
(H1) that is formed by sample points from {ti}.

The former hyperplanes (H0’s) (each containing the origin) cut the Sp−1 into disjoint N(n, p)

pieces Pk (k = 1, · · · , N(n, p)), where N(n, p) := 2
∑p−1

i=0

(
q−1
i

)
(see Winder(1966)) and q := Np

n({ti})
is the total number of distinct (p− 1)-dimensional hyperplanes formed by points from {ti}. q ≤

(
n
p

)
.

Assume q > 1. When {ti} are in a general position (IGP) (see Z19a for definition), q =
(
n
p

)
. In the

latter case, N(n, p) = O(np(p−1)), lower than the cost O(nn+1/2) above if n ≥ p(p− 1).

Each Pk (k = 1, · · · , N(n, p)) corresponds to a unique permutation {i1, · · · , in}, that is, 1/t′i1v0 ≤
1/t′i2v0 ≤ · · · ≤ 1/t′inv0, ∀ v0 ∈ Pk. The latter in turn corresponds to a polyhedral cone which is
determined by

B′v ≤ 0(n−1)×1, (13)

7

−4 −2 0 2 4 6 8 10

−
5

0
5

10

x

y

1

2

3

45

14

14 13

24

25

35

O

median sequence−n−odd

51432(54132)

23415(23145)

15423(15243)

15243(12543)

12354(12534)
23145(21345)

(a) odd-n median sequence demonstration

−4 −2 0 2 4 6 8 10

−
5

0
5

10

x

y

1
2

3
4

34

34
24

23

14

1312

4321(3421)

O

1234(1243)
1423(1243)

1423(1432)

4132(1432)

4132(4312)
4312(4321)

median sequence−n−even

(b) even-n median sequence demonstration

Figure 3: Median-sequence demonstration. (a) Five sample points are labeled as “1”,...,“5”. Line “14” cuts the space
into two halfspaces. Focusing on the upper right one suffices. Label “ij” means that the labeled ray is perpendicular
to the line segment connecting i and j. When v rotates within the angular region formed by “ij” and “ik” (or “kj”, or
“jk”), the median of the projected values is the projected value of the repeated label (point) i (or j, or k). The median
sequence is “14”, “13”, “35”, “25”, “24” (and “14”). (b) Four sample points are labeled as “1”,..., “4”. Line “34” cuts
the space into two halfspaces, focusing on the lower right one suffices. Along each ray, there are two permutations listed
(as in (a)), due to the overlaps of the projected values of some of the two points. The labels of the common middle
two points in the permutations help to identify the median sequence “34”, “23”, “14”, “12” (and “34”) which form 4
regions corresponding to two middle point pairs “4-2” (formed by “34” (upward), “23” and O), “4-3”, “1-3”, and “3-2”.

where v ∈ Sp−1 andB = (B1, · · · , Bn−1)p×(n−1), Bj := tij−tij+1
, j = 1, · · · , N−

v0
; Bj := −(tij−tij+1

),
j = N−

v0
+ 1, · · · , (n− 1), with the vector inequality in the coordinate-wise sense.

By Proposition 2.2, the entire Pk belongs to only one Si. So as long as we have one v0 from
each Pk, we can easily produce the permutation associated with the Pk and the induced kv0

i and
determine which Si and formulae should be used in Proposition 2.1. Coupled with the constraints
B′v ≤ 0(n−1)×1 above, both Type I and Type II optimization problems in the Proposition could
be solved in linear time (note that b, c and A are constants over the entire piece of Pk). The
exact computation of the UF(β;Fn

Z) can be achieved with the worst-case time complexity of order
TC(n, p,Niter) := O(N(n, p)(p3 + n log n+ np1.5 + npNiter), where Niter is the number of iterations
needed when solving the type II optimization problem.

Theorem 2.1 Under (A1)-(A2), for a given sample Z(n) and a β in Rp, the UF(β;Fn
Z) (or the

PRD(β;Fn
Z)) can be computed exactly with the worst-case complexity of (i) O(n2 log(n)) for p = 2;

(ii) TC(n, p,Niter) for p > 2.

Proof: For simplicity of description, we assume that Np
n({ti}) =

(
n
p

)
. The general case (with a

smaller Np
n({ti})) could be treated similarly.

(i) Consider the case p = 2. That is, the ti are bivariate points. We show that we can divide the
entire circle ∥v∥ = 1 into O(n) pieces (arcs) using the so-called median sequence (Zuo and Lai (2011)).
These O(n) pieces of arcs further help to divide the entire unit disk into O(n) pieces (each formed by
the origin, two radii and a piece of arc) (see (b) of Fig. 2). Over each piece, the middle two numbers
(see (b) of Fig. 3) (or one in the odd n case, see (a) of Fig. 3) of the projected values t′iv are the
projected values of some two (or one) fixed points (or point) from {ti}.

In (a) of Fig. 3, when v rotates over the angular region formed by O, if we consider rays labeled
as “ij” and “ik” (or “kj”, or “jk”) then the point labeled as “i” (or “j”) (i.e. the common label) is
the single point whose projected value will always be the median of the projected values. The median

8

sequence is the rays “14” (up), “13”, “35”, “25”, “24”, “14” (down) which form 5 angular regions
corresponding to point “1” (formed by “14” (up), “13”,and O) “3”, “5”,“2”, and “4”; whereas in
(b) of Fig. 3, along various rays labeled as “ij”, there are permutations listed (also in (a)). Each
ray corresponds to two equivalent permutations, because along each direction (ray), the projection of
some two points overlap. These permutations help to identify the middle two points and the median
sequence. The median sequence is the rays “34” (up), “23”, “14”, “12”, “34” (down) which form 4
regions corresponding to two-point pairs “4-2” (formed by “34” (upward) “23” and O), “4-3”, “1-
3”,“3-2”. When v rotates over the angular region formed by O, 23, and 34 (up); the points “4” and
“2” are the two points whose projected values are the middle two of all projected values (they appear
in the middle of the permutations along the rays “34” (up),“24” “23”).

Figure 3 just illustrates a general phenomenon with concrete examples. We have generally

Lemma 2.1: (i) For p = 2, there are O(n) rays that divide the unit disk into O(n) pieces (cones, or
angular regions) Aj , each with the origin as its vertex. Over Aj , the median of the projected values
{t′iv} is the projected values of some two (or one in the odd n case) fixed points tj1 and tj2 . (ii) the
UF(β;Fn

Z) and the PRD(β;Fn
Z) can be computed exactly in O(n2 log n).

Proof:

For simplicity, label sample points {ti} as 1, 2, · · · , n. For each i there are j1, · · · , jik labels (or
points), such that the line connecting i to jm (1 ≤ m ≤ ik), labeled as “ijm”, cuts the plane into two
closed halfplanes so that each contains no less than ⌊(n+ 1)/2⌋ points. In Fig. 3, ik is 2 (for odd n)
and 3 (for even n). But they could be larger in other cases.

Identify the unit vector over the unit circle that is perpendicular to the line ijm by its polar
coordinate angle θijm (0 ≤ θijm ≤ π) (only halfplane suffices). For each i, keep the two unit vectors
that have the minimum and maximum polar angles, respectively. In total, there are O(n) such unit
vectors. These O(n) vectors cut the unit disk into O(n) angular regions each formed by the origin
and two unit vectors. By the construction (also see Fig. 3), it is readily seen that over each angular
region Aj , the middle two (or one in odd n case, skip mentioning this case hereafter) integers of the
permutations are the same. When v rotates over each region Aj the middle two of the projected
values uv

i are the projected values of some two fixed points (say, tj1 , tj2). This completes the proof
of the first part of the Lemma.

Over each piece Aj (in total O(n) pieces), invoking Proposition 2.1 and optimization programming
(considering the boundary directions suffices), the job can be done with the cost of O(n2). However,
to find out the boundaries of the O(n) pieces, it costs O(n2 log n). Thus, we have the second part of
the Lemma. �

(ii) Consider the cases p > 2.

Before proving this case, we introduce some basic concepts about a convex body. For more details,
refer to Fukuda (2004). A hyperplane H of Rp is supporting P (a p-polyhedron or p-polytope) if
one of the two closed halfspaces of H contains P . A subset F of P is called a face of P if it is
either ∅, P itself, or the intersection of P with a supporting hyperplane. The faces of dimension
0, 1,dim(P)− 2 and dim(P)− 1 are called the vertices, edges, ridges and facets, respectively.

A hyperplane H = {x ∈ Rp |a′x = c},a ∈ Rp \ {0}, c ∈ R1,

A closed halfspace H = {x ∈ Rp |a′x ≤ c},
A polyhedron P = {x ∈ Rp |Ax ≤ b}, A ∈ Rm×p,b ∈ Rm,

A Polytope P = {x ∈ Rp |Ax ≤ b, I ≤ x ≤ u}, I,u ∈ Rp,

A polyhedral cone P = {x ∈ Rp |Ax ≤ 0},

9

Obviously, exact computation is achieved if we can obtain the RHS of display (12). For the latter,
we appeal to Proposition 2.1. To implement the proposition, we need to solve the two types of
optimization problem (see Section 2.4 for implementation).

By the discussion immediately before the theorem, we know the key for the optimization problems
is to identify all pieces Pk (k = 1, · · · , N(n, p)) of Sp−1. Equivalently, we need to identify all N(n, p)
distinct permutations of {1, 2, · · · , n}. The latter is equivalent to finding a unit vector u ∈ Pk for
each Pk which can produce the unique fixed permutation over Pk.

Each Pk is the intersection of Sp−1 and the polyhedron cone formed by the constraint B′v ≤
0(n−1)×1 in (13). The edge (or ridge) of the cone can be used to find the u above, which is shared
by another adjacent cone. In other words, the edge (or ridge) is the intersection of (at least) two
hyperplanes H0s which go through the origin and are perpendicular to two hyperplanes H1s, each of
which is formed by points from {ti}, respectively.

The direction from the origin to any other point on the intersection hyperline of two hyperplanes
H0s is a solution of the vector sought above. We denote the direction by u (u could also be obtained
more costly via the origin and any vertex of a polytope through vertex enumeration, see Bremner et
al., 1998, Paindaveine and Śiman (2012) and Liu and Zuo (2014)).

Each u lies on the boundary of Pk. It not only lies in the facet of one cone but also lies in that
of an adjacent cone which shares the common intersection hyperline (edge or ridge) with the former
cone (cf. Fig. 1 of Mosler et al (2009)). A tiny perturbation of u in opposite directions will cause u to
enter the interiors of the two adjacent cones. There might be more than two cones that are adjacent.
Thus, every u might yield two or more new permutations (the scheme in the algorithm yields up to
8× (p− 2) distinct ones, p > 2).

