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Abstract: In the famous least sum of trimmed squares (LTS) of residuals
estimator [21], residuals are first squared and then trimmed. In this article,
we first trim residuals - using a depth trimming scheme - and then square
the rest of residuals. The estimator that can minimize the sum of squares
of the trimmed residuals, is called an LST estimator.

It turns out that the LST is a robust alternative to the classic least
sum of squares (LS) estimator. Indeed, it has a very high finite sample
breakdown point, and can resist, asymptotically, up to 50% contamination
without breakdown - in sharp contrast to the 0% of the LS estimator.

The population version of the LST is Fisher consistent, and the sample
version is strong and root-n consistent and asymptotically normal. Ap-
proximate algorithms for computing the LST are proposed and tested in
synthetic and real data examples. These experiments indicate that one of
the algorithms can compute the LST estimator very fast and with relatively
smaller variances, compared with that of the famous LTS estimator. All the
evidence suggests that the LST deserves to be a robust alternative to the
LS estimator and is feasible in practice for high dimensional data sets (with
possible contamination and outliers).
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1. Introduction

In the classical regression analysis, we assume that there is a relationship for a
given data set {(x′i, yi)′, i ∈ {1, 2, · · · , n}}:

yi = (1,x′i)β0 + ei, i ∈ {1, · · · , n} (1.1)

where yi ∈ R1, ′ stands for the transpose, β0 = (β01, · · · , β0p)
′ (the true un-

known parameter) in Rp and xi = (xi1, · · · , xi(p−1))
′ in Rp−1, ei ∈ R1 is called

an error term (or random fluctuation/disturbances, which is usually assumed to
have zero mean and variance σ2 in classic regression theory). That is, β01 is the
intercept term of the model. Write wi = (1,x′i)

′, then one has yi = w′iβ0 + ei,
which will be used interchangeably with model (1.1).

One wants to estimate the β0 based on a given sample Z(n) := {(x′i, yi)′, i ∈
{1, · · · , n}} from the model y = (1,x′)β0 +e. Call the difference between yi and
w′iβ the ith residual, ri(β), for a candidate coefficient vector β (which is often
suppressed). That is,

ri(β) = yi −w′iβ. (1.2)

To estimate β0, the classic least squares (LS) minimizes the sum of squares of
residuals,

β̂ls = arg min
β∈Rp

n∑
i=1

r2
i .

Alternatively, one can replace the square above by absolute value to obtain the
least absolute deviations estimator (aka, L1 estimator, in contrast to the L2

(LS) estimator).

The LS estimator is very popular in practice across a broader spectrum of
disciplines due to its great computability and optimal properties when the er-
ror ei follows a normal N (0, σ2) distribution. It, however, can behave badly
when the error distribution is slightly departed from the normal distribution,
particularly when the errors are heavy-tailed or contain outliers.



Hanwen Zuo and Yijun Zuo/ Least squares of trimmed residuals 2

Robust alternatives to the β̂ls abound in the literature for a long time. The
most popular ones are, among others, M-estimators [14], least median squares
(LMS) and least trimmed squares (LTS) estimators [21], S-estimators [27], MM-
estimators [46], τ -estimators [47], and maximum depth estimators ([22], [52], and
[53]). For more related discussions, please see, Sections 1.2 and 4.4 of [23], and
Section 5.14 of [17].

Among all robust alternatives, in practice, the LTS is one of the most pre-
vailing crossing multiple disciplines. Its idea is simple, ordering the squared
residuals and then trimming the larger ones and keeping at least dn/2e squared
residuals, where d e is the ceiling function, the minimizer of the sum of those
trimmed squared residuals is called an LTS estimator:

β̂lts := arg min
β∈Rp

h∑
i=1

(r2)i:n,

where (r2)1:n ≤ (r2)2:n ≤ · · · , (r2)n:n are the ordered squared residuals and
constant h satisfies dn/2e ≤ h ≤ n.

One naturally wonders, what if one first trims (employing the scheme given
in Section 2) the residuals and then minimizes the sum of squares of trimmed
residuals (the minimizer will be called an LST)? Is there any difference between
the two procedures? Outlying (extremely large or small) original residuals are
trimmed after squaring in the LTS - those residuals certainly are trimmed in the
LST. But the outlying residuals which have a small squared magnitude will not
be trimmed in the LTS and are trimmed in the LST (see (a) of Figure 1). Before
formally introducing the LST in Section 2, let us first appreciate the difference
between the two procedures.

Example 1.1 We constructed a small data set in R2 with x = (5, 5.5, 4, 3.5, 3,
2.5,−2) and y = (−.5,−.5, 6, 4, 2.4, 2, .5), they are plotted in the left panel of
the (a) of Figure 1. We also provide two candidate regression lines β1 (y = 0)
and β2 (y = x). Which one would you pick to represent the overall pattern of
the data set?

If one uses the number h = bn/2c+ b(p+ 1)/2c given on page 132 of [23] to
achieve the maximum possible breakdown point (see Section 3 for definition) for
the LTS estimator, that is, employing four smallest squared residuals, then the
LTS prefers β1 (using residuals from points 1, 2, 6, and 7) to β2 (using points
4, 5, 6, 7), whereas for the LST, β2 (using residuals from points 4, 5, 6, 7) is the
preferred. One might immediately argue that this is not representative since the
LTS searches all possible (not just two) lines and outputs the best one.

If one utilized the R function ltsReg, then it produced the solid (black) line
whereas the line based on algorithms (see Section 5) for the LST is the dashed
(red) one in the right panel of the (a) of Figure 1. For benchmark purposes, the
LS line dotted (green) is also given, which is overlapping with the LTS line. From
this instance, One can appreciate the difference between trimming schemes of
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(a) Left panel: plot of seven artifi-
cial points and two candidate lines (β1

and β2), which line would you pick?
Sheerly based on the trimming scheme
and objective function value, if one
uses the number h = bn/2c+b(p+1)/2c
given on page 132 of [23], that is, em-
ploying four squared residuals, then
the LTS prefers β1 to β2 whereas the
LST reverses the preference.

Right panel: the same seven points are
fitted by the LTS, the LST, and the LS
(benchmark). A solid black line is the
LTS given by ltsReg. Red dashed line
is given by the LST, and green dotted
line is given by the LS - which is iden-
tical to the LTS line in this case.
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(b) Left panel: plot of seven highly cor-
related normal points (with mean be-
ing the zero vector and covariance ma-
trix with diagonal entries being one
and off-diagonal entries being 0.88)
and three lines given by the LST, the
LTS, and the LS. The LS line is iden-
tical to the LTS line again.

Right panel: The LTS line (solid black)
and the LST line (dashed red), and
the LS (dotted green) for the same
seven highly correlated normal points
but with two points contaminated nev-
ertheless. The LS line is identical to the
LTS line due to the attributes in the R
function ltsReg that is based on [26]).

Fig 1: (a) Difference between the two procedures: the LST and the LTS. (b) Per-
formance difference between the LST and the LTS when there are contaminated
points (x-axis leverage points).

the LTS and the LST. Of course, one might argue that the data set in the (a)
is purely synthetic and fixed.

So, in the (b) of Figure 1, we generated seven highly correlated normal points
(with correlation 0.88 between x and y), when there is no contamination the
LTS (identical to the LS again) and the LST pick perfectly the linear pattern
whereas if there are two contaminated points (note that the LTS allows m :=
b(n− p)/2c = 2 contaminated points in this case in light of Theorem 6 on page
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132 of [23]), the line from the LTS drastically changes in this particular instance,
which again is identical to the LS.

For examples with an increased sample size, see Section 6. Incidentally, the
instability of the LMS (not the LTS) was already documented in [13].

The idea of trimming residuals and then doing regression has appeared in the
literature for quite some time. The trimming idea was first introduced in location
setting and later extended to regression, see, [15], [2], [28], [44], and [23], among
others. Trimmed mean has been used in practice for more than two centuries (see
[8], page 34, and is attributed to “Anonymous” (1821)([1]) (Gergonne, see [33]),
or [18]. Tukey ([37], [4]) is one of the outstanding advocators for the trimmed
mean in the last century.

However, trimming residuals based on depth or outlyingness employed in this
article (see Section 2) is novel and has never been utilized before. A more recent
study on the topic is given by Johansen and Nielsen (2013), where the authors
used an iterated one-step approximation to Huber-skip estimator to detect out-
liers in regression and theoretical justification for the approximation is provided.
Their Huber-skip estimator defined on page 56 is closely related to our LST,
but there are two essential differences (i) their estimator more resembles the
least winsorized squares regression (see page 135 of [23]), (ii) residuals in their
estimator are not centered by the median of residuals.

In light of [52], both the LTS and the LST could be regarded as the deepest
estimator (aka regression median) with respect to the corresponding objective
function type of regression depth (see Section 2.3.1 of [52] and Section 4).

The rest of the article is organized as follows. Section 2 introduces trimming
schemes and the least sum of squares of trimmed (LST) residuals estimator and
establishes the existence and equivariance properties. Section 3 investigates the
robustness of the LST in terms of its finite sample breakdown point and its
influence function. Section 4 establishes the Fisher as well as the strong and
the root-n consistency. The asymptotic normality is derived from stochastic
equicontinuity in Section 5. Section 6 is devoted to the computation algorithms
of the LST where two approximate algorithms are proposed. Section 7 presents
examples of simulated and real data and carries out the comparison with the
leading regression estimators, the LTS and the LMS. Section 8 consists of some
concluding discussions. Long proofs are deferred to the Appendix.

2. Least sum of squares of trimmed residuals estimator

2.1. Trimming schemes

Rank based trimming This scheme is based on the ranks of data points,
usually trimming an equal number of points at both tails of a data set (that
is, lower or higher rank points are trimmed) and also can trim points one-sided
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if needed (such as when all data points lie on the positive (or negative) side of
number axis).

This scheme is closed related to the trimmed mean, which can keep a good
balance between robustness and efficiency, alleviating the extreme sensitivity of
sample mean and enhancing the efficiency of the sample median.

Rank-based trimming focuses only on the relative position of points with re-
spect to others and ignores the magnitude of the point and the relative distance
between points. [49] and [45] discussed an alternative trimming scheme, which
exactly catches these two important attributes (magnitude and relative dis-
tance). It orders data from a center (the median) outward and trims the points
that are far away from the center. This is known as depth-based trimming.

Depth (or outlyingness) based trimming In other words, the depth-based
trimming scheme trims points that lie on the outskirts (i.e. points that are less
deep, or outlying). The outlyingness (or, equivalently, depth) of a point x is
defined to be (strictly speaking, depth=1/(1+outlyingness) in [48])

D(x,X(n)) = |x−Med(X(n))|/MAD(X(n)), (2.1)

where X(n) = {x1, · · · , xn} is a data set in R1, Med(X(n)) = median(X(n)) is
the median of the data points, and MAD(X(n)) = Med({|xi −Med(X(n))|, i ∈
{1, 2, · · · , n}}) is the median of absolute deviations to the center (median). It is
readily seen that D(x,X(n)) is a generalized standard deviation, or equivalent
to the one-dimensional projection depth/outlyingness (see [55] and [48, 49] for
a high dimensional version). For notion of outlyingness, cf. [32], [5], and [6].

The LTS essentially employs one-sided rank based trimming scheme (w.r.t.
squared residuals), whereas depth based trimming is utilized in the LST which
is introduced next.

2.2. Definition and properties of the LST

Definition For a given sample Z(n) = {(x′i, yi)′, i ∈ {1, 2, · · · , n}} in Rp from
y = w′β0 + e and a β ∈ Rp, define

mn(β) := m(Z(n),β) = Medi{ri}, (2.2)

σn(β) := σ(Z(n),β) = MADi{ri}, (2.3)

where operators Med and MAD are used for discrete data sets (and distributions
as well) and ri defined in (1.2). For a constant α in the depth trimming scheme,
consider the quantity

Q(Z(n),β, α) :=

n∑
i=1

r2
i 1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

)
, (2.4)
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where 1(A) is the indicator of A (i.e., it is one if A holds and zero otherwise).
Namely, residuals with their outlyingness (or equivalently reciprocal of depth
minus one) greater than α will be trimmed. When there is a majority (≥ b(n+
1)/2c) identical ris, we define σ(Z(n),β) = 1 (since those ri lie in the deepest
position (or are the least outlying points)).

Minimizing Q(Z(n),β, α), one gets the least sum of squares of trimmed (LST)
residuals estimator,

β̂
n

lst := β̂lst(Z
(n), α) = arg min

β∈Rp
Q(Z(n),β, α). (2.5)

One might take it for granted that the minimizer of Q(Z(n),β, α) always exists.
Does the right-hand side (RHS) of (2.5) always have a minimizer? If it exists,
is it unique? We treat this problem formally next. Assume Xn = (w1, · · · ,wn)′

has a full rank p (p < n) throughout.

Hereafter we will assume that α ≥ 1. That is, we will keep the residuals that
are no greater than one MAD away from the center (the median of residuals)

untrimmed. For a given α, β, and Z(n), define a set of indexes for 1 ≤ i ≤ n

I(β) =
{
i :
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

}
. (2.6)

Namely, the set of subscripts so that the outlyingness (see (2.1)) of the corre-
sponding residuals are no greater than α. It depends on Z(n) and α, which are
suppressed in the notation. Following the convention, we denote the cardinality
of set A by |A|. We have

Lemma 2.1 For any β ∈ Rp and the given Z(n) and α, |I(β)| ≥ b(n+ 1)/2c.

Proof : By the definition of MAD (the median of the absolute deviations to the
center (median)), it is readily seen that

|I(β)| =

n∑
i=1

1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

)

≥
n∑
i=1

1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ 1

)
= b(n+ 1)/2c,

This completes the proof.

The lemma implies that the RHS of (2.4) sums a majority of squared resid-
uals.

Properties of the objective function

Write Di := D(ri,β) = |ri −m(Z(n),β)|
/
σ(Z(n),β) for a given Z(n) and β.

Let i1, · · · , iK be in I(β) such that Di1 ≤ Di2 · · · ≤ DiK (i.e. ordered depth
values of residuals), K := |I(β)|. Both ij and Dij clearly depend on β and Z(n).
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Generally, the inequalities between the Di’s cannot be strict unless we assume
that r := y − w′β has a density for any β ∈ Rp. In the latter case, the strict
inequalities hold almost surely (a.s.), i.e., Di1 < Di2 · · · < DiK (a.s.). Define for
any β1 ∈ Rp and a given Z(n)

Rβ1 = {β ∈ Rp : I(β) = I(β1), Di1(β) < Di2(β) · · · < DiK (β)}. (2.7)

That is, the set of all βs that share the same index set I(β1) of β1. If y −w′β
has a density at β1 ∈ Rp, then Rβ1 6= ∅ (a.s.). There are at most finitely many

Rβks, βk ∈ Rp, 1 ≤ k ≤ L :=
(

n
b(n+1)/2c

)
such that ∪Lk=1Rβk = Rp, where Rβk

is defined similarly to (2.7) and A stands for the closure of the set A. For any
β ∈ Rp, either there is Rη and β ∈ Rη or there is Rξ, such that β 6∈ Rη ∪ Rξ
and β ∈ Rη ∩ Rξ. In the latter case, there are ik, il ∈ I(β) ik 6= il, such that
Dik = Dil .

For a given sample Z(n), write Qn(β) for Q(Z(n),β, α), B(η, δ) for an open
ball in Rp centered at η with a radius δ > 0, and 1i, which depends on β,
for 1

(
|yi −w′iβ −mn(β)|

/
σn(β) ≤ α

)
. Let Yn = (y1, · · · , yn)′ and Mn :=

M(Yn,Xn,β, α) =
∑n
i=1wiw

′
i1i =

∑
i∈I(β)wiw

′
i. We have

Lemma 2.2

(i) For a given Z(n) and α, for any 1 ≤ k ≤ L and any η ∈ Rβk , there exists
a B(η, δ) such that for any β ∈ B(η, δ), β ∈ Rβk , i.e.,

Qn(β) =
∑

i∈I(βk)

r2
i ,

(ii) For any 1 ≤ k ≤ L, Rβk is open,

(iii) Qn(β) is continuous in β ∈ Rp,

(iv) Over each Rβk , 1 ≤ k ≤ L, Qn(β) is twice differentiable and convex,
and strictly convex if the rank of Xn is p.

Proof : See the Appendix.

Remark 2.1

(i) By discussions above and Lemma 2.2, we see that the domain of Qn(β)
(the parameter space) is partitioned into at most L pieces and over each piece the
graph of Qn(β) is that of the quadratic function of the sum of squared residuals.
Hence the graph of Qn(β) is composed of at most L those components.

(ii) The continuity deduced from Qn(β) being the sum of some squared
residuals without (i) of Lemma 2.2 might not be flawless. The unified expression
for Qn(β) around the small neighborhood of β such as the one given in (i) of
the Lemma 2.2 is indispensable.
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2.3. Existence, uniqueness and equivariance

Theorem 2.1

(i) β̂
n

lst exists and is the unique local minima of Qn(β) over Rβk0 for some
k0 (1 ≤ k0 ≤ L).

(ii) Over Rβk0 , β̂
n

lst is the solution of the system of equations

n∑
i=1

(yi −w′iβ)wi1i = 0, (2.8)

(iii) Over Rβk0 , the unique solution is (assume that Xn has a full rank)

β̂
n

lst = Mn(Yn,Xn, β̂
n

lst, α)−1
∑

i∈I(βk0 )

yiwi (2.9)

Proof : See the Appendix.

Note that Xn having a full rank is sufficient for the matrix in the theorem to
be invertible. The existence could also be established as follows. In the sequel,
we will assume that

(A0) there is no vertical hyperplane which contains at least b(n+ 1)/2c points
of Z(n).

This holds true with probability one if (x′, y)′ has a joint density or holds if
Z(n) is in general position (see Section 3 for definition) (assume that n > 2p+ 1
hereafter).

Theorem 2.2 The minimizer β̂
n

lst of Q(Z(n),β, α) defined in (2.4) over β ∈ Rp

always exists for a given Z(n) and an α provided that (A0) holds.

Proof : See the Appendix.

Equivariance A regression estimator T is called regression, scale, and affine
equivariant if, respectively (see page 116 of [23]) with i ∈ N := {1, 2, · · · , n}

T ({(w′i, yi +w′ib)′}) = T ({(w′i, yi)′}) + b, ∀ b ∈ Rp

T ({(w′i, syi)′}) = sT ({(w′i, yi)′}) , ∀ s ∈ R1

T ({(A′wi)
′, yi)

′}) = A−1T ({(w′i, yi)′}) , ∀ nonsingular A ∈ Rp×p

Theorem 2.3 β̂
n

lst is regression, scale, and affine equivariant.
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Proof : We have the identities

yi +w′ib−w′i(β + b) = yi −w′iβ, ∀ b ∈ Rp

syi −w′i(sβ) = s(yi −w′iβ), ∀ s ∈ R1

yi − (A′wi)
′A−1β = yi −w′iβ, ∀ nonsingular A ∈ Rp×p.

The desired result follows by these identities and the (regression, scale, and

affine) invariance (see page 148 of [52] for definition) of |ri−m(Z(n), β)|
σ(Z(n), β)

.

3. Robustness of LST

3.1. Finite sample breakdown point

As an alternative to the least-squares, is the LST estimator more robust? The
most prevailing quantitative measure of global robustness of any location or
regression estimators in the finite sample practice is the finite sample breakdown
point (FSBP), introduced by [7].

Roughly speaking, the FSBP is the minimum fraction of ‘bad’ (or contami-
nated) data points that can force the estimator beyond any bound (becoming
useless). For example, in the context of estimating the center of a data set, the
sample mean has a breakdown point of 1/n (or 0%), because even one bad ob-
servation can change the mean by an arbitrary amount; in contrast, the sample
median has a breakdown point of b(n+ 1)/2c/n (or 50%).

Definition 3.1 [7] The finite sample replacement breakdown point (RBP) of
a regression estimator T at the given sample Z(n) = {Z1, Z2, · · · , Zn}, where
Zi := (x′i, yi)

′, is defined as

RBP(T,Z(n)) = min
1≤m≤n,m∈N

{
m

n
: sup
Z

(n)
m

‖T(Z(n)
m )−T(Z(n))‖ =∞

}
, (3.1)

where Z
(n)
m denotes an arbitrary contaminated sample by replacing m original

sample points in Z(n) with arbitrary points in Rp. Namely, the RBP of an
estimator is the minimum replacement fraction that could drive the estimator
beyond any bound. It turns out that both the L1 (least absolute deviations)
and the L2 (least squares) estimators have RBP 1/n (or 0%), the lowest possible
value whereas the LTS can have (b(n−p)/2c+1)/n (or 50%), the highest possible
value for any regression equivariant estimators (see pages 124-125 of [23]).

We shall say Z(n) is in general position when any p of observations in Z(n)

gives a unique determination of β. In other words, any (p-1) dimensional sub-
space of the space (x′, y)′ contains at most p observations of Z(n). When the
observations come from continuous distributions, the event (Z(n) being in gen-
eral position) happens with probability one.
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Theorem 3.1 For β̂
n

lst defined in (2.5) and Z(n) in general position, we have

RBP(β̂
n

lst,Z
(n)) =

{
b(n+ 1)/2c

/
n, if p = 1,

(bn/2c − p+ 2)
/
n, if p > 1.

(3.2)

Proof: See the Appendix.

Remark 3.1

(I) The assumption that Z(n) is in general position seems to play a central
role in the proof. But actually, one can drop it and introduce an index: c(Z(n))
(which is the maximum number of observations from Z(n) contained in any
(p − 1) dimensional subspace/hyperplane) to replace p in the derivation of the
proof and the final RBP result (when p > 1).

(II) Asymptotically speaking (i.e. as n → ∞), β̂
n

lst has the best possible
asymptotic breakdown point (ABP) 50%, the same as that of the LTS. The

RBP of β̂
n

lst, albeit very high (indeed as high as that of the LMS), is slightly
less than that of the LTS (with the best choice of h). However, it can be improved
to attain the best possible value if one modifies α so that it is the hth quantile
of the n outlyingness of residuals with h = bn/2c+ b(p+ 1)/2c to include exact
h squares of residuals in the sum of the RHS of (2.4).

3.2. Influence function

Throughout Fz stands for the distribution of random vector z unless oth-
erwise stated. Write F(x′,y) for the joint distribution of x′ and y in (1.1),
r := r(F(x′,y),β) = y − (1,x′)β := y −w′β.

m :=m(F(x′,y),β) = Med(Fr),

σ :=σ(F(x′,y),β) = MAD(Fr),

hereafter we assume that m and σ exist uniquely. The population counterparts
of (2.4) and (2.5) are respectively:

Q(F(x′,y),β, α) : =

∫
(y −w′β)21

(
|y −w′β −m|

σ
≤ α

)
dF(x′,y), (3.3)

βlst(F(x′,y), α) : = arg min
β∈Rp

Q(F(x′,y),β, α). (3.4)

The RBP gauges the global robustness of an estimator at finite sample prac-
tice. To assess the local robustness at the population setting, one can use the in-
fluence function approach (see [8]), which depicts the local robustness of a func-
tional with an infinitesimal point-mass contamination at a single point z ∈ Rp.
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For a given distribution F defined on Rp and an ε > 0, the version of F
contaminated by an ε amount of an arbitrary distribution G on Rp is denoted
by F (ε,G) = (1 − ε)F + εG (an ε amount deviation from the assumed F ).
Hereafter it is assumed that ε < 1/2, otherwise F (ε,G) = G((1 − ε), F ), and
one can’t distinguish which one is contaminated by which one.

Definition 3.2 [8] The influence function (IF) of a functional T at a given
point z ∈ Rp for a given F is defined as

IF(z;T , F ) = lim
ε→0+

T (F (ε, δz))− T (F )

ε
, (3.5)

where δz is the point-mass probability measure at z ∈ Rp.

The function IF(z;T , F ) describes the relative influence on T of an infinites-
imal point-mass contamination at z and gauges the local robustness of T .