Update the total number Npermu of distinct permutations. With respect to each distinct permu-
tation, or equivalent over each Pk, update supv∈Sp−1 |g(v)| according to Proposition 2.1 and carry out
one of the two types of optimization.

Repeat above steps (find more us) until Npermu = N(n, p) or the UF can not be improved after
trying κp more distinct permutations (κ is a positive integer, which could be something like 30).

For a given data set (or {ti}), the total number of H1s is fixed, but for each H1, there are
infinitely many H0s (p > 2) which go through the origin and are perpendicular to H1. So by utilizing
different H0s one can always obtain all distinct permutations in theory. If one obtains N(n, p) distinct
permutations which means that each piece of Pk has been visited (or all relevant directions us have
been obtained), the resulting UF (or PRD) is exact in theory. In practice, however, not every distinct
permutation updates the UF. In the latter case, the stopping rule “until UF can not be improved”
becomes handy.

The cost of computation of key elements of the descriptions above is as follows.

(a) calculating all {ti} (assume they are in a general position) and N(n, p) costs O(np),

(b) calculating normal vectors vi of H
i
1, normal vectors ui of H

i
0 (i = 1, 2), and u (which is perpen-

dicular to ui) costs O(p3),

(c) producing each permutation costs O(n(p+ log n)),

(d) updating the total number of distinct permutations cost O(nNpermu),

(e) updating supv∈Sp−1 |g(v)| according to Proposition 2.1 costs

(i) O(n) for obtaining kvi (i = n1, n2), tin1
, and tin2

,

10

(ii) O(p1.5n + p2.5) for linear programming (see Yin Tat Lee and Aaron Sidford (2015) which
is even further improved by Cohen, Lee, and Song (2019)),

(iii) O(npNiter) for the type II non-convex and nonlinear optimization problem. One can use the
conjugate gradient method or the even better primal-dual interior-point method (Wright
(1997), Morales, et al (2003)) combined with the sequential quadratic programming (SQP)
(Nocedal and Wright (2006)), e.g. package LOQO (Vanderbei and Shanno (1999) and
Vanderbei (1999)). Where Niter is the number of iterations needed in LOQO.

Keeping only the dominating terms, we have the overall worst-case time complexity TC(n, p,Niter) =
O(N(n, p)(p3 + n log n+ np1.5 + npNiter)).

This completes the proof of the theorem. �

Pseudocode (Exact computation of the UF(β;Fn
Z), or equivalently of the PRD(β;Fn

Z))

• Input: Given a sample Z(n) := {(x′
i, yi)

′, i = 1, · · · , n} and a β in Rp,

• Calculate {ti} (assume they are in a general position) and N(n, p); set UF= Npermu = 0.

• While (Npermu < N(n, p))

1 Obtain u and its induced permutations, store distinct permutations and update its total
number Npermu.

2 Update UF= supv∈Sp−1 |g(v)| via Proposition 2.1 and carry out the corresponding opti-
mization for each distinct permutation.

3 If UF can not be improved after trying κp more distinct permutations (κ = 30), break the
loop.

• Output: UF (or 1/(1 + UF)) of the β with respect to Fn
Z . �

2.2.2. Exact computation algorithms

(I) Algorithm for the exact computation of the UF(β;Fn
Z) and the PRD(β;Fn

Z) in R2

Before listing the key steps of the algorithm, we make some comments.

(i) Directions that are perpendicular to the line segment connecting ti and tj could be the boundary
of angular regions, so we will have to include them in our calculation.

(ii) supv∈Si
|g(v)| (i = 1, 2) can be obtained along the median sequence and the directions given

in (i) above.

Exact Algorithm EA-UF2D

Input a β and n data points Z(n) = {(xi, yi)
′} in R2; Output UF(β;Fn

Z) and PRD(β;Fn
Z).

Initial Step: (i) Obtain N := Np
n({tm}) unit vectors uk(i, j) that are perpendicular to the all

possible N hyperplanes formed by ti and tj from {tm}, k = 1, · · · , N . (ii) Sort uk(i, j) according
their polar angles such that αi1 ≤ αi2 ≤ · · · ,≤ αiN . (iii) Record the pair (i, j) associated with
αk as the pair (ik, jk).

Set a seven-component initial matrix I0 with initial values corresponding to the seven cases in
Proposition 2.1. Let k = 0,Mk = I0, uk = (1, 0)′ and i1, · · · in be a permutation induced by uk.
If i ̸= j and t′iuk = t′juk = t′ikk

uk, set m1
k = ik = i and m2

k = jk = j, else m1
k = m2

k = ik =

jk = ikk, where kk = ⌊(n+ 1)/2⌋.

11

Loop step: While (k <= N + 1) { Let v = uk. Update Mk according to Corollary 2.1. Let
k = k + 1, v = (cos(αk), sin(αk)). If the set Sm

k−1 := {m1
k−1,m

2
k−1} intersects with the set

Sk := {ik, jk}, then let m1
k = ik,m2

k = jk; otherwise, let k = k + 1, mi
k = mi

k−1, i ∈ {1, 2}. }
For (i in 1:n) { get vi that is perpendicular to ti, using vi to update MN+i−1 according to
Proposition 2.1 and to obtain MN+i.}

Final step: Set the maximum no-zero element of MN+n − I0 be the UF(β, Fn
Z).

(II) Algorithm for the exact computation of UF(β;Fn
Z) and PRD(β;Fn

Z) in Rp, p > 2

Exact Algorithm (EA-UFHD)

Input a β and n data points Z(n) = {(x′
i, yi)

′} in Rp; Output UF(β;Fn
Z) and PRD(β;Fn

Z).

(a) Compute N(n, p) and call it by N , let kpm = 0. (O(p), assume that q =
(
n
p

)
).

(b) Construct two non-parallel hyperplanes Hi (i = 1, 2) (each of which is formed by p points from
{ti}) with normal vectors vi, i = 1, 2, respectively.

(O(pn+ p3))

Find two hyperplanes H⊥
i that are through the origin and perpendicular to Hi and with normal

vectors ui, i = 1, 2, respectively. (O(p3))

Let U be the unit vectors matrix each of its (p− 2) columns is perpendicular to both of u1 and
u2. O(p)

(c) For each column vector of the U above, call it u, introduce eight vectors ±u ± v1 ± v2. For
each of eight vectors, obtain its induced permutation, and store it in a matrix if it is a new one.
Update the total number of distinct permutations kpm. O(n(p+ log n+ kpm))

For each distinct new permutation and the associated vector v, carry out the optimization to
update |g(v)| via Proposition 2.1. Also use v1 and v2 to update |g(v)| via Proposition 2.1.
(O((n+max{np1.5 + p2.5, npNiter}))

(d) while (kpm < N) { do (b), (c) above until either kpm = N or UF cannot be improved.}
(O(N(p3 + (max{p2.5 + np1.5, npNiter}) + n(p+ log n)))))

(e) Output the final UF(β;Fn
Z) via Proposition 2.1 and (12). (O(1))

Overall cost in the worst case is O(N(n, p)(p3 + n log n+ np1.5 + npNiter)).

Remarks 2.2

(I) EA-UFHD exactly follows the idea given in the proof of Theorem 2.1. Since there are infinitely
many H⊥

i s (that go through the origin) for each Hi, in theory one can get all distinct permutations,
equivalently all desirable unit directions u, and the final UF (or PRD) obtained is in theory exact.

(II) In the best scenario, N(n, p) can be replaced by O(n2). Even in this case, the cost of exact
computation in the worst case is O(n2(p3 + n log n+ np1.5 + npNiter), which is still unaffordable for
large n and/or p. An approximate algorithm, such as AA-UF-3 (introduced below) with cost of
order O(N(np+ p3)), where tuning parameter N being the total number of normal directions of the
hyperplanes formed by p points from {ti}, is more feasible in practice.

(III) On the other hand, besides theoretical interest itself, without the slow exact algorithm as the
benchmark, no one can develop fast practically feasible approximate algorithm with known acceptable

12

accuracy for large n and p. The contribution and importance of the exact algorithm can never be
over-emphasized. �

However, exact computation of the UF(β;Fn
Z) or the PRD (β;Fn

Z) is not our primary goal. Our
ultimate goal is to seek depth induced median or other estimators. Practically, the latter has to be
computed approximately. In the following, we discuss some more practically feasible approximate
algorithms.

2.3. Approximate computation

Approximate computation of statistical depth functions is common and has been carried out in
Rousseeuw and Struyf (1998), Dyckerhoff (2004), Cuesta-Albertos and Nieto-Reyes (2008), Chen et
al. (2013), and Zuo (2018) and in the references cited therein.

Here we present three approximate algorithms. The first one is a straightforward naive one. It
randomly selects a fixed number N directions from a distribution (e.g. uniform on the hypersphere),
and decorrelating the data before calculation the UF(β;Fn) defined in (9) along those directions.

Approximate algorithm AA-UF-1

Input a β and n data points Z(n) = {(x′
i, yi)

′} in Rp; Output UF(β;Fn
Z) and PRD(β;Fn

Z).

(a) Randomly select N unit directions v ∈ Sp−1 according to a uniform distribution on the hyper-
sphere, use the formula given in (9) or (8) to calculate/update supv∈Sp−1 |g(v)|.
(Overall cost is O(npN), the cost to find median can be as low as O(n)). �

The second approximate algorithm below employees the idea in EA-UFHD. It considers the directions
that represent the edges of the convex cones, where the cones stem from the origin and partition the
entire sphere Sp−1 into disjoint (convex) pieces.

When v moves over each piece, the permutation induced is fixed. By the fundamental theorem of
linear programming, the solution of the maxima or minima of a linear function over a convex polygonal
region occurs at the region’s corners. (Note that we no longer have linear functions in the Type II
optimization scenario).

Approximate algorithm AA-UF-2

Input a β and n data points Z(n) = {(x′
i, yi)

′} in Rp; Output UF(β;Fn
Z) and PRD(β;Fn

Z).