It is desirable that a regression estimating functional has a bounded influ-
ence function. This, however, does not hold for an arbitrary regression estimat-
ing functional (such as the classical least squares functional). Now we investi-
gate this for the functional of the least sum of squares of trimmed residuals,
βlst(F(x′,y), α). Put

Fε(z) :=F (ε, δz) = (1− ε)F(x′,y) + εδz,

mε(z) :=m(Fε(z),β) = Med(FRε(z)),

σε(z) :=σ(Fε(z),β) = MAD(FRε(z)),

where Rε(z) = r(Fε(z),β) = t − (1, s′)β, and Fε(z) =: Fu(z) with a random
vector u = (s′, t)′ ∈ Rp, s ∈ Rp−1, and t ∈ R1 (i.e., u is the random vector
that has the CDF Fε(z)). Hereafter we assume that mε(z) and σε(z) uniquely
exist. The versions of (3.3) and (3.4) at the contaminated distribution Fε(z) are
respectively

Q(Fε(z),β, α) : =

∫
(t− (1, s′)β)21

(
|(t− (1, s′)β)−mε(z)|

σε(z)
≤ α

)
dFu(s′, t),

(3.6)

βlst(Fε(z), α) : = arg min
β∈Rp

Q(Fε(z),β, α). (3.7)

Lemma 3.1 βlst := βlst(F(x′,y), α) is regression, scale, and affine equivariant
(see [52] for definition).

Proof : It is trivial (analogous to that of Theorem 2.3).

To investigate the influence function of βlst especially the consistency of
its sample version in the next section, we first need to establish its existence
and uniqueness. We need assumptions: (A1) y has a density, and (A2) the
distribution Fr with r = y − w′β is non-flat around m = Med(Fr) and σ =
MAD(Fr) for any β ∈ Rp.
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Write Q(β) for Q(F(x′,y),β, α) in (3.3). We have a population counterpart of
Lemma 2.2.

Lemma 3.2 Assume (A1)-(A2) hold. Then Q(β)

(i) is continuous in β ∈ Rp;

(ii) is twice differentiable in β ∈ Rp with (assume that E(xx′) exists)

∂2Q(β)
/
∂β2 = 2Eww′1

(
|y −w′β −m|

/
σ ≤ α

)
;

(iii) is convex in β ∈ Rp and strictly convex if Eww′1
(
|y −w′β −m|

/
σ ≤ α

)
is invertible .

Proof: See the Appendix.

Theorem 3.2 Assume that (A1)-(A2) hold and m(Fε(z),β) and σ(Fε(z),β)
are continuous in β around a small neighborhood of βlst((Fε(z), α). Write v′ =
(1, s′) and let u be the random variable with CDF Fε(z). We have

(i) βlts(F(x′,y), α) and βlts(Fε(z), α) exist.

(ii) Furthermore, they are the solution of system of equations, respectively∫
(y −w′β)w1

(
|y −w′β −m|

/
σ ≤ α

)
dF(x′,y)(x, y) = 0, (3.8)∫

(t− v′β)v1
(
|(t− v′β)−mε(z)|

/
σε(z) ≤ α

)
dFu(s, t) = 0. (3.9)

(iii) βlts(F(x′,y), α) and βlts(Fε(z), α) are unique provided that∫
ww′1

(
|y −w′β −m|

/
σ ≤ α

)
dF(x′,y)(x, y), (3.10)∫

vv′1
(
|(t− v′)β)−mε(z)|

/
σε(z) ≤ α

)
dFu(s, t) (3.11)

are respectively invertible.

Proof: See the Appendix.

Theorem 3.3 If assumptions in theorem 3.2 hold, then for any z0 := (s′0, t0)′ ∈
Rp, we have that

β̇lst(z0, F(x′,y)) =

{
0, if t0 − (1, s′0)βlst 6∈ [m(βlst)± ασ(βlst)]

(t0 − (1, s′0)βlst)M
−1(1, s′0)′, otherwise,

where β̇lst(z0, F(x′,y)) stands for the IF(z0;βlst, F(x′,y)), M
−1 stands for the

inverse of the matrix E
(
ww′1

(
|r(β)−m(Fr(β))|

/
σ(Fr(β)) ≤ α

))
with β =

βlst, and [a± b] stands for [a− b, a+ b].
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Proof : See the Appendix.

Remark 3.2 see the Appendix.

Overall, we see that LST is globally robust with the best possible ABP of 50%
and robust locally against point-mass contamination when there are vertical and
bad leverage outliers.

Besides robustness, one wonders: does the βlst(F(x′,y), α) really catch the true

parameter (i.e. is it Fisher consistent)? And how fast does the sample βlst(Z
(n))

converge to βlst (or the true parameter β0) (i.e. strong or root-n consistency)?
We answer these questions next.

4. Consistency

4.1. Fisher Consistency

Before establishing the strong or root-n consistency, we like to first show that
the population version of the LST, βlst(F(x′,y), α), is consistent with (or rather
identical to) the true unknown parameter β0 under some assumptions - which
is called Fisher consistency of the estimation functional. To that end, let us first
recall our general model:

y = (1,x′)β0 + e, (4.1)

with its sample version given in model (1.1). In addition to the assumptions
given in Theorem 3.2 for the existence and uniqueness of βlst, we need one
more assumption:

(A3) x and e are independent and E(x′,y)

(
e1
(
|e−m(Fe)|

/
σ(Fe) ≤ α

))
= 0.

Hereafter we assume that m(Fe) and σ(Fe) exist uniquely.

The independence assumption between x and e is typical in the traditional
regression analysis. However, one can drop it here by modifying the integration
appropriately (see the proof below), and it is unnecessary if x is a non-random
covariate (carrier). The assumption that integration equals to zero is very mild,
and it automatically holds under the common assumption that the e is symmet-

ric with respect to 0 (that is, e
d
= −e). We have

Theorem 4.1 Under assumptions (A1)-(A3), βlst(F(x′,y), α) = β0 (i.e. it is

Fisher consistent) provided that Eww′1
(
|e−m(Fe)|

/
σ(Fe) ≤ α

)
is invertible.

Proof : Notice that y−w′β = w′(β0−β)+e. This in conjunction with equation
(3.8) yields,∫

(w′(β0 − β) + e)w1
(
|(w′(β0 − β) + e)−m|

/
σ ≤ α

)
dF(x′,y) = 0,
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one sees that β = β0 indeed is one solution of the equation system by virtue of
(A3). In light of Theorem 3.2 and the uniqueness of the solution, the desired
result follows.

4.2. Strong consistency

To establish the strong consistency of β̂lst(Z
(n), α) for the βlst(F(x′,y), α), write

β̂lst(F
n
Z ) := β̂lst(Z

(n), α), βlst(FZ) := βlst(F(x′,y), α),Q(FnZ ,β) := Q(Z(n),β, α),
and Q(FZ,β) := Q(F(x′,y),β, α), for notation simplicity. where FnZ is the sample

version of FZ := F(x′,y), corresponding to Z(n) and α are suppressed.

We will follow the approach in [51] and treat the problem in a more general
setting. To that end, we introduce the regression depth functions D(FnZ ,β)
= (1 + Q(FnZ ,β))−1 and D(FZ,β) = (1 + Q(FZ,β))−1 (see page 144 of [52]
for the objective function approach). The original minimization issue becomes
a maximization problem.

Let Mn be stochastic processes indexed by a metric space Θ of θ, and M :
Θ→ R be a deterministic function of θ which has its maximum at a point θ0.

The sufficient conditions for the consistency of this type of problem were
given in [38] and [39], they are:

C1: supθ∈Θ |Mn(θ)−M(θ)| = op(1);

C2: sup {θ: d(θ,θ0)≥δ}M(θ) < M(θ0), for any δ > 0 and the metric d on
Θ;

Then any sequence θn is consistent for θ0 providing that it satisfies

C3: Mn(θn) ≥Mn(θ0)− op(1).

Lemma 4.1 [38] If C1 and C2 hold, then any θn satisfying C3 is consistent
for θ0.

Remark 4.1

(I) C1 requires that the Mn(θ) converges to M(θ) in probability uniformly in
θ. For the depth process D(FnZ ,β) and D(FZ,β), it holds true (the convergence
here is almost surely (a.s.) and uniformly in β as shown in Lemma 4.2 below).

(II) C2 essentially demands that the unique maximizer θ0 is well separated.
This holds true for D(FZ,β) as shown in Lemma 4.3 below.

(III) C3 asks that θn is very close to θ0 in the sense that the difference of
images of the two at Mn is within op(1). In [10] and [39] a stronger version of
C3 is required:
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C3* : Mn(θn) ≥ sup
θ∈Θ

Mn(θ)− op(1),

which implies C3. This strong version mandates that θn nearly maximizes
Mn(θ). Our maximum regression depth estimator β̂lst(F

n
Z , α)(:= θn) is defined

to be the maximizer of Mn(θ) := D(FnZ ,β), hence C3* (and thus C3) holds
automatically.

In light of above, we have

Corollary 4.1 β̂lst(F
n
Z ) induced from D(FnZ ,β) (or Q(FnZ ,β)) is consistent for

βlst(FZ).

But, we can have more.

Based on the proofs of Theorems 2.2 and 3.2 and in light of Theorem 4.1,
under assumptions (A0)-(A3), we assume without loss of generality (w.l.o.g.)

that β̂lst(F
n
Z ) ∈ B(β0, r) and βlst(FZ) ∈ B(β0, r), where B(β0, r) is a ball

centered at β0 with radius r which is large enough. Now B(β0, r) can serve,
w.l.o.g., as out parameter space Θ of β in the sequel.

Lemma 4.2 Under assumption (A2), (a) supβ∈Θ |Q(FnZ ,β)−Q(FZ,β)| = o(1),
a.s. and (b) supβ∈Θ |D(FnZ ,β)−D(FZ,β)| = o(1), a.s..

Proof : See the Appendix.

Lemma 4.3 Assume that a regression (or location) depth function D(β;FZ) is
continuous in β and β ∈ Θ is bounded. Let η ∈ Θ be the unique point with
η = arg maxβ∈ΘD(β;FZ) and D(η;FZ) > 0. Then supβ∈Nc

ε (η)D(β;FZ) <
D(η;FZ), for any ε > 0, where N c

ε (η) = {β ∈ Θ : ‖β − η‖ ≥ ε} and “Ac”
stands for “complement” of the set A.

Proof : See the Appendix.

Theorem 4.2 Under assumptions (A1) -(A3), β̂lst(F
n
Z ) is strongly consistent

for βlst(FZ) (i.e., β̂
n

lst − βlst = o(1) a.s.).

Proof: The proof for the consistency of Lemma 4.1 could be easily extended to
the strong consistency with a strengthened version of C1

C1*: sup
θ∈Θ
|Mn(θ)−M(θ)| = o(1), a.s.,

In the light of the proof of Lemma 4.1, we need only verify the sufficient
conditions C1* and C2-C3. By (III) of Remark 4.1, C3 holds automatically,
so we need to verify C1* and C2. C1* follows from Lemma 4.2. So the only
item left is to verify C2 for D(FZ ,β) which is guaranteed by Lemma 4.3.

Remark 4.2

(I) The approach utilizing a generalized Glivenko-Cantelli theorem over a
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class of functions with polynomial discrimination in the proof of lemma 4.2 is
very powerful and applicable to many regression estimators to obtain the strong
consistency result. It is certainly applicable to the least trimmed squares (LTS).

(II) The consistency (not the strong version in Theorem 4.2) of the LTS has
been obtained in [40] using standard analysis (under many assumptions on non-
random xi and on the distribution of e) which, of course, is difficult, lengthy
(consumed an entire article), and tedious. The approach here is different, concise
and the estimator (LST) is, of course, different to the LTS.

Consistency does not reveal the speed of convergence of sample β̂lst(F
n
Z ) to

its population counterpart βlst(FZ). Standard speed of Op(1/
√
n) is desirable

and expected for β̂lst(F
n
Z ). We investigate this issue next.