(a) Compute the ti, i = 1, · · · , n. (total cost O(np))

(b) Sample two sets Pi, each with p points, from {ti}. Construct two hyperplanes Hi with normal
vectors vi, uniquely determined by Pi, respectively. Try different P2 until v2 is not parallel to
v1. (total cost (O(p3))

(c) Construct two hyperplanes H⊥
i (with normal vectors ui) that is through the origin and perpen-

dicular to Hi, respectively. (total cost (O(p3)))

(d) Obtain v = u1 × u2 and v0 = v/∥v∥; use v0 and the formula in (9) to update supv∈Sp−1 |g(v)|.
(total cost O(np))

(e) Repeat (b)-(d) N times. (total cost O(N(np+ 2p3))). Overall cost is O(N(np+ 2p3) + np)). �
The one below uses N normal vectors of the hyperplanes determined by p points from {ti}.

Approximate algorithm AA-UF-3

Input a β and n data points Z(n) = {(x′
i, yi)

′} in Rp; Output UF(β;Fn
Z) and PRD(β;Fn

Z).

13

(a) Compute the ti, i = 1, · · · , n. (total cost O(np))

(b) Sample p points from {ti}, find the normal vector v of the hyperplane determined by them.
Along v, use the formula (9) to calculate/update supv∈Sp−1 |g(v)|. (total cost O(p3 + np))

(c) Repeat (b) N times. (total cost O(N(p3 + np))). Overall cost O(N(np+ p3) + np)). �

2.4. Examples

To better understand the algorithms in the last two subsections, we present some examples. Al-
gorithms for the deepest regression lines discussed in Section 3 are also employed below.

For the exact algorithm, we now explain the implementation of the two types of optimization.

Given a direction v ∈ Pk, a permutation, say, i1, · · · , in, is obtained. That is, for all the values
from {kvi = 1/t′iv}, we have kvi1 ≤ kvi2 ≤ · · · ≤ kvin , ∀ v ∈ Pk. The Type I optimization problem can
be described as

minimize: c′v,

subject to: (i) B′v ≤ 0(n−1)×1; (ii) v′v = 1,

where c is a constant vector, B is a constant matrix, and minimization could also be exchanged for
maximization. That is, we have a linear objective function with a linear inequality constraint and a
quadratic equality constraint.

When p = 2, each Pk becomes a piece of an arc of the unit circle and the cones formed by the
linear constraints are the angular regions with two radii as their boundaries. The optimization problem
becomes linear programming over the piece of arc. By the fundamental theory of linear programming,
the minimization or maximization occurs only at the boundary. Therefore, only evaluation of c′v is
needed for v at the two boundary directions. There are at most O(n2) pieces of Pk’s.

Generally, the Type I optimization problem can be solved by an augmented Lagrangian mini-
mization using the R package ‘alabama’, or by sequential quadratic programming using the R solver
‘slsqp’. Alternatively, it can be transformed into semidefinite programming problems and solved using
the R solver ‘csdp’. Also the R packages ‘optisolve’ and ‘nlopt’ are applicable.

Now we turn to the Type II optimization problem. It can be described as

minimize: b′v
v′Av ,

subject to: (i) B′v ≤ 0(n−1)×1; (ii) v′v = 1,

where b is a constant vector, A and B are constant matrices, A can be treated as a symmetric
and positive definite one, and minimization can also be exchanged for maximization.

That is, we have a non-linear, non-convex, but differentiable objective function or a rational objective
function with a linear inequality constraint and a quadratic equality constraint. The problem again
can be solved by using the R packages ‘alabama’, ‘optisolve’, and ‘nlopt’.

Example 2.4.1 Performance of exact and approximate algorithm. Here we examine the
performance of the exact versus the approximate algorithm (EA-UF2D v.s. AA-UF-1) for computing
the UF, w.r.t. their accuracy, speed, and estimated mean squared errors.

14

-4 -2 0 2 4 6 8 10
-12

-10

-8

-6

-4

-2

0

2

4

(a) three lines and six points

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) three lines and five points

Figure 4: (a) Solid red: the deepest regression line induced from the PRD. Dashed blue: the least squares line based
on five points without the horizontal outlier. Dotted green: the least squares line based on all six points. (b) Solid red:
the deepest regression line induced from the PRD w.r.t five points. Dashed blue: the least squares line based on five
points without the horizontal outlier. Dotted green: the deepest regression line induced from the RD of RH99 w.r.t.
five points.

For illustration purposes, we utilize the data set given in Huber and Ronchetti (2009) Exhibit 7.1.
Three regression lines are obtained w.r.t. the data. The first line T ∗

PRD is the maximum PRD line
(β1 = (−1.7317456,−0.8184845)′ in (intercept, slope)’ format); the second one (LS without outlier)
is the least squares line without the horizontal outlier (β2 = (−1.87,−0.977)′); the third one (LS) is
the least squares line (β3 = (0.07,−0.08)′) w.r.t. all points. See (a) of Figure 4.

Next, we calculate the unfitness of the three lines (β′s). First, the unfitness, reported in Table
1, is calculated without the horizontal outlier for the fairness of the comparison between exact and
approximate algorithms. That is, they are calculated w.r.t. just five points.

Second, using all six points, the results are very similar to those in Table 1 and details are omitted.
As an example, the UF from the EA are 0.8340, 1.2113, and 2.3367 and the UF from the AA (mean
of 1000 replications) are 0.5246, 0.6855 and 2.1846, respectively.

Consistent with expectations, β1 (T ∗
PRD) has the lowest UF, β2 has the second lowest UF, and

the β3 has the highest UF. That is, in terms of the UF ordering, T ∗
PRD is the best choice among the

three while β3 is the worst, fitting with the intuitive comprehension of (a) of Figure 4.

At the same time, it is not difficult to determine the regression depths (RD) of RH99 of the three
lines, they are 2/6, 1/6, 1/6, respectively. (For simple methods of calculation of the RD, see RH99
or RS98). That is, in terms of the RD ordering, the least square line β3 is as deep (or good) as the
line β2, while both are less deep than the PRD induced line T ∗

PRD, which is somewhat inconsistent
with the intuitive comprehension of (a) in Figure 4. Of course, the comparison here is not very fair
since the different methods (PRD vs RD) are based on different objective criteria and β2 and β3 use
a different number of total points.

In (b) of Figure 4, all three lines are calculated w.r.t. just five points without the outlier. The solid
red line is the deepest line induced from the PRD with β1 = (−2.083114,−1.009444)′, the dashed
blue line is the same as in (a), the dotted green line is the deepest line from the RD of RH99 with
β3 = (−1.58,−0.77)′. The RDs of the three lines are 2/5, 1/5, 3/5, respectively. This time, as
expected from T ∗

RD, the line induced from the RD becomes the deepest one.

In Table 1, the calculation of the approximate algorithm (AA) is repeated 1000 times to mitigate the
randomness; the mean and the standard deviation of 1000 UFs are calculated. 1000 unit vectors are

15

Table entries (a,b,c,d) are a:= mean of UF, b:=standard deviation (sd) of UF, c:=time consumed (in
seconds), d:=number of unit vectors used.

β1 (line L1) β2 (line L2) β3 (line L3)

EA (0.59, 0, 1.11e-3, 13) (0.87, 0, 1.28e-3, 15) (2.88, 0, 1.30e-3, 15)

AA (0.58, 4.1e-3, 1.657e-2, e+3) (0.86, 4.8e-3, 1.662e-2, e+3) (2.85, 3.4e-2, 1.664e-2, e+3)

Table 1: Performance of exact and approximate algorithms w.r.t. different β′s (lines).

used in the calculation per replication, and the time consumed per replication is reported in the table.

The table reveals that the exact algorithm (EA) is much faster than the AA. The former used
no more than 15 unit vectors whereas the latter, using 1000 vectors, still returned a smaller (under-
approximated) UF than the exact one. This is the beauty of the EA. If the number of unit vectors
used is increased to 104, then the UF from the AA is still smaller than the one from the EA which
just employed 13 unit vectors, in the β1 case. Since there is no fluctuation in the EA, all the sd’s are
zero. The time reported is the average of per replication from 1000 replications. Observations above
hold only in this special (n = 5 and p = 2) example. Note that when n and/or p increase, the EA is
no longer feasible in practice. �

Results above and below in this section are all based on Matlab code running on a desktop: In-
tel(R)Core(TM) i7-2600 CPU @ 3.40GHz. All Matlab as well as R and C++ code in this article are
downloadable via https://github.com/zuo-github/comp-prd-medians.

Example 2.4.2 Performance of exact algorithm versus approximate algorithms

In the last example, the dimension p = 2 and n = 5 are too limited in practice. In this example,
we consider standard normal random points with p = 3 and n = 10, For this fixed small data set, we
employ the EA and the AAs to compare their performance. Here we seek the best output from them,
that is the largest UF (note that the UF is defined based on the supremum of univariate unfitness; so
generally speaking, the larger the better).

For the EA, the stopping rule of the algorithm is the total number of distinct permutations (Nperm)
used by it whereas for the AAs, the stopping rule is the total number of unit directions (Nv) employed
by the AAs. The outputs from different algorithms are listed in the table below. Column one is the
number of distinct permutations used by the EA-UFHD, the second column is the number of while
loops that need to be executed to get the desired total distinct permutations. The fourth column is
the total number of directions used by the AAs.

Inspecting the table immediately reveals that (i) in order to use 120 distinct permutations, one
needs to run the while loop 18 times in the EA and can get 4.3505 for the UF. Note that each single
while loop yields a p by (p − 2) unit vector matrix u (in this case a single column vector) and each
column of u will induce eight unit vectors (see (c) of the EA-UFHD), these eight vectors will lead to
at most eight distinct permutations in each while loop. This explains why only 18 while loops are
needed. The number 120 (equal to

(
10
3

)
) in this case is exactly the total possible planes formed by

any three sample points from a data set (IGP) of size 10 in a three dimensional space. (ii) if one
uses 400 distinct permutations, then 92 while loops are needed and one can get the 8.2669 for the
UF, which is the final answer for the exact UF. (iii) for the AAs, the AA-UF-3 yields the same UF
for all number of directions considered, as long as the latter is no less than 120. The meaning of the
latter number is explained above. This phenomenon is not surprising and it is due to the design of
the algorithm which only utilizes the normal vectors of all possible planes formed by three points, the
latter is a fixed number 120 in this case. (iv) the AA-UF-1 yields larger UF than that of AA-UF-2 in

16

EA-UFHD AAs

Npermu Nwhile−loop UF Nv used AA-UF-1 AA-UF-2 AA-UF-3

used executed UF UF UF

120 18 4.3505 120 4.0414 4.3862 5.4190

200 35 5.1988 1,000 5.8134 5.2446 5.4190

300 61 6.3708 10,000 6.6369 6.4582 5.4190

400 92 8.2669 100,000 6.7699 6.6985 5.4190

500 136 8.2669 1,000,000 6.7924 6.8182 5.4190

600 187 8.2669 10,000,000 6.8930 6.8675 5.4190

Table 2: Performance comparison of exact versus approximate algorithms on a fixed standard normal data set with
the size 3 by 10.

most cases. (v) most important, the AAs even after exhausting 10 million directions still can not get
a comparable size of UF that the exact algorithm produces using just 400 distinct permutations.