4.3.
√
n- consistency

To establish the root-n consistency we need one more assumption:

(A4) E(e) = 0 and E(xx′) exists.

E(e) = 0 is commonly required in the traditional regression analysis. The
existence of covariance (and the mean) of x is sufficient for the existence of
E(xx′).

In the following, we will employ big O and little o notations for the vectors
or matrices.

Definition 4.1 For a sequence of random vectors or matrices Xn, we say

Xn = op(1) means ‖Xn‖
p→ 0;

Xn = Op(1) means ‖Xn‖ = Op(1),
where norm of a matrix Am×n is defined as ‖A‖ := supx6=0∈Rn ‖Ax‖p

/
‖x‖p, p

could be 1, 2, or ∞ (see page 82 of [3]).

Theorem 4.3 Assume that assumptions in Theorem 4.1 and (A4) hold, then

β̂
n

lst − βlst = β̂
n

lst − β0 = Op(1/
√
n).

Proof : See the Appendix.

Remark 4.4

(I) The root-n consistency of an arg max estimator could be established by a
general approach given in [30, 31] Theorem 1. With the depth process introduced
in the section 4.2, we are unable to verify the second requirement in that theorem
though.

(II) The approach here for the root-n consistency of the LST is analogous
to what is given in [41] for the LTS. However, the latter is lengthy and costs a
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twenty-two pages article.

5. Asymptotic normality

The root-n consistency above could be obtained as a by-product of the asymp-
totic normality which will be established in the following via stochastic equicon-
tinuity (see page 139 of [20], or the supplementary of [51]).

Stochastic equicontinuity refers to a sequence of stochastic processes {Zn(t) :
t ∈ T} whose shared index set T comes equipped with a semi metric d(·, ·).

Definition 5.1 (IIV. 1, Def. 2 of [20]). Call Zn stochastically equicontinuous at
t0 if for each η > 0 and ε > 0 there exists a neighborhood U of t0 for which

lim supP

(
sup
U
|Zn(t)− Zn(t0)| > η

)
< ε. (5.1)

If τn is a sequence of random elements of T that converges in probability to
t0, then

Zn(τn)− Zn(t0)→ 0 in probability, (5.2)

because, with probability tending to one, τn will belong to each U . The form
above will be easier to apply, especially when behavior of a particular τn se-
quence is under investigation.

Suppose F = {f(·, t) : t ∈ T}, with T a subset of Rk, is a collection of real,
P-integrable functions on the set S where P (probability measure) lives. Denote
by Pn the empirical measure formed from n independent observations on P , and
define the empirical process En as the signed measure n1/2(Pn − P ). Define

F (t) = Pf(·, t),
Fn(t) = Pnf(·, t).

Suppose f(·, t) has a linear approximation near the t0 at which F (·) takes on
its minimum value:

f(·, t) = f(·, t0) + (t− t0)′∇(·) + |t− t0|r(·, t). (5.3)

For completeness set r(·, t0) = 0, where ∇ (differential operator) is a vector of
k real functions on S. We cite theorem 5 of IIV.1 of [20] (page 141) for the
asymptotic normality of τn.

Lemma 5.1 . Suppose {τn} is a sequence of random vectors converging in
probability to the value t0 at which F (·) has its minimum. Define r(·, t) and the
vector of functions ∇(·) by (5.3). If

(i) t0 is an interior point of the parameter set T ;
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(ii) F (·) has a non-singular second derivative matrix V at t0;
(iii) Fn(τn) = op(n

−1) + inft Fn(t);
(iv) the components of ∇(·) all belong to L 2(P );
(v) the sequence {Enr(·, t)} is stochastically equicontinuous at t0 ;

then
n1/2(τn − t0)

d−→ N (O, V −1[P (∇∇′)− (P∇)(P∇)′]V −1).

Theorem 5.1 Assume that

(i) the uniqueness assumptions for β̂
n

lst and βlst in theorems 2.1 and 3.2 hold
respectively;

(ii) P (x2
i ) exists;

then

n1/2(β̂
n

lst − βlst)
d−→ N (O, V −1[P (∇∇′)− (P∇)(P∇)′]V −1),

where β in V and ∇ is replaced by βlst (which could be assumed to be zero).

Proof : See the Appendix.

Assume that z = (x′, y)′ follows elliptical distributions E(g;µ,Σ) with den-
sity

fz(x′, y) =
g(((x′, y)′ − µ)′Σ−1((x′, y)′ − µ))√

det(Σ)
, (5.4)

where µ ∈ Rp and Σ a positive definite matrix of size p which is proportional
to the covariance matrix if the latter exists. We assume the function g to have
a strictly negative derivative, so that the fz is unimodal.

In light of Lemma 3.1 and under some transformations (see the Appendix
in the supplementary material), we can assume, w.l.o.g. that (x′, y) follows an
E(g; 0, Ip×p) distribution and Ip×p is the covariance matrix of (x′, y) hereafter.

Corollary 5.1 Assume that

(i) assumptions of Theorem 5.1 hold;
(ii) e ∼ N (0, σ2) and x are independent.

Then

(1) P∇ = 0 and P (∇∇′) = 8σ2CIp×p,

with C = Γ(1/2, 1)(αc/σ), where c = σΦ−1(3/4), Γ(1/2, 1)(x) is the cu-
mulative distribution function (CDF) of random variable Γ(a, b) which has
a pdf: ba

Γ(a)x
a−1e−bx, and Φ(x) is the CDF of N (0, 1).

(2) V = 2C1Ip×p with C1 = 2 ∗ Φ(αc/σ)− 1.

(3) n1/2(β̂
n

lst − βlst)
d−→ N (0, 2Cσ2

C2
1
Ip×p).



Hanwen Zuo and Yijun Zuo/ Least squares of trimmed residuals 19

Proof : By Theorem 4.1 and Lemma 3.1, we can assume, w.l.o.g., that βlst =
β0 = 0. Utilizing the independence between e and x and Theorem 5.1, a
straightforward calculation leads to the results.

6. Computation

Now we address one of the most important topics on robust regression estima-
tion, that is, the computation of the estimator. Unlike the LS estimator, which
has an analytical formula for the computation, for the LST estimator, we do not
have such a formula. The formula given in (2.9) can not serve our purpose (due
to the circular dependency: the RHS depends on the LHS). For small sample
size n and dimension p, one can compute the LST exactly (the L in Theorem
2.1 is not a big number), but that is not affordable for moderate n and p. That
is, generally, we have to appeal to approximate algorithms (AAs).

6.1. A procedure based Theorem 2.1

In light of Theorem 2.1, if one discovers all Rβks for 1 ≤ k ≤ L, then one
can get the exact result. But in practice for some cases, this might not be
computationally affordable. However, one can simply search as many Rβks as

possible to get a good approximation of the estimate β̂
n

lst.

To identify Rβk is equivalent to identifying i1, · · · , iK so that Di1 < Di2 <

· · · , DiK in light to (2.7), where K = |I(βk)|. The latter is equivalent to finding
a β ∈ Rβk , then one gets the desired i1, · · · , iK . To find the desired β, one

way is to find a β on the common boundary of Rβk and Rβl so that there are
i 6= j, Di = Dj for some 1 ≤ l 6= k ≤ L and 1 ≤ i, j ≤ n. Small perturbation
of the coordinates of the β = (β1, · · · , βp)′ leads to more than one βs (β =
(β1, · · · , βj ± δ, · · · , βp)′ (for some 1 ≤ j ≤ p and δ > 0) that belong to Rβk or
Rβl .

Now we address the way to find out the β. In light of (2.7), there are i 6= j,
Di = Dj for some 1 ≤ l 6= k ≤ L and 1 ≤ i, j ≤ n. The equality Di = Dj

implies that (i) ri = rj or (ii) (ri + rj)/2 = mn(β). Both equalities could lead
to some βs, but the first one ri = rj is more convenient.

We now focus on the first one which amounts to yi − yj = (wi − wj)
′β =

(xi − xj)′(β2, · · · , βp)′, where w′ = (1,x′), β = (β1, · · · , βp)′. Assume that
xi 6= xj for i 6= j. If yi = yj , then, β = (β1,0

′
p−1)′ is one of solutions, oth-

erwise, from this equation, we see that (i) β1 could be any number in R1,
(ii) the equation defines a (p − 1)-dimensional hyperplane. Consequently, all
β = (β1, 0, · · · , 0, yi−yj

xik−xjk
, 0, · · · , 0) ∈ Rp are solutions, where β1 ∈ R1 and

xik 6= xjk, 1 ≤ k ≤ (p− 1). Simple choices for β1 could be 0 and 1 or any con-
stant. From here we obtain at least two βs that lie on the common boundary.
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With the small perturbation (±δ) to the ith coordinate of the βs above
we could obtain 4p new βs. For each such β, we first obtain i1, · · · , iK with
K = |I(β)| and then check if the strict inequalities in (2.7) hold.

If they do not hold, then move to the next β. Otherwise, check if the K
indices already appear before, if it has, then do nothing, else update the data
structure that stores the indices, and obtain the least square solution βls-new
based on the sub-data set with the K subscripts (I(β)) and the sum of squared
residuals. If the latter is smaller than SS-min, then set it to be the SS-min and

update β̂
n

lst with βls-new. Increase Tls, which is the counter for the number of
LS calculations, by one. Move to the next β until all 4p βs are exhausted. Then
repeat the entire process with a new pair (i, j). Summarizing discussions so far,
we have

AA1– pseudocode for computing the LST based on Theorem 2.1

Input: A data set Z(n) = {(x′i, yi)′, i = 1, 2, · · · , n}, a fixed α. Assume that
xi 6= xj if i 6= j.

(1) Sample two indices i and j from {1, · · · , n}, assume that xik 6= xjk, 1 ≤
k ≤ (p− 1) (i.e. the kth coordinates of xi and xj do not equal). Consider

β0 = (0, 0, · · · , 0, bk+1, 0, · · · , 0)′,β1 = (1, 0, · · · , 0, bk+1, 0, · · · , 0)′ in Rp

Both have the same (k + 1)th coordinate, bk+1 := (yi − yj)/(xik − xjk).

(2) Write βj(l,±δ) for the perturbed βj with its lth coordinate adding or
subtracting a δ > 0. Define a set

S(β) = ∪pl=1{β
0(l,±δ)} ∪pl=1 {β

1(l,±δ)}.

(3) For each β of 4p βs in the set S(β),

(a) obtain i1, · · · , iK with K = |I(β)| and check to see if the strict in-
equalities in (2.7) hold.

(a1) If not, move to the next β; else

(a2) check if the K indices already appear in a structure Sind

(i) if yes, then move to the next β; else

(ii) update Sind by storing the K indices in the structure Sind
and calculate the LS estimate βls-new based on the sub-data
set with index in I(β) and obtain the sum of |I(β)| squared
residuals, SS(βls-new).

(iii) Update SSmin if it is greater than SS(βls-new) and update

β̂
n

lst with βls-new. Update the counter for the total number
Tls of LS calculations, if the latter is less than N (the total
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number of LS calculations decided to perform), then continue
the loop (go to (3)), else stop.

(b) If Tls < N , then go to (1), else break the loop.

Output: β̂
n

lst

Remark 6.1 see the Appendix.

6.2. A subsampling procedure

Subsampling procedures are prevailing in practice for most robust regression
estimators (see [23], [11], [12], [24], [43], [25, 26], [50, 54], among others).

The basic idea is straightforward: (1) draw a sub-sample of size m from
data set Z(n) = {(x′i, yi)′ ∈ Rp,xi ∈ Rp−1, i = 1, 2, · · · , n}. (2) compute an
estimate based on the sub-sample and obtain the objective function value. (3) if
the objective function value can be further improved (reduced), then go to (1),
otherwise, stop and output the final step estimate.

Natural questions for the above procedure include (1) how to guarantee the
convergence of the procedure and the final answer is the global minimum? (2)
what is the exact size m and what is the relationship with n and dimension p?
To better address these matters, we first propose the corresponding procedure
for our LST.

AA2 pseudocode for a sub-sampling procedure for LST

Input: A data set Z(n) = {Z1, · · · ,Zn} = {(x′i, yi)′, i = 1, 2, · · · , n} ∈ Rp
(assume that p ≥ 2) and an α ≥ 1 (default is one).

(a) Initialization: N=min{
(
n
p

)
, 300(p− 1)}, R=0, Qold = 108, βold = 0 (or a

LS (or LTS) estimate).
(b) Iteration: while (R ≤ N)

keep sampling p indices {i1, · · · , ip} from {1, 2, · · · , n} (without re-
placement) until M ′x := (wi1 , · · · ,wip) being invertible. Let βnew =
(Mx)−1(yi1 , · · · , yip)′.

(1) Calculate I(βnew) (based on (2.6)) andQnew := Qn(βnew) (based
on (2.4)).

(2) ∗ If Qnew < Qold, then Qold = Qnew, βold = βnew. Get an LS
estimator βls based on the data points of Z(n) with subscripts
from I(βnew). Go to (1) with βnew = βls.

∗ Else if Qnew = Qold break
else R=R+1, go to (b)

Output: βnew.

Remark 6.2 see the Appendix.
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Table entries (a, b) are: a:=empirical mean squared error, b:=total time consumed

n p AA1 AA2

3 (0.3499, 566.49) (0.5290, 651.25)
50 5 (0.5817, 457.49) (0.7645, 861.75)

10 (0.5390, 682.41) (1.7177, 1016.6)

3 (0.1755, 573.07) (0.3619, 879.01)
100 5 (0.2023, 638.76) (0.4528, 1042.6)

10 (0.2576, 702.02) (0.7000, 1071.5)

3 (0.0825, 619.75) (0.3025, 1309.7)
200 5 (0.1055, 676.63) (0.3501, 1285.6)

10 (0.1283, 698.14) (0.4178, 1310.2)

Table 1
Total computation time for all 1000 samples (seconds) and empirical mean squared error

(EMSE) of different AAs for various ns and ps.

7. Examples and comparison

This section investigates the performance of AAs and compares it with that of
the benchmark LTS. First, we like to give some guidance for selection among
the two AAs.

Example 7.1 Performance of the two AAs There are two AAs and
which of them should be recommended for users? This example tries to achieve
this by examining the speed and accuracy of the two AAs.

We generate 1000 samples Z(n) = {(x′i, yi)′, i ∈ {1, · · · , n},xi ∈ Rp−1} from
the standard Gaussian distribution for various sample size n and dimension
p. For the speed, we calculate the total time consumed for all 1000 samples
(dividing it by 1000, one gets the average time consumed per sample) by different
AAs. For accuracy (or variance, or efficiency), we will compute their empirical
mean squared error (EMSE).

For a general estimator T, if it is regression equivariant, then we can as-
sume (w.l.o.g.) that the true parameter β0 = 0 ∈ Rp. We calculate EMSE :=∑R
i=1 ‖Ti − β0‖2/R, the empirical mean squared error (EMSE) for T, where

R = 1000, β0 = (0, · · · , 0)′ ∈ Rp, and Ti is the realization of T obtained from
the ith sample with size n and dimension p. The EMSE and the total time
consumed (in seconds) by different AAs are listed in Table 1.

Inspecting Table 1 immediately reveals that (i) AA2 is not only the slowest
but is the most inaccurate (with the largest EMSEs) in all cases considered. (ii)
AA1 has both speed and accuracy advantages for all cases considered.

Overall, we recommend AA1 for users. That does not exclude the potential
of improvement of AA2 via the idea in [26].
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All R code for simulation and examples as well as figures in this article
(downloadable via https://github.com/left-github-4-code/LST) were run on a
desktop Intel(R)Core(TM) 21 i7-2600 CPU @ 3.40 GHz.

The data points in the example above are perfect standard normal and hence
are not practically realistic. In the following, we will investigate the performance
of AA1 versus the LTS for contaminated standard normal data sets and for
moderate as well as large ns and ps.

Example 7.2 Multiple regression with contaminated normal data
sets. Now we consider data with contamination, which is typical for big data
sets in the “big-data era”.

We consider the contaminated highly correlated normal data points scheme.
We generate 1000 samples Zi = (xi

′, yi)
′ with various ns from the normal

distribution N (µ,Σ), where µ is a zero-vector in Rp, and Σ is a p by p matrix
with diagonal entries being 1 and off-diagonal entries being 0.9. Then ε% of
them are contaminated by normal points with µ being the p-vector with all
elements being 7 except the last one being −2 and the covariance matrix being
diagonal with diagonal being 0.1 and off-diagonal being zero. The results are
listed in Table 2 .

Normal data sets, each with ε% contamination
Table entries (a, b) are: a:=empirical mean squared error, b:=total time consumed

ε = 5% ε = 10%
p n AA1 ltsReg AA1 ltsReg

100 (0.2971, 9.6581) (0.3010, 22.867) (0.2843, 494.01) (0.2942, 25.289)
5 200 (0.2503, 26.045) (0.2650, 41.861) (0.2517, 26.629) (0.2630, 43.504)

300 (0.2396, 54.100) (0.2551, 63.639) (0.2366, 54.885) (0.2534, 63.522)

400 (0.1335, 1085.6) (0.1394, 181.18) (0.1340, 1056.2) (0.1382, 175.92)
10 500 (0.1280, 1207.7) (0.1321, 222.81) (0.1289, 1178.5) (0.1321, 218.94)

600 (0.1247, 1308.4) (0.1285, 152.47) (0.1253, 1273.6) (0.1276, 149.99)

700 (0.0815, 2044.9) (0.0885, 549.61) (0.0838, 1994.0) (0.0882, 547.53)
20 800 (0.0776, 2261.7) (0.0837, 620.63) (0.0796, 2177.0) (0.0837, 616.87)

900 (0.0748, 2436.1) (0.0804, 541.20) (0.0761, 2353.7) (0.0795, 538.43)

ε = 30% ε = 40%
300 (0.4347, 53.248) (1.9236, 1635.1) (0.4352, 56.430) (1.3517, 1712.8)

40 400 (0.3362, 100.04) (1.2604, 2401.5) (0.3314, 102.81) (0.8995, 2399.5)
500 (0.2594, 147.66) (0.9514, 2963.4) (0.2873, 146.67) (0.6851, 2787.7)

300 (0.5242, 58.736) (2.7826, 2861.8) (0.5700, 59.903) (1.9808, 2896.3)
50 400 (0.4085, 89.897) (1.7562, 3292.0) (0.4539, 108.88) (1.2547, 3925.5)

500 (0.3107, 145.84) (1.2870, 4510.5) (0.3406, 145.75) (0.9086, 4419.6)

Table 2
Total computation time for all 1000 samples (seconds) and empirical mean squared error

(EMSE) of the LST(AA1) versus the LTS(ltsReg) for various ns, ps, and contaminations.
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Inspecting the table reveals that (i) in terms of EMSE, the AA1 is the overall
winner (with the smallest EMSE in all cases considered), the LTS has the largest
EMSE in all the cases; (ii) in terms of speed, the LTS (or rather ltsReg) is the
winner when p = 10 or 20. The AA1 is the winner for all other p’s, except when
p = 5, n = 100 and ε = 10%. For the latter case, the AA1 can still be faster if
tuning Tls to be 1, then one gets (0.2986, 10.396) for AA1 versus (0.2948, 23.133)
for ltsReg (suffering a slight increase in EMSE).

The LTS (or lstReg) demonstrates its well-known speedy advantage, which
is partially due to its background computation via Fortran subroutine and the
computation scheme proposed in [26]. The AA1 (a pure R programming proce-
dure), on the other hand, has the potential to speed up via Rcpp or even via
Fortran in one or more order of magnitude.

Remark 7.1

(I) Parameters tuning Two parameters in AA1 that can be tuned. The
Tls is set to be 300 for better EMSE (as in the p = 5, n = 100, and ε = 10%
case). If tuning it to be 1, one gets a much faster AA1 (as in the cases p = 30 40,
and p = 5, except when n = 100, and ε = 10%). For the α in the definition of
the LST, it is set to be 1 (default value) in Table 1, it is set to be 3 as in Table
2 when there are contaminations (or outliers). Note that theoretically speaking,
both the LST and the LTS can resist 50% contamination without breakdown.
So 40% contamination rate in Table 2 is relevant which is also employed in [26].

(II) The LTS estimate is obtained via R package ltsReg, h is the default
value b(n+ p+ 1)/2c, one might tune this h to get better performance from the
LTS. But this will decrease LTS’s finite sample breakdown value. This is not
the case for the LST with the α (see Theorem 3.1).

So far we have assumed that the true β0 is the zero vector based on the
regression equivariance. One might not be used to this assumption.

Example 7.3 Performance of the LST and the LTS with respect to a
given β0. Now we examine the performance of the three regression estimators
the LST, the LTS, and LMS in a slightly different setting. We generate 1000
samples {(x′i, yi)′ ∈ Rp} with a fixed sample size 100 from an assumed model:
yi = β0

′xi + ei, where xi = (1, xi1, · · · , xip−1)′ and β0 = (β0, · · · , βp−1)′ are
in Rp and xij and εi are independently from either the Cauchy or N (0, 1)
distribution.

We list the total time consumed (in seconds) and the EMSE (the same for-
mula as before but the true β0 is the given one no longer being the zero vec-
tor) for the three methods with respect to different β0’s in Table 3. Case
I β0 = (−2, 0.1, 1)′, all xij and ei are from N (0, 1) distribution. Case II
β0 = (−2, 0.1, 1, 5)′, xi1, xi2, and ei are from N (0, 1) and xi3 is from Cauchy dis-
tribution. Case III β0 = (50, 0.1,−2, 15, 100)′, all xij and ei are from N (0, 1).
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Replication 1000 times, n = 100

Performance criteria LST(AA1) LMS(lmsreg) LTS(ltsReg)

Case I p = 3

EMSE 3.525451 4.204053 3.806951

Total time consumed 11.53858 10.49865 17.81713

Case II p = 4

EMSE 29.91539 30.23814 29.97682

Total time consumed 9.919189 6.087584 10.31606

Case III p = 5

EMSE 12724.32 12726.87 12724.74

Total time consumed 14.54680 17.42145 22.08751

Table 3
Performance of the LST, the LTS, and the LMS for three true β0’s.

Inspecting the Table reveals that (i) in terms of EMSE, the LST (AA1) is the
overall winner (has the smallest EMSE in all cases) whereas the LMS is the
loser; (ii) in terms of speed, there is no overall winner. In two respective cases,
the LMS is the fastest whereas the LST is fastest in p = 5 case and the LTS is
the slowest in all cases.

Up to this point, we have dealt with synthetic data sets. Next we examine
the performance of the LST, the LTS and the LMS with respect to real data
sets in high dimensions.

Example 7.4 Textbook size real data sets We first look at real data sets
with relatively small sample size n and moderate dimension p. For a description
of data sets, see [23], all are studied there. Since some of methods might depend
on randomness, So we run the computation R = 1000 times to alleviate the
randomness. We then calculate the total time consumed (in seconds) by different
methods for all replications, and the EMSE (with true β0 being replaced by the

sample mean of 1000 β̂s), which is the sample variance of all β̂s up to a factor
1000/999. The results are reported in Table 4, where the parameters α and Tls
in AA1 are tuned.

Inspecting the Table reveals that (i) in terms of the EMSE (or rather empir-
ical variance), AA1 and ltsReg are the overall winners for all cases considered
(no randomness) and the LMS has the largest sample variance. (ii) in terms of
computation speed, there is no overall winner, but AA1 is faster than ltsReg in
three out of four cases. The LMS is the fastest in one case.

The limitation of this example is that the data sets are still relatively small
and not in very high dimensions. We examine a high dimension and large sample
dataset next.
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Table entries (a, b) are: a:=empirical variance of β̂s, b:=total time consumed

data set (n, p) AA1 ltsReg lmsreg

salinity (28, 4) (0.0, 2.3290) (0.0, 8.8385) (1.3719, 4.9425)

phosphor (18, 3) (0.0, 4.9218) (0.0, 8.3902) (0.0000, 1.5153)

wood (20, 6) (0.0, 4.8013) (0.0, 10.343) (2.6470, 8.3714)

coleman (20, 6) (0.0, 14.585) (0.0, 10.159) (243.11, 8.3560)

Table 4
Total time consumed (in seconds) and sample variance in 1000 replications by the LST

(AA1), the LTS (ltsReg), and the LMS (lmsreg) for various real data sets.