Notice that in this example, the number of total possible distinct permutations is N(n, p) =
2 ∗ (

(
119
0

)
+

(
119
1

)
+

(
119
2

)
) = 14282. However, 400 distinct permutations are enough for the exact

UF. The superiority of the EA over the AAs is clearly demonstrated. In summary, the AAs can run
much faster than the EA, but it is very difficult for them to get the results the EA provides (in fact,
AA-UF-1 yields the UF 6.8930 even after depleting 10 million directions).

On the other hand, the EA is not feasible in practice for larger n and p, I would not recommend it
for p > 3. Recall, the possible distinct permutations in p = 3 and n = 10 case above is 14282. In table
2, we used 400 permutations to get the exact result of the UF leading immediately to an issue. That
is, in practice what should be the cut off number N for the distinct permutations? One suggestion
is N = min{

(
n
p

)
+ 500, 1000} (obviously, there is an alternative automatic stopping rule based on the

UF) and the while loop should be executed at most 1000 times. �

However, there are at least two drawbacks in the comparison above, (i) the data set is still small,
(ii) all results are random (since all use random sampling) (which means perhaps 200 permutations
are enough for the exact UF if the EA runs many times. Similarly, the AA using 1000 directions
might get much better results if it runs many times). Each result in table 2 comes from a single run.
Therefore the results and conclusions above have their limitations.

Example 2.4.3 Performance of exact algorithm versus approximate algorithms

In this example, we will consider the cases p = 3, n = 50 and p = 4, n = 20. Furthermore, we will
run each of the algorithms 100 times (ideally it should be 1000 or even 10, 000 times, but due to the
time consumed by the EA-UFHD, they are not affordable options). The q for the two cases are 19600
and 4845 and N(n, p) are 384140402 and 37887089270, respectively.

Furthermore, we try to set up a fair comparison base for the two types of methods. We will use the
number of directions employed by them as the criterion for a performance assessment. Note that for
the EA, we count the number of directions it utilized as follows. In each while loop, there are 8*(p-2)
directions induced by the u matrix; furthermore, there are v1 and v2 vectors, so in total 2+8∗ (p−2)
unit vectors are employed by the EA.

17

dimension Nv used methods UF(mean, min, max) Dmax Nnega

p = 3 400 EA (2.0797 1.8820 2.2315) 0 0

n = 50 AA1 (2.0242 1.8475 2.1118) -0.1197 74.0000

AA2 (1.9094 1.7287 2.0822) -0.1493 95.0000

AA3 (2.0800 1.9811 2.1335) -0.0981 50.0000

800 EA (2.2673 2.0406 2.4942) 0 0

AA1 (2.2217 2.0031 2.3756) -0.1186 58.0000

AA2 (2.1308 1.8936 2.3436) -0.1506 82.0000

AA3 (2.3037 2.1754 2.3762) -0.1180 36.0000

p = 4 360 EA (3.3443 2.7657 4.6322) 0 0

n = 20 AA1 (2.8832 2.4389 3.4670) -1.1652 91.0000

AA2 (2.5424 2.1256 3.1373) -1.4949 98.0000

AA3 (3.4406 3.1707 3.5357) -1.0964 36.0000

540 EA (3.8939 2.8989 6.0121) 0 0

AA1 (2.9247 2.3428 4.4621) -1.5500 93.0000

AA2 (2.1350 1.4178 3.2886) -2.7235 100.0000

AA3 (4.6775 4.1511 4.7682) -1.2439 11.0000

Table 3: Performance of the EA and the AAs with respect to different data sets and directions used.

We (i) compute the mean, minimum (min) and maximum (max) of 100 UFs for each of the
algorithms, and (ii) compute Dmax := the difference in max UF (the max of UF of any algorithm
subtracted by that of the EA) and (iii) count the times that the UF of any algorithm is less than that
of the EA in the 100 trials (denote by Nnega := the count of the negative Duf s, Duf is defined as the
UF of any algorithm subtracted by that of the EA for each of 100 trials).

Results are listed in table 3. Note that in the p = 3 case, 400 and 800 directions used by the
AA amounts to 40 and 80 while loops executed in the EA-UFHD (we convert them to the number of
while loops in EA to terminate the algorithm). In the p = 4 case, 360 and 540 directions for the AA
amounts to 20 and 30 while loops executed in the EA.

Examining the table reveals that (i) in all cases considered, the EA produces the largest UF among
the 100 trials, this is demonstrated by the max or Dmax column in the table; (ii) the AA3 is the second
best method among all four in the sense that (a) it yields the largest UF among the three AA methods
in mean, minimum, and maximum of 100 UFs in all cases, and (b) its mean and minimum of 100 UFs
are even larger than those of the EA in all cases considered (except the most important maximum of
100 UFs), and (iii) the last columns in table 3 shows the percentage that the EA yields a larger UF
than that of any other AAs. For example, in the p = 4, n = 20, and Nv = 540 case, the UF of the
EA is larger than that of AA2 in every trial. �

The examples above clearly demonstrate the advantage of the EA over the AAs. But as said before,
the EA is not very feasible in practice due to its limitation on p and n. For example, it is not capable

18

Performance of approximate algorithms w.r.t. efficiency and accuracy

p methods mean UF standard deviation time consumed number of v used

2 AA-UF-1 0.3035 0.1053 26.4750 103

AA-UF-2 0.3041 0.1054 116.0503 103

AA-UF-3 0.3042 0.1057 34.7244 103

5 AA-UF-1 0.4815 0.0994 31.1470 103

AA-UF-2 0.4447 0.0995 227.3421 103

AA-UF-3 0.5472 0.1095 80.3334 103

10 AA-UF-1 0.5198 0.0928 33.4609 103

AA-UF-2 0.4467 0.1049 278.6988 103

AA-UF-3 0.7385 0.1156 100.4025 103

20 AA-UF-1 0.5253 0.0877 40.5291 103

AA-UF-2 0.4152 0.1054 570.2156 103

AA-UF-3 1.1656 0.1626 236.5488 103

Table 4: Performance comparison of the three approximate algorithms.

of handling the case p = 20 and n = 100 and running 1000 times with the while loop executed 20
times in each trial. But the AAs are more feasible and can easily handle the situation. Furthermore,
the depth induced median has to be computed eventually by approximate methods. The following
example is devoted to the comparison of the three AAs.

Example 2.4.4 Performance comparison between three approximate algorithms

Here we generate m = 1, 000 samples from the model: yi = β0 + β1xi1 + · · ·+ βp−1xip−1 + ei, i =
1, 2, · · · , n, with sample sizes n = 100, where ei ∼ N(0, 1). In light of the regression equivariance of the
deepest projection depth estimator and the invariance of the PRD, we can assume without loss of gen-
erality (w.l.o.g.) that β0 = (β0, β1, · · · , βp−1)

′ = (0, 0, · · · , 0)′. We generate Zi = (xi1 , · · · , xip−1
, yi)

from a p-dimensional standard normal distribution.

The three AAs compute the unfitness of β0 = (0, 0, · · · , 0)′ with results (means and deviations of
1000 UFs, total time consumed (in seconds) for 1000 samples, and unit directions used) listed in
Table 4 which features the attributes of the three AAs.

The table reveals that (i) the AA-UF-1 is fastest and the AA-UF-2 is slowest in all cases, confirming
the theoretical time complexity results; (ii)the AA-UF-3 is the most accurate in all cases (with the
largest mean UF), and the AA-UF-2 is superior over the AA-UF-1 only for the case p = 2 in terms of
accuracy (mean is slightly larger); (iii) the AA-UF-1 is most efficient (smallest s.d. and fastest), and
the AA-UF-3 has the largest s.d., but this could be reversed by increasing the number of directions
v used to

(
n
p

)
; (vi) p has the least (no greater than linear) effect on the time consumed by AA-UF-1

and it reduces the s.d. of AA-UF-1 when it increases; (v) overall, the AA-UF-3 (or the AA-UF-1) is
recommended. �

19

3. Computation of the PRD induced median

3.1. Algorithms

Our fundamental goal for introducing the notion of depth in regression is not the depth itself
but its induced median (and other estimators). Computation of the latter is our eventual objective.
It seems that there is no analytical way to identify the depth induced median. Consequently the
computation of the median in high dimensions has to be carried out approximately.

Before addressing the approximate computation of the maximum projection depth estimator (or
median), we first show that it indeed deserves to be called a median since it recovers the univariate
sample median when p = 1. Recall that (assume (w.l.o.g.) again Sy = 1)

β∗
PRD = arg min

β∈Rp
sup

v∈Sp−1

∣∣∣Medi{
yi −w′

iβ

w′
iv

}
∣∣∣. (14)

When p = 1, it reduces to the following

β∗
PRD = argmin

β∈R
sup
v=±1

∣∣∣Medi{
yi − β

v
}
∣∣∣. (15)

We have

Proposition 3.1 When p = 1, the β∗
PRD recovers the regular sample median of {yi}.

Proof : Let y(1) ≤ y(2) ≤ · · · ≤ y(n) be the ordered values of {yi} and µ = (y(n1) + y(n2))/2, where
n1 and n2 are defined in Proposition 3.1, i.e., µ is the regular sample median of {yi}. We show that
β∗
PRD = µ. It is readily seen that

β∗
PRD = argmin

β∈R

∣∣Medi{yi − β}
∣∣ = argmin

β∈R

∣∣Medi{yi} − β
∣∣ = argmin

β∈R

∣∣µ− β
∣∣, (16)

where the first equality follows from (15) and the oddness of the median operator; the second one
follows from the translation equivalence (see page 249 of RL87 for definition) of the median as a
location estimator; the third one follows from the definition of µ.

The RHS of (16) above indicates that µ is the only solution for β∗
PRD. �

Remark 3.1

The proposition holds true for the univariate population median. That is, β∗
PRD also recovers the

univariate median in the population case. �

Now we turn to the approximate computation of β∗
PRD in (14). First, we notice that the β∗

PRD

must be bounded, or equivalently, the search for the optimal β in the RHS of (14) can be limited
within a bounded set (hypersphere).