Example 7.5 A large real data set Boston housing is a famous data set
([9]) and studied by many authors with different emphasizes (transformation,
quantile, nonparametric regression, etc.) in the literature. For a more detailed
description of the data set, see http://lib.stat.cmu.edu/datasets/.

The analysis reported here did not include any of the previous results, but
consisted of just a straight linear regression of the dependent variable (median
price of a house) on the thirteen explanatory variables as might be used in an
initial exploratory analysis of a new data set. We have sample size n = 506 and
dimension p = 14.

We assess the performance of the LST, the LTS, and the LMS as follows: (i)
we sample m points (without replacement) (m = 506, entire data set, or m =

200, 250, 300, 350) from the entire data set, and compute the β̂s with different
methods, we do this RepN times, where replication number RepN varies with
respect to different ms. (ii) we calculate the total time consumed (in seconds)
by different methods for all replications, and the EMSE (with true β0 being

replaced by the sample mean of RepN β̂s from (i)), which is the sample variance

of all β̂s up to a factor RepN/(RepN − 1). The results are reported in Table 5.

Inspecting the Table reveals that (i) the LMS has the largest EMSEs while
it is faster than the LTS in all cases; (ii) the LST has smallest EMSE in three
cases among the five (in those cases it is slower than the LTS) (in the other two
cases the LTS takes its turn); (iii) in the entire data-set case, the LST returned
the same estimate every replication whereas it is not the case for the LTS and
the LMS.

8. Final discussions

The difference between the LTS and the LST The least sum of squares
of trimmed (LST) residuals estimator, which is proven to have the best 50%
asymptotic breakdown point, is another robust alternative to the classical least
sum of squares (LS) of residuals estimator. The latter keeps all squared residuals
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Table entries (a, b) are: a:=empirical variance of β̂s, b:=total time consumed

p m RepN LST(AA1) LTS(ltsReg) LMS(lmsreg)

200 104 (195.3379, 595.7677) (220.8644, 480.0612) (847.2457, 472.4671)
250 104 (164.4042, 723.5861) (169.5725, 597.2802) (791.2557, 555.3318)

14 300 104 (461.5653, 514.8522) (126.7703, 683.3362) (754.2416, 623.5828)
350 104 (453.3266, 695.9286) (97.86377, 821.1486) (724.2104, 732.2517)
506 103 (0.000000, 142.4225) (42.58697, 116.5830) (703.7999, 101.0454)

Table 5

Total time consumed (in seconds) and sample variance in RepN replications by the
LTS (ltsReg), the LST (AA1), and the LMS(lmsreg) for real data sets with various

sample size m’s and p = 14.

whereas the former trims some residuals and then squares the left. Trimming is
also utilized in the prevailing least sum of trimmed squares (LTS) of the residuals
estimator. However, the two trimming schemes are quite different, the one used
in the LTS is a one-sided trimming (only large squared residuals are trimmed,
of course, it also might be regarded as a two-sided trimming with respect to the
un-squared residuals) whereas the one utilized in the LST is a depth-based (or
outlyingness-based) trimming (see [49] and [45] for more discussions on trimming
schemes) which can trim both ends of un-squared residuals and trim not a fixed
number of residuals.

Besides the trimming scheme difference, there is another difference between
the LTS and the LST, that is, the order of trimming and squaring. In the LTS,
squaring is first, followed by trimming whereas, in the LST, the order is reversed.
All the difference leads to an unexpected performance difference in the LTS and
the LST as demonstrated in the last section.

Fairness of performance criteria For comparison of the performance of
the LST and the LTS, we have focused on the variance (accuracy, efficiency, or
EMSE) and the computation speed of the algorithms for the estimators. The
asymptotic efficiency (AE) of the LTS has been reported to be just 7% in [34] or
8% in [17] (page 132), the AE of the LST is yet to be discovered, which however
is expected to be better than 8%. This assentation is verified and supported by
the experimental results in the last section (Tables 2, and 3 indicate that the
LST is much more efficient than the LTS). Furthermore, it was also supported
by the results of [45] for various trimming schemes in the case of p = 1.

The computation speed comparison of the LTS versus the LST in the last
section is somewhat not based on a level ground. It is essentially a speed com-
parison of pure R verse R plus Fortran since the Fortran subroutine (rfltsreg) is
called in ltsReg (similarly lmsreg also calling a Fortran subroutine). Even with
that, ltsReg does not have an overwhelming advantage in speed over AA1. For
the latter, however, there is still room for improvement by utilizing Fortran or
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even better Rcpp to speed up by at least one order of magnitude.

Parameters tuning and finite sample breakdown point There are two
parameters h in the LTS and α in the LST which can be tuned in the program for
computation. Their values have a connection with the finite sample breakdown
point. For example, when h takes its default value b(n + p + 1)/2c, then the
FSBP of the LTS is (n − h + 1)/n which will decrease from the best FSBP
result (b(n − p)/2c + 1)/n (see pages 125, 132 of [23]) when h increases. For
the parameter α in LST, as long as α ≥ 1 then the high FSBP in theorem 3.1
remains valid. This is due to the difference in the trimming schemes (see [45]).

Open and future problems By simply switching the order of trimming and
squaring and adopting a depth-based trimming scheme, the LTS and the LST
can have different performances. One naturally wonders what if one does the
same thing with respect to the famous the LMS introduced also by [21] (i.e. the
least square of the median (LSM) of residuals estimator). It turns out, this is not

a good idea since there is a universal solution, it is β̂ = (Med{yi}, 0, · · · , 0) ∈ Rp.

One interesting problem that remains is to investigate the least sum of squares
of trimmed residuals with yet another trimming scheme such as the winsorized
version given in [45], that is, replacing the residuals beyond the cut-off values
at the two ends with just the cutoff values or even a more generalized weighted
(trimming) scheme which includes the hard 0 and 1 trimming scheme. Other
challenging open topics that deserve to be pursued independently elsewhere
include (i) providing a finite sample estimation error analysis (non-asymptotic
analysis) (ii) regularized regression based on the LST to handle variable selection
and model interpretation issues when dimension p is much larger than sample
size n.
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[41] Vı́̌sek, J. Á. (2006b) The least trimmed squares. Part II:

√
n-consistency.

Kybernetika, 42, 181-202.
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Supplementary Material

R code downloadable at https://github.com/left-github-4-codes/LST

Appendix: main proofs and remarks

Proof of Lemma 2.2

(i) For η ∈ Rβk , we have I(η) = I(βk). Let J = |I(βk)|, then Dij+1
(η) >

Dij (η) for 1 ≤ j ≤ (J−1). Let γ := min1≤j≤(J−1) |Dij+1
(η)−Dij (η)|σn(η),

then by (2.7) we have γ > 0.

Due to the continuity of residuals in β, we can choose a small radius δ
such that for any β ∈ B(η, δ), |ri(η) − ri(β)| < γ/4 for any i. After a
straightforward derivation, one gets |mn(η) −mn(β)| ≤ γ/4. In light of
these two inequalities and the definition of γ, one obtains

|rij+1
(β)−mn(β)| ≥

∣∣rij+1
(η)− γ/4− [mn(η) + γ/4]

∣∣
=
∣∣rij+1(η)−mn(η)− γ/2

∣∣
≥ |rij (η)−mn(η)|+ γ/2,

for any β ∈ B(η, δ) and any 1 ≤ j ≤ (J − 1), and

|rij (β)−mn(β)| ≤ |rij (η) + γ/4− [mn(η)− γ/4]|
= |rij (η)−mn(η) + γ/2|
≤ |rij (η)−mn(η)|+ γ/2

The last two displays imply that Dij+1
(β) > Dij (β) for any 1 ≤ j ≤

(J − 1). That is, for any β ∈ B(η, δ), β ∈ Rβk . Consequently, Qn(β) =∑
i∈I(βk) r

2
i .

(ii) The openness of Rβk follows from the proof (i) above straightfor-
wardly.

(iii) For any β ∈ Rp, (i) either β ∈ Rβk for some 0 ≤ k ≤ L and
Qn(β) =

∑
i∈I(β) r

2
i , or (ii) β lies on the common boundary of Rβs and

Rβt for some 1 ≤ s 6= t ≤ L such that there are i 6= j Di(β) = Dj(β),
and Di(η) > Dj(η) if η ∈ Rβs and Di(η) < Dj(η) if η ∈ Rβt , and

Qn(β) =
∑
i∈I(β) r

2
i for β ∈ Rβs ∩Rβt .

The continuity of Qn(β) over Rβk is obvious. We show that is true at

any η ∈ Rβs ∩ Rβt . Let {βj} be a sequence approaching to η, where βj
could be in Sβs or in Sβt . We show that Qn(βj) approaches to Qn(η).

Note that Qn(η) =
∑
i∈I(η) r

2
i for η ∈ Rβs ∪ Rβt . Partition {βj} into

{βjs} and {βjt}, and all members of the former belong to Rβs where the

latter are all within Rβt . By continuity of the sum of squared residuals in



Hanwen Zuo and Yijun Zuo/ Least squares of trimmed residuals 33

β, both Qn(βjs)) and On(βjt)) approach to Qn(η) since both {βjs} and
{βjt} approach η as min{js, jt} → ∞.

(iv) Over each Rβk , 1 ≤ k ≤ L, Qn(β) =
∑
i∈I(β) r

2
i which is clearly twice

differentiable and convex since

∂

∂β
Qn(β) = −2

n∑
i=1

ri1iwi = −2R′DW ′
n,

∂2

∂β2O
n(β) = 2W nDW

′
n,

where R = (r1, r2, · · · , rn)′, D = diag(1i), and W n = (w1,w2, · · · ,wn)′.
Strict convexity follows from the positive definite of Hessian matrix:
2W nDW

′
n.

Proof of Theorem 2.1

(i) Over each Sβk , Qn(β) is twice differentiable and strictly convex in light
of given condition, hence it has a unique minimizer. Since there are only
finitely many Rβk , the assertion follows if we can prove that the minimum
does not reach at a boundary point of some Rβk .

Assume it is otherwise. That is, Qn(β) reaches its minimum at point
β1 which is a boundary point of Rβk for some k. Assume that over
Rβk , Qn(β) attains its minimum value at the unique point β2. Then,
Qn(β1) ≤ Qn(β2), If equality holds then we already have the desired re-
sult, otherwise, there is a point β3 in the small neighborhood of β1 so that
Qn(β3) ≤ Qn(β1) + (Qn(β2) − Qn(β1))/2 < Qn(β2). A contradiction is
obtained.

(ii) It is seen from (i) that Qn(β) is twice continuously differentiable,
hence its first derivative evaluated at the global minimum must be zero.
By (i), we have (2.8).

(iii) This part directly follows from (ii) and the invertibility of Mn that
follows from the full rank of Xn.

Proof of Theorem 2.2

For the given Z(n) and α, write M = Q(Z(n),0, α) =
∑
i∈I(0) y

2
i . For a

given β ∈ Rp, assume that Hβ is the hyperplane determined by y = w′β
and let Hh being the horizontal hyperplane (i.e. y = 0, the w-space).
Partition the space of βs into two parts:S1 and S2, with S1 containing all
βs such that Hβ and Hh are parallel and S2 consisting of the rest of βs
so that Hβ and Hh are not parallel.

If one can show that there are minimizers of Q(Z(n),β, α) over Si i =
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1, 2 respectively, then one can have an overall minimizer. Over S1, the
minimizer is β̂ = (y,0′(p−1)×1)′ and the minimum value of Q(Z(n), β̂, α)

is M − y2, where y is the average of yi over all i ∈ I(0).

Over S2, denote by lβ the intersection part of Hβ with the horizontal
hyperplane Hh (we call it a hyperline, though it is p−1-dimensional). Let
θβ ∈ (−π/2, π/2) be the angle between the Hβ and Hh (and θβ 6= 0).
Consider two cases.

Case I. All wi , i ∈ I(β) on the hyperline lβ. Then we have a vertical
hyperplane that is perpendicular to the horizontal hyperplane Hh (y = 0)
and intersect Hh at lβ, which contains, in light of lemma 2.1, at least

b(n+1)/2c points of Z(n). But this contradicts the assumption just before
the theorem. We only need to consider the other case.

Case II. Otherwise, define

δ =
1

2
inf{τ, such that N(lβ, τ) contains all wi with i ∈ I(β)},

where N(lβ, τ) is the set of points in w-space such that each distance to
the lβ is no greater than τ . Clearly, 0 < δ < ∞ (since δ = 0 has been
covered in Case I and 2δ ≤ maxi{‖wi‖} <∞, where the first inequality
follows from the fact that hypotenuse is always longer than any legs).

We now show that when ‖β‖ > (1 + η)
√
M/δ, where η > 1 is a fixed

number, then ∑
i∈I(β)

r2
i (β) > M =

∑
i∈I(0)

r2
i (0). (8.1)

That is, for the solution of minimization of (2.4), one only needs to search

over the ball ‖β‖ ≤ (1+η)
√
M/δ, a compact set. Note thatQ(Z(n),β, α) is

continuous in β by Lemma 2.2. Then the minimization problem certainly
has a solution over the compact set.

The proof is complete if we can show (8.1) when ‖β‖ > (1 + η)
√
M/δ.

It is not difficult to see that there is at least one i ∈ I(β) such that
wi 6∈ N(lβ, δ) since otherwise it contradicts the definition of δ above.
Note that θβ is the angle between the normal vectors (−β′, 1)′ and (0′, 1)′

of hyperplanes Hβ and Hh, respectively. Then | tan θβ| = ‖β‖ and (see
Figure 2)

|w′iβ| > δ| tan θβ| = δ‖β‖ > (1 + η)
√
M.

Now we have

|ri(β)| = |w′iβ − yi| ≥
∣∣|w′iβ| − |yi|∣∣ > (1 + η)

√
M − |yi|. (8.2)
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Fig 2: A two-dimensional vertical cross-section (that goes through points (wt
i, 0)

and (wt
i,w

t
iβ)) of a figure in Rp (wt

i = w′i). Hyperplanes Hh and Hβ intersect
at hyperline lβ (which does not necessarily pass through (0, 0), here just for
illustration). The vertical distance from point (wt

i, 0) to the hyperplane Hβ,
|wt

iβ|, is greater than δ| tan(θβ)|.

Therefore,

∑
j∈I(β)

r2
j (β) ≥ r2

i (β) >
(

(1 + η)
√
M − |yi|

)2

≥
(

(1 + η)
√
M −

√
M
)2

= η2M > M =
∑
j∈I(0)

r2
j (0).

That is, we have certified (8.1).

Proof of theorem 3.1

Case A: p = 1. The problem becomes an estimation of a location param-
eter β1 (the intercept term in the model yi = β1 + ei). The solution is the
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depth trimmed mean based on yi, i ∈ N , which has the RBP as claimed
(see [45]).

Case B: p > 1.

(i) First, we show that m = bn/2c−p+ 2 points are enough to breakdown

β̂
n

lst. Recall the definition of β̂
n

lst. One has

β̂lst(Z
(n), α) = arg min

β∈Rp
Q(Z(n),β, α)

= arg min
β∈Rp

n∑
i=1

r2
i 1

(
|ri −m(Z(n),β)|

σ(Z(n),β)
≤ α

)
. (8.3)

Select p − 1 points from Z(n) = {(x′i, yi)′}. (w′i, yi), together with the
origin, form a (p− 1)-dimensional subspace (hyperline) Lh in the (p+ 1)-
dimensional space of (w′, y)′.

Construct a non-vertical hyperplane H through Lh (that is, it is not per-
pendicular to the horizontal hyperplane y = 0). Let β be determined by
the hyperplane H through y = w′β.

We can tilt the hyperplane H so that it approaches its ultimate vertical
position. Meanwhile, we put all the m contaminating points onto this
hyperplane H so that it contains no less than m + (p − 1) = bn/2c + 1

observations. Call the resulting contaminated sample by Z(n)
m . Therefore

the majority of ri = yi −w′iβ will now be zero. Therefore, σ(Z(n),β), in
this case, is defined to be one.

When H approaches its ultimate vertical position, ‖β‖ → ∞ (for the
reasoning, see the case (II) of the proof of Theorem 2.2) and ri for points
(w′i, yi))

′ not on the H will also approach ∞. This implies that this β

is the solution for β̂
n

lst at this contaminated data Z(n)
m since it attains

the minimum possible value (zero) on the RHS of (2.5). That is, m =

bn/2c − p+ 2 contaminating points are enough to break down β̂
n

lst.

(ii) Second, we now show that m = bn/2c−p+1 points are not enough to

break down β̂
n

lst. Let Z(n)
m be an arbitrary contaminated sample and βc :=

β̂lst(Z
(n)
m , α) and βo = β̂lst(Z

(n), α), where Z(n) = {Zi} = {(x′i, yi)′} are
uncontaminated original points. Assume that βc 6= βo (Otherwise, we are
done). It suffices to show that ‖βc − βo‖ is bounded.

Note that since n − m = b(n + 1)/2c + p − 1, then both m and σ in

respective (2.2) and (2.3) are bounded for both contaminated Z(n)
m and
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βc and original Z(n) and βo. Define

δ =
1

2
inf

{
τ > 0; ∃ a (p− 1)-dimensional subspace L of (y = 0) such

that Lτ contains at least p of uncontaminated (1,x′i) from Z(n)
}
,

where Lτ is the set of all points w′ that have the distance to L no greater
than τ . Since Z(n) is in general position, δ > 0.

Let Ho and Hc be the hyperplanes determined by y = w′βo and y = w′βc,
respectively, and M = maxi{|yi−w′iβo|} for all original yi and xi in Z(n).
Since βo 6= βc, then Ho 6= Hc.

(I) Assume that Ho and Hc are not parallel. Denote the vertical
projection of the intersection Ho ∩Hc to the horizontal hyperplane y = 0
by Lvp(Ho ∩ Hc), then it is (p − 1)-dimensional. By the definition of δ,
there are at most p−1 of uncontaminated points of wi = (1,x′i)

′ from the
original {Zi, i = 1, · · · , n} within Lδvp(Ho∩Hc). Denote the set of all these
possible wi (at most p − 1) by Scap and |Scap| = ncap ≤ (p − 1). Denote
the set of all remaining uncontaminated Zi from the original {Zi, i =
1, · · · , n} by Sr and the set of all such i as J , then there are at least
n−m− ncap ≥ n− bn/2c = b(n+ 1)/2c such Zi in Sr.

For each (w′i, yi)
′ with i ∈ J , construct a two-dimensional vertical plane

Pi that goes through (w′i, yi)
′ and (w′i, yi + 1)′ and is perpendicular to

Lvp(Ho ∩ Hc) (see Figure 2 and/or Figure 16 of [23]). Denote the angle
formed by Ho and the horizontal line in Pi by αo ∈ (−π/2, π/2), similarly
by αc for Hc and Pi. They are essentially the angles formed between Ho

and Hc with the horizontal hyperplane y = 0, respectively.

We see that for i ∈ J and each (w′i, yi)
′, |w′iβo| > δ| tan(αo)| and |w′iβc| >

δ| tan(αc)| (see Figure 2 or Figure 16 of [23] of a geographical illustration
for better understanding) and ‖βo‖ = | tan(αo)| and ‖βc‖ = | tan(αc)|.

Now for each i ∈ J , denote roi := (yi −w′iβo) and rci := (yi −w′iβc). For
any i ∈ J , it follows that (see Figure 2 or Figure 16 of [23])

|roi − rci | =
∣∣w′iβo −w′iβc∣∣ > δ| tan(αo)− tan(αc)|

≥ δ
∣∣| tan(αo)| − | tan(αc)|

∣∣ = δ
∣∣‖βo‖ − ‖βc‖∣∣

≥ δ
∣∣‖βo − βc‖ − 2‖βo‖

∣∣
Let M1 := |m(Z

(n)
m ,βc)|+ασ(Z

(n)
m ,βc), which is obviously bounded. Then

it is obvious that

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)

m ,β)|
σ(Z(n)

m ,β)
≤ α

)
≤ I(βc)M

2
1 ,

(8.4)
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If we assume that ‖βo−βc‖ ≥ 2‖βo‖+ (M1

√
I(βc) +M)

/
δ, then by the

inequality above we have for i ∈ J

|roi − rci | > δ
∣∣‖βo − βc‖ − 2‖βo‖

∣∣ ≥M1

√
I(βc) +M,

which implies that for any i ∈ J ,

|rci | ≥ |roi − rci | − |roi | > M1

√
I(βc) +M −M = M1

√
I(βc).

Notice that |J | ≥ b(n+1)/2c which implies that there is at least one i0 ∈ J
that belongs to I(βc) in light of Lemma 2.1. Therefore

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)

m ,β)|
σ(Z(n)

m ,β)
≤ α

)

≥ (rci0)2 > I(βc)M
2
1 ,

which contradicts (8.4). Thus, ‖βo−βc‖
(
< 2‖βo‖+ (M1

√
I(βc) +M)

/
δ
)

is bounded.

(II) Assume that Ho and Hc are parallel. That is, βc = ρβo. We
claim that ‖βc−βo‖ is bounded. If ρ is finite or ‖βo‖ = 0, then ‖βc−βo‖
is automatically bounded. We are done. Otherwise, consider the case that
βo 6= 0 and |ρ| → ∞.

(A) Assume that Ho is not parallel to y = 0.

The proof is very similar to part (I). Denote the intersection of Hc and
the horizontal hyperplane y = 0: Hc ∩ {y = 0} by Lc. Then Lδc contains

at most p − 1 uncontaminated points from {Z(n)}. Denote the set of all

the remaining uncontaminated points in {Z(n)} as Sr. Hence |Sr| ≥ n −
m − (p − 1) ≥ b(n + 1/2c. Denote again by J the set of all i such that
Zi ∈ Sr. Again let the angle between Hc and y = 0 be αc, then it is seen
that ‖βc‖ = | tan(αc)| and |w′iβc| > δ| tan(αc)| for any i ∈ J .

Note that for i ∈ J , rci = (yi−w′iβc). Write My = maxi∈J |yi|. It follows
that for i ∈ J ∣∣rci ∣∣ ≥ ∣∣|w′iβc| − |yi|∣∣ ≥ | δ| tan(αc)| −My|.

Since |Sr| ≥ b(n+ 1/2c, then M1 := |m(Z
(n)
m ,βc)|+ ασ(Z

(n)
m ,βc) is obvi-

ously bounded (see reasing in (I) above) and

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)

m ,β)|
σ(Z(n)

m ,β)
≤ α

)
≤ I(βc)M

2
1 ,

(8.5)
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Notice that |J | ≥ b(n+1)/2c which implies that there is at least one i0 ∈ J
that belongs to I(βc) in light of Lemma 2.1. Therefore

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)

m ,β)|
σ(Z(n)

m ,β)
≤ α

)

≥ (rci0)2 > (δ| tan(αc)| −My)2 = (δ|ρ|‖βo‖ −My)2

Since |ρ| could be arbitrarily large, then the above inequality contradicts
(8.5).

(B) Assume that Ho is parallel to y = 0. Then, it means that βc =
ρβo = (ρβo1, 0, · · · , 0). Assume that βo1 6= 0. Otherwise, we are done. Now
we can repeat the argument above since n−m = (p−1)+b(n+1)/2c. Let
A be the set of all uncontaminated points from Z(n), then |A| = n−m =
(p − 1) + b(n + 1)/2c. Let J be the set of all i such that Zi ∈ A and

My = maxi∈J |yi|, then M1 := |m(Z
(n)
m ,βc)| + ασ(Z

(n)
m ,βc) is obvious

bounded. We still have

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)m ,β)|

σ(Z(n)m ,β)
≤ α

)
≤ I(βc)M

2
1 ,

(8.6)

On the one hand we have that for i ∈ J

|rci | = |w′iβc − yi| ≥
∣∣|w′iβc| − |yi|∣∣ ≥ ∣∣|ρ||βo1| −My

∣∣,
which implies that (rci )

2 becomes unbounded when ρ→∞. Since there is
at least one i0 ∈ J that belongs to I(βc) in light of Lemma 2.1, now we
have

Q(Z(n)
m ,βc, α) =

∑
i∈I(βc)

(rci )
21

(
|rci −m(Z(n)

m ,β)|
σ(Z(n)

m ,β)
≤ α

)

≥ (rci0)2 ≥ (|ρ||βo1| −My)2 →∞ (as ρ→∞),

which contradicts to (8.6).