Proposition 3.2. For a given Z(n) = {(x′
i, yi), i = 1, · · · , n} and a β ∈ Rp, under (A1) there is a

constant c∗ such that

β∗
PRD = arg min

∥β∥≤c∗
sup

v∈Sp−1

∣∣∣Medi

{yi −w′
iβ

w′
iv

}∣∣∣.
Proof : To see this, notice that for a given β ̸= 0, let v0 = β/∥β∥, then

UF(β;Fn
Z) = sup

v∈Sp−1

∣∣∣Medi{(yi −w′
iβ)/w

′
iv}

∣∣∣ ≥ ∣∣∣Medi{(yi −w′
iβ)/w

′
iv0}

∣∣∣
=

∣∣∣Medi{yi/w′
iv0} − ∥β∥

∣∣∣ −→ ∞, a.s., as ∥β∥ → ∞,

20

where the last step follows from the fact that Medi{yi/w′
iv0} is bounded a.s.. Let δ = UF(0, Fn

Z) and
c∗ = sup{∥β∥,UF(β, Fn

Z) ≤ δ}. This completes the proof. �

The rough idea of the approximate algorithm is as follows. Randomly select Nβ of β over a very wide
range in the parameter space Rp, calculate all UF(β, Fn

Z) w.r.t. the sample distribution Fn
Z of FZ.

Sort the latter and select p+1 βs with the smallest unfitness. Over the simplex formed by these p+1
β points (in the parameter space), search the point (β) with the smallest unfitness (equivalent to the
deepest regression line or hyperplane). Denote the latter by T∗

n, the sample version of the T∗
PRD.

In the above process, we have implicitly taken advantage of the property of the PRD(β;FZ) or the
UF(β;FZ). That is, the PRD(β;FZ) satisfies the property (P3) of Z18a (monotonicity relative to the
deepest point). Therefore, the depth region of β (the set of all βs with depth no less than a fixed
value) is convex and nested. Hence, the deepest point(s) must lie over the closed convex simplex
formed by the p+ 1 β points. The deepest PRD point is unique (see Zuo (2019b)).

The following is an approximate algorithm for the computation of T∗
n.

(A) Randomly select a set of points βj ∈ Rp, j = 1, · · · , Nβ, where Nβ is a tuning parameter
for the total number of random points β tried.

(B) For each βj , compute, over a set of randomly selected unit directions vk ∈ Sp−1, k =

1, · · · , Nv, an approximate unfitness of βj w.r.t. {Zj
ik = (yi − w′

iβj)
/
(w′

ivk)}, i = 1, · · · , n,
k = 1, · · · , Nv, where Nv is another tuning parameter.

(C) Select the deepest p + 1 βjs (points with the smallest unfitness). Search over the closed
convex hull formed by these p + 1 points via a common nonlinear optimization algorithm (e.g.
the downhill simplex method (Nelder-Mead), or the MCMC technique) to get the final deepest
β or our approximate T∗

n.

(D) To mitigate the effect of randomness, repeat the steps above (many times) so that the one
T∗

n with the maximum updated regression depth is adopted.

Remarks 3.2:

(I) The candidate (random point) β can be produced by randomly selecting p points from Z(n) =
{(xi, yi)

′, i = 1, · · · , n} which determine a (β or) hyperplane y = w′β containing all p points.
Let Sβ := {β1, · · · ,βNβ

} be all βs.

(II) The random directions could be selected among those which are normal vectors of the hyper-
planes formed by p points from Z(n) above. Furthermore, for each βj ∈ Sβ, one can consider

all vj
i = (βi − βj)/∥βi − βj∥, ∀ βi ̸= βj . Let Sv := {v1, · · · ,vNv} be all vs.

(III) For a better approximation of depth (unfitness) of βj , tune (increase) Nv. For a better approx-
imation of T∗

n, tune Nβ. Continue iterating until it satisfies a stopping rule (e.g. the difference
between consecutive depths is less than a cutoff value).

(IV) The overall worst case time complexity of the algorithm is: step (A)+(B): O(pNβ(p
2 + nNv)),

step (C): O(pNβ+NvNIterpn), where NIter is the total number of iterations in the optimization
algorithm, step(D) O(RpNβ(p

2+nNvNIter)), where R is the number of replications. The overall
cost of the algorithm is O(RpNβ(p

2+nNvNIter)), which could be reduced to O(pNβ(p
2+nNv))

by skipping steps (C) and (D).

(V) After obtaining the approximate UF of the first (p + 1) βjs, record UFmin, the minimum of
all (p + 1) UFs. For the calculation of the UF for any future βk, if along any direction v,

21

the directional UFv(βk, F
n
Z) (see (13) of Z18a)≥ UFmin, then stop the computation for βk and

move to βk+1. Update UFmin if a new UF is obtained. In this way, the overall cost of the
algorithm will be drastically reduced.

(VI) Alternative algorithms.

(i) After (A), compute the coordinate-wise median of the βs and use it as an initial point for
a nonlinear optimization algorithm (e.g. optimx or DEoptim in R) along with other arguments
(e,g. a function compute-UF) to find the T∗

n.

(ii) Increase Nv and Nβ and skip steps (C) and (D). Namely, just employ steps (A)+(B).

(iii) Seek an algorithm similar to MEDSWEEP in Van Aelst et al (2002) for the T∗
RD since when

p = 1 and regression through the origin, the T∗
PRD recovers the median of {yi/xi} (see Section

3.3 of RH99 for a related discussion). �

3.2. Computation times

As requested, we now turn to the comparison of the computation times for the T∗
PRD, the T∗

RD and
the least trimmed squares (Rousseeuw (1984)) regression (ltsReg) estimator.

As a median in regression, T∗
RD is a promising robust alternative to the classic least squares (LS)

regression estimator. In fact, in terms of asymptotic breakdown point (ABP) robustness, the former
possesses a 33% ABP (Van Aelst and Rousseeuw (2000) (VAR00)), in contrast to the 0% of the latter.

Zuo (2019b) (Z19b) has investigated the ABP of T∗
PRD, it turns out that it possesses the highest

possible ABP, 50%. For this advantage over the β∗
RD (see illustration examples in Z19b), it has to

pay a price in the computation. The cost of the computation of the β∗
RD is generally lower than that

of the β∗
PRD.

To see the difference in the computation behavior, we list in table 5 the computation time consumed
by both medians for different sample size ns and dimension ps. For the benchmark and comparison
purposes, we also list the times consumed by the famous least trimmed squares (Rousseeuw (1984))
regression (ltsReg) estimator. Function rdepth in R package “mtfDepth” was used to calculate the
RD of each candidate hyperplane. The performance of three algorithms for β∗

RD, β∗
PRD, and ltsReg,

respectively, is demonstrated in the table 5.

We generate 1000 samples Z(n) = {(x′
i, yi)

′, i = 1, · · · , n,xi ∈ Rp−1} from the Gaussian distribu-
tion with zero mean vector and 1 to p as its diagonal entries of the diagonal covariance matrix for
various n and p. They are contaminated by 5% i.i.d. normal p-dimensional points with mean vector
(10, · · · , 10)′ and diagonal covariance matrix with 0.1 as its diagonal entries. Thus, we no longer have
a symmetric errors and homoscedastic variance model (skewness and heteroscedasticity are allowed
for the RD of RH99).

For a general estimator T, if it is regression equivariant, then we can assume (w.l.o.g.) that the

true parameter β0 = 0 ∈ Rp. We calculate EMSE := 1
R

∑R
i=1 ∥Ti−β0∥2, the empirical mean squared

error (EMSE) for T, where R = 1000, β0 = (0, · · · , 0)′ ∈ Rp, and Ti is the realization of T obtained
from the ith sample with size n. The EMSE and the average computation time (in seconds) per
sample by different estimators are listed in Table 5.

Remarks 3.3 Table 5 reveals that

(I) In terms of the average time consumed per sample, or computation speed, (i) the ltsReg is the
fastest in all cases whereas the β∗

RD is the second fast method when p is 2, or 3 (and n ≤ 60).

22

Table entries: (empirical mean squared error, average time per sample (seconds))

n method p = 2 p = 3 p = 4 p = 6

40 β∗
PRD (0.232, 0.060) (0.468, 0.261) (0.723, 0.304) (1.429, 0.354)

β∗
RD (0.243, 0.038) (0.492, 0.124) (2.7e+04, 6.542) (1.717, 9.619)

ltsReg (0.380, 0.007) (0.579, 0.011) (0.781, 0.010) (1.434, 0.018)

60 β∗
PRD (0.160, 0.080) (0.323, 0.310) (0.510, 0.445) (0.894, 0.532)

β∗
RD 0.172, 0.043) (0.366, 0.286) (2565.1, 23.14) (1.206, 11.82)

ltsReg (0.326, 0.007) (0.475, 0.013) (0.599, 0.015) (0.894, 0.024)

80 β∗
PRD (0.124, 0.100) (0.260, 0.436) (0.413, 0.613) (0.691, 0.634)

β∗
RD (0.130, 0.047) (0.291, 0.569) (2012.6, 58.42) (1.111, 14.08)

ltsReg (0.290, 0.009) (0.416, 0.018) (0.506, 0.020) (0.703, 0.029)

100 β∗
PRD (0.100, 0.123) (0.221, 0.528) (0.346, 0.687) (0.555, 0.763)

β∗
RD (0.109, 0.048) (0.252, 0.950) (5.5e+06, 101.8) (0.963, 16.37)

ltsReg (0.252, 0.010) (0.418, 0.021) (0.455, 0.024) (0.578, 0.035)

Table 5: Performance of different regression methods for various n and p.

(ii) the β∗
PRD is the slowest in the p = 2 and p = 3 and (n ≤ 60) cases whereas the β∗

RD

unexpectedly becomes the slowest when (p ≥ 4). (iii) the β∗
PRD is at least 20 (20 to 148) times

faster than the β∗
RD when p > 3.

Note the comparison here is somewhat unfair since the ltsReg uses Fortran and the β∗
RD or

the β∗
PRD employs Rcpp for the background computation. This example also confirms that old

Fortran is still an excellent programming language for scientific computation.

(II) Computation speed is just one important performance criterion. Accuracy or efficiency is an-
other, if not a more important, one. In terms of EMSE, there is an across-the-board winner.
That is, the β∗

PRD has the smallest EMSE in all cases considered (in other words, it has the
highest empirical relative efficiency).

(III) The β∗
PRD runs in less than one second in all cases considered. �

Overall, Table 5 suggests that the β∗
PRD is a promising alternative among the competitors in

regression.

All R code (downloadable via the link provided at the end of Example 2.4.1) ran on a desktop
Intel(R)Core(TM) i7-2600 CPU @ 3.40GHz.

The ltsReg has a fairly good finite sample relative efficiency, but it is also notorious for its in-
efficiency in the asymptotic sense (with an asymptotic efficiency of just 7% (see Stromberg, et al.
(2000)). The ltsReg benefits heavily in terms of speed from Fortran’s compilation.

23

200 600 1000

0
20

0
40

0
60

0

all eleven countries

cigarettes consumed in 1930

de
at

h
pe

r
m

ill
io

n
in

 1
95

0

Line types

LS
T*RD
T*PRD
ltsReg

200 600 1000

0
20

0
40

0
60

0

data without USA

cigarettes consumed in 1930

de
at

h
pe

r
m

ill
io

n
in

 1
95

0

Line types

LS
T*RD
T*PRD
ltsReg

Figure 5: Four regression lines for a dataset with a single outlier (Solid red for the LS, dashed blue for the T∗
RD, dotted

black for the T∗
PRD and dotdash green for the ltsReg). Left: Original eleven countries, lines from the T∗

RD, the T∗
PRD

and the ltsReg are similar while the LS line is attracted by a single country, the USA. Right: The outlier, USA, is
removed from the original data, all four lines are very similar and catch the overall pattern.

3.3. Examples

Example 3.3.1 Deepest regression line T∗
PRD for a real data set

Lung Cancer and Smoking Data set is composed of per capita consumption of cigarettes in eleven
countries in 1930 and the death rates (number of deaths per million people) from lung cancer in 1950
(see Table 3-3 of Tufte (1974), source: Doll (1955)).

To find out the relationship between death rate and the cigarettes consumed, we first regress
the data with the deepest line T∗

PRD, for benchmark and comparison purposes, lines from the T∗
RD

(another line induced from depth), the LS (classical one) and the lstReg are also given. In terms
of (intercept, slope) form, they are (65.7488570, 0.2291153), (-14.1666667, 0.4166667), (-14.9401198,
0.4191617), and (13.553435, 0.357668) for the LS, the T∗

RD, the T∗
PRD and the ltsReg, respectively.

The two depth lines are almost identical whereas the LS line is attracted by a single country USA
downward, see the left panel of Figure 5.

Next we remove the single outlier and repeat the steps above, we have this time (13.553435,
0.357668), (-14.6184633, 0.4182743), (-14.1666667, 0.4166667) and (13.553435 0.357668) for the LS,
the T∗

RD, the T∗
PRD and the ltsReg, respectively. The ltsReg and the LS are the same as the previous

lstReg with USA included and the T∗
RD and the T∗

PRD are almost the same with the T∗
PRD being

exactly the same as the previous T∗
RD with USA included, see the right panel of Figure 5.

Overall, this example indicates that a single outlier can drastically affect the LS line and distin-
guishes the LS line from other robust lines, but it can not differentiate the other three. �

Example 3.3.2 Performance of the deepest line of T∗
PRD versus T∗

RD

Here we first generate 100 points Zi = (x, y)′ from the bivariate normal distribution N(µ,Σ), where

µ =

(
8
0

)
, Σ =

(
9 0.9
0.9 1

)
.

24

−5 0 5 10 15

−
5

0
5

10
15

uncontaminated

x−axis

y−
ax

is

Line types

LS
T*RD
T*PRD
ltsReg

−5 0 5 10 15

−
5

0
5

10
15

contaminated

x−axis

y−
ax

is

Line types

LS
T*RD
T*PRD
ltsReg

Figure 6: Four regression lines for data with or without contamination (Solid red for the LS, dashed blue for the T∗
RD,

dotted black for the T∗
PRD, and dotdash green for the ltsReg). Left: Original 100 normal points, lines from the LS, the

T∗
RD, the T∗

PRD and the ltsReg are similar and catch the overall linear pattern . Right: 34% contaminated data set,
both the LS and the T∗

RD “break down” while the T∗
PRD and the ltsReg resist the contamination and still track the

major pattern.

Among the 100 points, we randomly select 34 points and replace them by 34 other points from another
bivariate normal distribution N(µc,Σc) with

µc =

(
1
11

)
, Σc =

(
0.1 0
0 0.1

)
,

Thus, we have a 34% replacement-contamination data set.

First: w.r.t. the un-contaminated data set, we compute the deepest regression line induced from
the PRD and then the competitor line induced from the RD of RH99. Again we also calculated
the LS and the ltsReg lines. The four lines in (intercept, slope) form are (-0.2533241, 0.0431503),
(-0.25902968, 0.04446287), (-0.51728622, 0.08431267) and (-0.42734074, 0.06248309) for the LS, the
T∗

RD, the T∗
PRD and the ltsReg, respectively. They are almost identical as shown in the left panel of

Figure 6. All four seem to be useful, catching the overall linear pattern.

Second: w.r.t. the replacement-contaminated data set, we also compute the four lines. They are
(9.643466, -1.085616), (11.407796, -1.487017), (0.71612780, -0.03124584) and (-0.42734074, 0.06248309)
for the LS, the T∗

RD, the T∗
PRD and the ltsReg, respectively. They differ in obvious manners as shown

in the right panel of Figure (6). Both the LS and the T∗
RD lines break down (attracted by the cloud

of contamination) whereas the T∗
PRD and the ltsRg can resist the 34% contamination (in fact up to

50%) and catch the major pattern and continue to provide a useful regression line.

The computations in the example above (and below) are carried out with the R programming
language for two reasons: (i) available code (package: mrfDepth) for the RD of RH99 is in R and (ii)
fair comparisons. R code is available (see the link posted at the end of Example 2.4.1). �

Remarks 3.2:

(I) Example 3.3.2 confirms the theoretical results in Z18b. That is, the deepest regression line
or hyperplane induced from the RPD is a robust alternative to the traditional LS lines or

25

hyperplanes and has a higher asymptotical breakdown point (ABP) (50%) than the leading
depth median (33%), the deepest regression estimator induced from the RD of RH99. Note that
with an appropriate trimming rate the least trimmed squares line possesses the best possible
ABP whereas if the rate tends to 0% it leads to the LS line or hyperplane having 0% ABP since
just one outlier can ruin them.

(II) Robustness does not work in tandem with efficiency. So the key question is: Are the deepest
projection regression lines or hyperplanes (T∗

n) efficient? In the following, ltsReg is excluded for
a pure apples vs apples comparison (depth median vs depth median) and since it is notorious
for its inefficiency (with asymptotic efficiency of just 7% (see Stromberg, et al.(2000)). �

Replication 1000 times, n = 65

Performance criteria β∗
PRD β∗

RD

Case I p = 3

EMSE 0.09328212 0.11425414

Time consumed per sample 0.31453851 0.33221344

Case II p = 4

EMSE 0.1516812 3265582

Time consumed per sample 0.25505812 25.63505434

Case III p = 5

EMSE 0.2302744 0.2706360

Time consumed per sample 0.21889922 6.42221254

Table 6: Performance of different regression depth medians for the three true β0s.

Example 3.3.3 Now we investigate the performance of the two regression depth medians (β∗
PRD, and

β∗
RD) in a slightly different setting. We generate 1000 samples {(x′

i, yi)
′ ∈ Rp} with a fixed sample

size 65 from an assumed model: y = β0
′x+ e, where x = (1, x1, · · · , xp−1)

′ and β0 = (β0, · · · , βp−1)
′

are in Rp and xi and e are from either a Cauchy or a standard Gaussian distribution.

We list the average time consumed (in seconds) per sample and the EMSE (the same formula as
before) for the two methods with respect to different β0’s in Table 6. Case I β0 = (−2, 0.1, 1)′, all xi

and e are from N(0, 1) distribution. Case II β0 = (−2, 0.1, 1, 5)′, x1 is from N(0, 1) and all other xi

and e are from the Cauchy distribution. Case III β0 = (50, 0.1,−2, 15, 100)′, all xi and e are from
N(0, 1).

Inspecting table 6 reveals that (i) the β∗
PRD is faster than the β∗

RD in all cases; it is 100.5 and
29.34 times faster in cases p = 4 and p = 5, respectively. (ii) the β∗

PRD has a smaller EMSE in all
cases. (iii) The sample variance (or more precisely EMSE) of the PRD induced median increases when
p increases whereas the time consumed per sample for the fixed sample size by the β∗

PRD decreases.

Numerical summary results in table 6 for 1000 samples are also displayed graphically in terms of
their distributions in Figures 7 and 8. The times consumed by two methods for each of 1000 samples
are displayed in Figure 7 with boxplots. Inspecting the Figure immediately reveals that in terms of
time consumed per sample, the β∗

PRD is faster than the β∗
RD in all, especially p = 4 and p = 5 cases.

26

PRD RD

0
.2

0
.4

0
.6

0
.8

time consumed (seconds) for 1000 samples

p=3

(a) p=3

PRD RD

0
5

1
0

2
0

3
0

time consumed (seconds) for 1000 samples

p=4

(b) p=4

PRD RD

0
2

4
6

8
1
0

time consumed (seconds) for 1000 samples

p=5

(c) p=5

Figure 7: Time consumed per sample by two depth induced deepest regression estimators β∗
PRD (green box) and β∗

RD
(purple box) for the three β0 cases.

The distributions of the squared deviations ∥β∗
i − β0∥2 per sample for two methods β∗

PRD and β∗
RD

are displayed in Figure 8. The figure clearly indicates that in the cases p = 3 and p = 5, the median
of the squared-deviations of the β∗

PRD is the smaller one whereas it is also true in the case p = 4
but less clear. Notice that in the latter case, there is an obvious outlier for the β∗

RD; it is greater
than 6.0×107, which explains why the mean of the squared-deviations (empirical mean squared error,
EMSE) in table 6 for the β∗

RD is huge. �

PRD RD

0
.0

0
.2

0
.4

0
.6

0
.8

squared deviations for 1000 samples

p=3

(a) p=3

PRD RD

0
e
+

0
0

2
e
+

0
7

4
e
+

0
7

6
e
+

0
7

squared deviations for 1000 samples

p=4

(b) p=4

PRD RD

0
.0

0
.5

1
.0

1
.5

squared deviations for 1000 samples

p=5

(c) p=5

Figure 8: Squared-deviations ∥β∗
i − β0∥2 per sample by two depth induced deepest regression estimators β∗

PRD (green
box) and β∗

RD (purple box) for the three β0 cases.

All results above and below are obtained on a desktop Intel(R)Core(TM) i7-2600 CPU @ 3.40GHz. R
code in this and the next few sections is downloadable via the link listed at the end of Example 2.4.1.

4. Three estimators induced from PRD

From table 5 we see that the β∗
PRD is slower than β∗

RD in the case p = 2 or p = 3(n ≤ 60). Are
there any PRD induced estimators that run even faster than the β∗

PRD? By reviewing the steps in
section 3.1 for the computation of β∗

PRD, the answer is yes. There are obviously other projection
regression depth (PRD) induced estimators that can be computed even faster.

The first one adds no extra computation cost to the already obtained candidate β matrix Sβ and
their UFs, it is just the deepest β with the minimum UF in the matrix Sβ, denote it as β∗

PRD1. The
second one is the plain average of the deepest (p+1) βs from the Sβ, denote it as β∗

PRD2. The third
one is an UF weighted estimator defined below, denote it as β∗

PRD3,

β∗
PRD3 =

∑(p+1)
i=1 w(ρi)β(i)∑(p+1)

i=1 w(ρi)
, (17)

27

Table entries: (empirical mean squared error, average time per sample (seconds))

n method p = 2 p = 3 p = 4 p = 6

40 β∗
PRD (0.237, 0.062) (0.448, 0.142) (0.736, 0.208) (1.373, 0.343)

β∗
PRD1 (0.244, 0.023) (0.481, 0.040) (0.831, 0.068) (1.646, 0.142)

β∗
PRD2 (0.268, 0.023) (0.489, 0.040) (0.882, 0.068) (1.431, 0.142)

β∗
PRD3 (0.258, 0.023) (0.476, 0.040) (0.771, 0.068) (1.375, 0.142)

β∗
RD (0.240, 0.040) (0.466, 0.124) (3195.3, 6.507) (1.678, 9.382)

60 β∗
PRD (0.157, 0.082) (0.329, 0.187) (0.519, 0.268) (0.923, 0.193)

β∗
PRD1 (0.167, 0.031) (0.363, 0.051) (0.613, 0.090) (1.139, 0.088)

β∗
PRD2 (0.188, 0.031) (0.484, 0.051) (0.603, 0.090) (1.131, 0.088)

β∗
PRD3 (0.175, 0.031) (0.446, 0.051) (0.568, 0.090) (1.075, 0.088)

β∗
RD (0.165, 0.043) (0.350, 0.300) (4703.0, 21.18) (1.337, 8.585)

80 β∗
PRD (0.128, 0.101) (0.261, 0.441) (0.412, 0.611) (0.666, 0.288)

β∗
PRD1 (0.134, 0.040) (0.297, 0.095) (0.492, 0.165) (0.832, 0.129)

β∗
PRD2 (0.165, 0.040) (0.315, 0.095) (0.509, 0.165) (0.872, 0.129)

β∗
PRD3 (0.147, 0.040) (0.302, 0.095) (0.481, 0.165) (0.830, 0.129)

β∗
RD (0.132, 0.047) (0.291, 0.583) (4446.2, 58.50) (1.050, 10.64)

100 β∗
PRD (0.109, 0.121) (0.218, 0.301) (0.361, 0.719) (0.551, 0.338)

β∗
PRD1 (0.117, 0.048) (0.247, 0.086) (0.439, 0.202) (0.682, 0.148)

β∗
PRD2 (0.153, 0.048) (0.275, 0.086) (0.467, 0.202) (0.851, 0.148)

β∗
PRD3 (0.142, 0.048) (0.263, 0.086) (0.437, 0.202) (0.771, 0.148)

β∗
RD (0.115, 0.050) (0.240, 0.960) (2427164, 113.4) (0.970, 12.24)

Table 7: Performance of regression depth induced estimators for various n and p.

where ρi = UF(β(i)) and β(1), · · · ,β(p+1) are the first (p + 1) deepest βs (with the least UF) in the
Sβ and the weight function w is defined as follows:

w(r) = I(r ≤ r0) + I(r > r0)
exp

(
k
(
2r0/r − (r0/r)

2
))

− 1

exp (k)− 1
, (18)

with the tuning parameters k = 3 and r0 = ρ(p−1), the (p − 1)th smallest UF among the (p + 1)
minimum UFs. For more discussions on this weight function and the tuning parameters, refer to Zuo
(2003) and Z19b.

These estimators obviously can run faster than β∗
PRD since they skip the time-consuming step of

searching over the convex hull. One naturally wonders what are their EMSE’s? We investigate the
performance of β∗

PRD, β∗
PRD1, β

∗
PRD2, and β∗

PRD3 which is reported in table 7. For the benchmark
purpose, the depth median: β∗

RD of RH99 is included in the comparison. 1000 samples are generated
with the same scheme as that for table 5.

Inspecting table 7 immediately reveals that (i) the β∗
PRD has the smallest EMSE in all cases and it

can be faster than the β∗
RD which is the slowest in p = 3(n > 40), p = 4, p = 6 cases; (ii) the β∗

PRD1,

28

the β∗
PRD2 and the β∗

PRD3 are the fastest and they are currently regarded as having the same speed
(all dependent on the given matrix Sβ of candidate βs and their unfitness and then on the sorted
values of their unfitness); (iii) among the three, the deepest of all βs in Sβ, β

∗
PRD1, and the depth

weighted deepest (p + 1) βs, β∗
PRD3, seem to perform better than the plain average, β∗

PRD2, which
seems to perform the worst in most cases. Furthermore, our empirical evidence indicates that β∗

PRD3

performs even better when p increases (say p ≥ 8). (vi) Overall, β∗
PRD should be recommended among

the five depth induced regression estimators; it becomes empirically the same as β∗
PRD1 for large p

(e.g. p = 20, n = 40, 60, 80); the second most impressive one is the β∗
PRD3, and β∗

PRD2 seems to be
mediocre.

5. Finite sample relative efficiency of deepest projection regression lines/hyperplanes

Example 3.3.2 confirms that the T∗
PRD (or T∗

n in the empirical case) has a higher breakdown
point than that of the leading regression depth induced median, the T∗

RD. Robustness, however, is
just one performance criterion for an estimator. Efficiency, if not more important, is another major
performance measure. One naturally wonders whether the T∗

PRD is inferior to the T∗
RD w.r.t. the

efficiency criterion.

The immediate answer is no based on the evidence demonstrated in tables 5, 6 and 7 since the
T∗

PRD has a smaller EMSE than that of the T∗
RD uniformly over all cases considered. To confirm this

empirical observation in p = 2 case, we now carry out a small scale simulation study.

(ϵ = 0)
Empirical mean squared error and relative efficiency of the T∗

RD and the T∗
PRD w.r.t. the LS

estimator

n measures T∗
RD T∗

PRD LS

10 EMSE 0.5987264 0.3723071 0.2653862

RE 44% 71% 100%

20 EMSE 0.2358544 0.1571197 0.1104146

RE 47% 70% 100%

40 EMSE 0.10163933 0.07492950 0.05287073

RE 52% 71% 100%

80 EMSE 0.04893200 0.04060671 0.02597673

RE 53% 64% 100%

100 EMSE 0.03196556 0.02535978 0.01679633

RE 53% 66% 100%

Table 8: Relative efficiency of the T∗
RD and the T∗

PRD for a normal model with 0% contamination.

In the following we investigate via a simulation study the finite-sample relative efficiency of the
deepest lines T∗

RD and T∗
PRD w.r.t. the benchmark, the classical least squares line. The latter is

optimal with normal models by the Gauss-Markov theorem. We generate R = 1, 000 samples from
the simple linear regression model: yi = β0 + β1xi + ei, i = 1, 2, · · · , n, with different sample sizes n
(see Tables 8 and 9), where ei ∼ N(0, σ2).

29

(ϵ = 0.1)

n measures T∗
RD T∗

PRD LS

10 EMSE 0.6612575 0.6181737 0.6373658

RE 96% 103% 100%

20 EMSE 0.3396453 0.3247345 0.5179225

RE 152% 159% 100%

40 EMSE 0.1613517 0.1525281 0.4475525

RE 277% 293% 100%

80 EMSE 0.10348167 0.09775415 0.43277938

RE 418% 442% 100%

100 EMSE 0.09702797 0.08947668 0.42298543

RE 436% 473% 100%

Table 9: Relative efficiency of the T∗
RD and the T∗

PRD for a normal model with 10% contamination.

In light of the regression equivariance of the deepest regression estimators (see Z18a), we can
assume w.l.o.g. that the true parameter β0 = (β0, β1)

′ = (0, 0)′. We generate (xi, yi)
′ from an

ϵ% contaminated normal model (1 − ϵ)N((0, 0)′, I2×2) + ϵδ(4,4)′ with ϵ = 0 (a pure normal model,
no contamination) and ϵ = 0.1 (a 10% contaminated normal model), where δZ is a point mass
contaminating distribution at point Z ∈ R2.

For a general estimator T, the relative efficiency (RE) of the T is obtained by dividing the EMSE
of the LS estimator by that of the T. Tables 8 (a pure normal model case) and 9 (a normal model
with 10% contamination) demonstrate the results with various ns.

Table 8 reveals that (i) the T∗
PRD is uniformly more efficient than the T∗

RD for all n; (ii) the
limited numbers in Table 8 give a false impression that the efficiency of the T∗

RD increases forever as
n increases. This is not true since when n = 200 the efficiency of the T∗

RD is still just 52%; (iii) as
expected, the EMSE of any line decreases when n increases.

On the other hand, with the 10% contaminated normal model, Table 9 shows that (i) when n = 10,
there is just one point that is contaminated. The classical least squares line as well as the line T∗

RD

are drastically affected by just one contaminated point, nevertheless. They are less efficient than the
deepest projection regression depth line. It is surprising that the line produced by the T∗

RD is sensitive
to just one point contamination and is even less efficient than the LS line (This phenomenon can be
explained by the low finite sample breakdown point of the T∗

RD, which could be much lower than the
ABP 1/3, see Zuo (2020)); (ii) when n increases, the efficiency of both deepest depth lines increases
and are much higher than that of the LS line; (iii) the T∗

PRD is more efficient than the T∗
RD uniformly

for all n; (iv) the EMSE of any line decreases when n increases; (v) the efficiency of the deepest lines
increases as n increases, for example, when n = 200, the efficiency of the T∗

RD will be 525%.

6. Concluding remarks

The maximum projection regression depth estimator is a robust alternative to the classical least
squares estimator. It possesses the best asymptotic breakdown point, a bounded influence function,

30

and a very high finite sample replacement breakdown point (see Zuo (2019a)).

This article addresses the computation issues of the unfitness (UF), or equivalently the projection
regression depth (PRD), and the PRD induced regression median, the maximum projection depth
estimator. Exact and approximate algorithms are proposed and investigated. Compared with the
leading regression depth notion RD and its induced median T∗

RD (RH99), the T∗
PRD is more compu-

tationally intensive O(RpNβ(p
2 + nNvNIter)) versus O(p(pn + NItern + n log n)) of the T∗

RD (Van
Alest et al (2002)). The T∗

PRD, however, is not only more robust but also more efficient.

The article also introduces three PRD induced estimators that can run very fast. These estima-
tors have a low level of empirical mean squared errors while satisfying regression, scale, and affine
equivariance. The three estimators are expected to be highly robust, just like the β∗

PRD in Z19b with
a high finite sample breakdown point.

The advantage (or disadvantage) of the PRD comes from its definition; it is defined based on the
magnitude of residuals whereas the RD is defined purely on the sign of residuals. The latter results
in a low breakdown point and efficiency, and non-uniqueness of the T∗

RD(Fn
Z) (the average might not

have the maximum depth, see Van Aelst et al (2002) and Mizera and Volauf (2002)) whereas the
T∗

PRD(Fn
Z) is unique (see Zuo (2019b)).

However, the RD also gains some unique features. For example, among others, the RD has the
unique invariance property under the monotone transformations (see RH99); it is less difficult to
compute and its definition does not require symmetry or homoscedasticity (see RH99).

Acknowledgments

The author thanks Hanwen Zuo, Hanshi Zuo, and Professor Emeritus James Stapleton for their
careful proofreading. He thanks Yan-Han Chen and Dr. Wei Shao for their proofreading and useful
discussions on C++, R, and Rcpp programming. Special thanks go to two anonymous referees for
their insightful comments and constructive suggestions, all of which have significantly improved the
manuscript.

References

[1] D. Bremner, K. Fukuda, and A. Marzetta, (1998), “Primal-Dual Methods for Vertex and Facet Enumera-
tion”, Discrete and Computational Geometry, 20, pp. 333–357.

[2] Boyd, S. and Vandenberghe, L. (2004), Convex Optimization. Cambridge University Press.

[3] Cohen, M. B. , Lee, Y. T. , and Song, Z. (2019), “Solving Linear Programs in the Current Matrix
Multiplication Time”, arXiv:1810.07896v2.

[4] Cuesta-Albertos, J. A. and Nieto-Reyes, A. (2008), “The random Tukey depth”, Computational Statistics
and Data Analysis 52, pp. 4979–4988.

[5] Chen, D., Morin, P. and Wagner. U., (2013), “Absolute approximation of Tukey depth: Theory and
experiments”, Computational Geometry 46, pp. 566-573.

[6] Dyckerhoff, R. (2004). “Data depths satisfying the projection property”, AStA-Advances in Statistical
Analysis 88, 163-190.

[7] Dohono, D. L. and Gasko, M. (1992), “Breakdown properties of location estimates based on halfspace
depth and projected outlyingness”, Ann. Statist., 20 1803-1827.

[8] Doll, R. (1955), “Etiology of Lung Cancer”, Advances in Cancer Research, 3, 1-50.

[9] Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry. Springer, Berlin, Heidelberg.

31

[10] Freund, R. M. (2004), “Issues in Non-Convex Optimization”, Lecture Notes, MIT.

[11] Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry. Springer, Berlin, Heidelberg.

[12] Fukuda, K. (2004), “Frequently Asked Questions in Polyhedral Computation”,
http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html

[13] Gonzaga, C. C. (1995), “On the Complexity of Linear Programming”, Resenhas IME-USP 1995, Vol. 2,
No. 2, 197-207.

[14] Huber, P. J. and Ronchetti, E. M. (2009), “Robust Statistics”, 2nd edition, Wiley, New York.

[15] Koshevoy, G. and Mosler, K., (1997), “Zonoid trimming for multivariate distributions”, Ann. Statist.,
1998-2017.

[16] Lee, Y. T. and Sidford, A. (2015), “Efficient inverse maintenance and faster algorithms for linear pro-
gramming”, In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages
230–249. IEEE.

[17] Liu, R. Y. (1990), “On a notion of data depth based on random simplices”, Ann. Statist., 18, 405-414,
1990.

[18] Liu, R. Y. (1992), “Data depth and multivariate rank tests”, In Y. Dodge (ed.), L1-Statistical Analysis
and Related Methods, North-Holland, Amsterdam, 279-294.

[19] Liu, X. and Zuo, Y. (2014), “Computing halfspace depth and regression depth”, Communications in
Statistics - Simulation and Computation, 43(5), 969-985.

[20] Maronna, R. A., and Yohai, V. J. (1993), “Bias-Robust Estimates of Regression Based on Projections”,
Ann. Statist., 21(2), 965-990.

[21] Mizera, I. and Volauf, M (2002), “Continuity of halfspace depth contours and maximum depth estimators:
diagnostics of depth-related methods”, Journal of Multivariate Analysis 83, 365–388.

[22] Mosler, K. (2002), “Multivariate Dispersion, Central Regions and Depth: The Lift Zonoid Approach”,
Springer, New York.

[23] Mosler, K. (2013), “Depth statistics”, In: Becker, C., Fried, R, and Kuhnt, S. (eds.), Robustness and
Complex Data Structures: Festschrift in Honour of Ursula Gather, Springer-Verlag, 17-34.

[24] Mosler, K., Lange, T., and Bazovkin, P. (2009), “Computing zonoid trimmed regions of dimension d > 2”,
Computational Statistics and Data Analysis 53, 2500-2510.

[25] Nocedal, J. and Wright, S. J. (2006), Numerical Optimization. Springer.

[26] Paindaveine, D. and Šiman, M. (2012), “Computing multiple-output regression quantile regions”, Com-
putational Statistics and Data Analysis 56, 840-853.

[27] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007), Numerical Recipes. The
Art of Scientific Computing, 3rd Edition, Cambridge University Press, New York.

[28] Rousseeuw, P. J. (1984), “Least Median of Squares Regression”, J. Amer. Statist. Assoc. 79, 871-880.

[29] Rousseeuw, P. J., and Hubert, M. (1999), “Regression depth” (with discussion), J. Amer. Statist. Assoc.,
94: 388–433.

[30] Rousseeuw, P.J., and Leroy, A. (1987), “Robust regression and outlier detection”. Wiley New York.

[31] Rousseeuw, P. J., Struyf, A. (1998), “Computing location depth and regression depth in higher dimen-
sions”, Statistics and Computing, 8:193-203.

[32] Stahel, W. A. (1981), “Robuste Schatzungen: Infinitesimale Optimalitiit und Schiitzungen von Kovari-
anzmatrizen”, Ph.D. dissertation, ETH, Zurich.

32

[33] Tufte, E. R. (1974), “Data Analysis for Politics and Policy”, Prentice-Hall, Inc., Englewwood Cliffs, New
Jersey.

[34] Tukey, J. W. (1975), “Mathematics and the picturing of data”, In: James, R.D. (ed.), Proceeding of the
International Congress of Mathematicians, Vancouver 1974 (Volume 2), Canadian Mathematical Congress,
Montreal, 523-531.

[35] Van Aelst, S., and Rousseeuw, P. J. (2000), “Robustness of Deepest Regression”, J. Multivariate Anal.,
73, 82–106.

[36] Van Aelst S., Rousseeuw P.J., Hubert M., Struyf A. (2002). The deepest regression method. J. Multi-
variate Anal., 81, 138–166.

[37] Vardi, Y. and Zhang, C.-H. (2000). The multivariate l1-median and associated data depth. Proc. Natl.
Acad. Sci. USA, 97, 1423–1426.

[38] Vanderbei, R.J.(1999), “LOQO: An interior point code for quadratic programming”, Optimization Meth-
ods and Software, 12:451–484.

[39] Vanderbei, R. J. and Shanno, D.F. (1999), “An Interior-Point Algorithm for Nonconvex Nonlinear Pro-
gramming”, Computational Optimization and Applications, 13:231–252.

[40] Wright, S. J. (1997), Primal-dual interior-point methods, SIAM, Philadelphia.

[41] Yin Tat Lee, Aaron Sidford (2015), “Efficient Inverse Maintenance and Faster Algorithms for Linear
Programming”, arXiv:1503.01752v3.

[42] Winder, R., (1966), “Partitions of N-space by hyperplanes”, SIAM J. Appl. Math. 14, 811–818.

[43] Wu, M., and Zuo, Y. (2008), “Trimmed and Winsorized Standard Deviations based on a scaled deviation”,
Journal of Nonparametric Statistics, 20(4):319-335.

[44] Wu, M., and Zuo, Y. (2009), “Trimmed and Winsorized means based on a scaled deviation”, J. Statist.
Plann. Inference, 139(2) 350-365.

[45] Zuo, Y. (2003), “Projection-based depth functions and associated medians”, The Annals of Statistics 31,
1460-1490.

[46] Zuo, Y. (2018), “A new approach for the computation of halfspace depth in high dimensions”. Commu-
nications in Statistics - Simulation and Computation, 48(3): 900-921.

[47] Zuo, Y. (2018a), “On general notions of depth in regression”, arXiv:1805.02046, (Statistical Science 2021,
Vol. 36, No. 1, 142–157).

[48] Zuo, Y. (2018b), “ Asymptotics for the maximum regression depth estimator ”, arXiv:1809.09896, Statis-
tics and Probability Letters, 166, November 2020, 108879, https://doi.org/10.1016/j.spl.2020.108879,

[49] Zuo, Y. (2019a), “Robustness of deepest projection regression depth functional”, Statistical Papers,
https://doi.org/10.1007/s00362-019-01129-4.

[50] Zuo, Y. (2019b), “Depth induced regression medians and uniqueness”, Stats, 2020, 3(2), 94-106;
https://doi.org/10.3390/stats3020009.

[51] Zuo, Y. (2020), ”Finite sample breakdown point of multivariate regression depth median”,
arXiv:2009.00646.

[52] Zuo, Y. and Lao, S. (2011), “Exact computation of the bivariate projection depth and Stahel-Donoho
estimator”, Computational Statistics and Data Analysis , 53(3), 1173-1179.

[53] Zuo, Y., Serfling, R., 2000, “General notions of statistical depth function”, Ann. Statist., 28, 461-482.

33