That is, m contaminating points are not enough to breakdown β̂
n

lst since
‖βo − βc‖ remains bounded.

Remark A.1

Parallel cases considered in the proofs of Theorems 2.2 and 3.1 (often
missed the related discussions in the literature) are important. This is
especially true in the latter case since one can not afford to miss the
parallel cases when considering the all possibilities of contamination.

Proof of Lemma 3.2
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Denote the integrand in (3.3) as G(β) := (y−w′β)21
(
|y−w′β−m|

σ ≤ α
)

for

a given point (x′, y) ∈ Rp. PutG(β) := (y−w′β)2
(
1−1

(
|y−w′β−m|

σ > α
) )

.

(i) By the strictly non-flatness of Fr around m and σ, we have the conti-
nuity of the m(β and σ(β). Consequently, G(β) is obvious continuous in
β ∈ Rp. Hence, Q(β) is continuous in β ∈ Rp.

(ii) For arbitrary points (x′, y) and β in Rp and fixed distribution Fr,
there are three cases for consideration: (a) |y − w′β − m|

/
σ < α (b)

|y−w′β−m|
/
σ > α and (c) |y−w′β−m|

/
σ = α. Case (c) happens with

probability zero, we thus skip this case and treat (a) and (b) only. By the
continuity in β, there is a small neighborhood of β: B(β, δ), centered at
β with radius δ > 0 such that (a) (or (b)) holds for all β ∈ B(β, δ). This
implies that

∂

∂β
1

(
|y −w′β −m|

σ
≤ α

)
= 0,

and
∂

∂β
G(β) = −2(y −w′β)w1

(
|y −w′β −m|

σ
≤ α)

)
,

Hence, we have that

∂2

∂β2G(β) = 2ww′1

(
|y −w′β −m|

σ
≤ α)

)
,

Note that G(β) is uniformly bounded over β ∈ Rp, then by the Lebesgue
dominated convergence theorem, the desired result follows.

(iii) The convexity follows from the twice differentiability and the positive
semidefinte of the second order derivative of Q(β) and the strict convexity
follows from the invertibility of Hessian matrix.

Proof of Theorem 3.2

We will treat βlts(F(x;,y), α) , the counterpart for βlts(Fε(z), α) can be
treated analogously.

(i) Existence follows from the positive smidefinite of the Hessian matrix
(see proof of (ii) of Lemma 3.2) and the convexity of Q(β).

(ii) The equation follows from the Lebesgue dominated convergence the-
orem, the differentiability and the first order derivative of Q(β) given in
the proof (ii) of Lemma 3.2.

(iii) The uniqueness follows from the Lebesgue dominated convergence
theorem, the positive definite of the Hessian matrix based on the given
condition (invertibility).
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Remark 3.2

(I) Generally, the influence function for a regression estimator when p >
1 is not often provided in the literature (exceptions including [53]) for
the projection regression median, and [19] for the penalized regression
estimators. In the latter case for the spare LTS, it is still restricted to
p = 1 and x and e are independent and normally distributed, though). In
the location setting (p = 1) the IF of the LTS estimator has been given
in [36]. In this special case (p = 1) in our model (1.1), we have a location
problem for the β01 and the IF was given in [45] and is bounded.

(II) If setting α→∞, then one immediately obtains the influence function
for LS estimating functional, βls, which is with z0 = (s′0, t0)′ ∈ Rp

IF(z0;βls, F(x′,y)) = (E(ww′))−1(1, s′0)′(t0 − (1, s′0)βls).

Of course, assuming that the inverse exists. Obviously, one can follow the
approach in the theorem to obtain the IF for LTS in the case p > 1.

(III) When the depth of the residual of the contaminating point z′0 =
(s′0, t0) with respect to the βlst is larger than α, then the point mass
contamination does not affect at all the functional βlst with its influence
function remaining bounded. It, unfortunately, might be unbounded (in
p > 1 case), sharing the same drawback of that of LTS (in the p = 1 case).
The latter was shown in [19] even in the simple regression case with x and
e are independent and normally distributed.

Proof of theorem 3.3

Insert βεlst(z0) := βlst(Fε(z0), α) for β in (3.9) and take derivative with
respect to ε and let ε → 0, we obtain (in light of dominated convergence
theorem)(∫

∂

∂βεlst(z0)
(r(βεlst(z0))v1(βεlst(z0), Fε(z0))

∣∣∣
ε=0
dF(x′,y)

)
β̇lst(z0, F(x′,y))

+I2 − I3 = 0, (8.7)

where r(β) = y−w′β, 1(β, G) = 1
(
|(y −w′β)−m(G)|

/
σ(G) ≤ α

)
, and

I2 =

∫
(r(βlst(F(x′,y), α))v1(βlst(F(x′,y), α), F(x′,y)),

I3 =

∫
(r(βlst(F(x′,y), α))w1(βlst(F(x′,y), α), F(x′,y))dF(x′,y).

Denote by I1 for the first term on the LHS of the above first equation. We
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have I1 + I2 − I3 = 0, and

I2 − I3 =

(t0 − (1, s′0)βlst(F(x′,y), α))(1, s′0)′1

(
|(t0−(1,s′0)βlst(F(x′,y),α)−m|

σ ≤ α
)
,

where the equality follows from (3.8) (i.e. I3 = 0). The RHS of the last
display is:

=

{
0, if t0 − (1, s′0)βlst 6∈ [m(βlst)± ασ(βlst)],

(t0 − (1, s′0)βlst)(1, s
′
0)′, otherwise,

Now we focus on the I1 and especially its integrand. Denote the latter by
I4. We have

I4

=
∂

∂βεlst(z0)

(
(y −w′βεlst(z0))w1

(
|(y −w′βεlst(z0))−mε(z0)|

σε(z0)
≤ α

)) ∣∣∣∣∣
ε=0

=

(
−ww′1

(
|(y −w′βεlst(z0))−mε(z0)|

σε(z0)
≤ α

)) ∣∣∣∣∣
ε=0

+

(
(y −w′βεlst(z0))w

∂

∂βεlst(z0)
1

(
|(y −w′βεlst(z0))−mε(z0)|

σε(z0)
≤ α

)) ∣∣∣∣∣
ε=0

.

Hence

I4 = −ww′1
(
|(y −w′βlst)−m(βlst)|

σ(βlst)
≤ α

)

+ (y −w′βlst)w
∂

∂β
1

(
|(y −w′β)−m(β)|

σ(β)
≤ α

) ∣∣∣∣∣
β=βlst

= −ww′1
(
|(y −w′βlst)−m(βlst)|

σ(βlst)
≤ α

)
,

where the last step follows from the proof of Lemma 3.2.

Now we have in light of (8.7)(∫
(−I4)dF(x′,y)

)
β̇lst(z0, F(x′,y)) = I2.

The desired result follows.
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Proof of lemma 4.2

It suffices to establish (a), (b) follows. Put msup = supβ∈Θm(Fy−w′β),
minf = infβ∈Θm(Fy−w′β), and σsup = supβ∈Θ σ(Fy−w′β), by continuity
in β and boundedness of Θ, all are finite numbers. Define two classes of
functions for a fixed α, msup, minf , and σsup with r(β) = y −w′β

F1(β) :=

{
f(x, y,β) = (r(β))21

(
|r(β)−m(FR)|

σ(FR)
≤ α

)
,β ∈ Θ

}
,

F2(β) :={
f(x, y,β) = (r(β))21 (minf − ασsup ≤ r(β) ≤ msup + ασsup) ,β ∈ Θ

}
.

Obviously, F1(β) ⊂ F2(β). Following the notation of [20], we have for
any β ∈ Θ,

Q(FnZ ,β)−Q(FZ,β) = Pnf(x, y,β)− Pf(x, y,β) := Pnf − Pf,

where f := f(x, y,β) ∈ F1(β) (hereafter for consistency we assume that
there is a factor 1

n in the RHS of (2.4). This will not affect the minimization
or all previous discussions). And

sup
β∈Θ
|Q(FnZ ,β)−Q(FZ,β)| = sup

f∈F1(β)

|Pnf − Pf | ≤ sup
f∈F2(β)

|Pnf − Pf |.

(8.8)
It suffices to show the most right hand side equals to o(1) a.s. (cf, supple-
ment of [51]) for this part of proof).

To achieve that, we invoke Theorem 24 of II.5 of [20]. First F2(β) is a
permissible class of functions with an envelop F = (msup + ασsup)2. Sec-
ond, to verify the logarithm of the covering number is op(n), by Theorem
25 of II.5 of [20], it suffices to show that the graphs of functions in F2(β)
have only polynomial discrimination (for related concepts, cf [20]), also
see Example 26 of II.5 of [20] (page 29) and Example 18 of VII.4 of [20]
(page 153).

The graph of a real-valued function f on a set S is defined as the subset
(see page 27 of [20])

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0, s ∈ S}.

The graph of a function in F2(β) contains a point (x(ω), y(ω), t) if and
only if 0 ≤ t ≤ f(x, y,β) or f(x, y,β) ≤ t ≤ 0. The latter case could
be excluded since the function is always nonnegative (and equals 0 case
covered by the former case). The former case happens if and only if 0 ≤√
t ≤ y −w′β.

Given a collection of n points, the graph of a function in F2(β) picks out
only points that belong to {

√
t ≥ 0}∩{y−β′w−

√
t ≥ 0}. Given n points
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(xi, yi, ti) (ti ≥ 0), introduce n new points (xi, yi, zi) := (xi, yi,
√
ti) in

Rp+1. On Rp+1 define a vector space G of functions

ga,b,c(x, y, z) = a′x+ by + cz,

where a ∈ Rp, b ∈ R1, and c ∈ R1 and G := {ga,b,c(x, y, z) = a′x + by +
cz, a ∈ Rp, b ∈ R1, and c ∈ R1} which is Rp+1-dimensional vector space.

It is clear now that the graph of a function in F2(β) picks out only points
that belong to the sets of {g ≥ 0} for g ∈ G . By Lemma 18 of II.4 of [20]
(page 20), the graphs of functions in F2(β) pick only polynomial numbers
of subsets of {wi := (xi, yi, zi), i = 1, · · · , n}; those sets corresponding to
g ∈ G with a ∈ {0,−β}, b ∈ {0, 1}, and c ∈ {1,−1} pick up even few
subsets from {wi, i = 1, · · · , n}. This in conjunction with Lemma 15 of
II.4 of [20] (page 18), yields that the graphs of functions in F2(β) have
only polynomial discrimination.

By Theorem 24 of II.5 of [20] we have completed the proof.

Proof of lemma 4.3

Assume conversely that supβ∈Nc
ε (η)D(β;FZ) = D(η;FZ). Then by the

given conditions, there is a sequence of bounded βj (j = 0, 1, · · · ) in
N c
ε (η) such that βj → β0 ∈ N c

ε (η) and D(βj ;FZ) → D(η;FZ) as
j →∞. Note that D(η;FZ) > D(β0;FZ). The continuity of D(·;FZ) now
leads to a contradiction: for sufficiently large j, D(βj ;FZ) ≤ (D(η;FZ) +
D(β0;FZ))/2 < D(η;FZ). This completes the proof.

Proof of theorem 4.3

For convenience of description, we write

1(β, Fr(β)) := 1

( |y −w′β −m(Fr(β))|
σ(Fr(β))

≤ α
)
, (8.9)

where r(β) = y − w′β and m(Fr(β)) and σ(Fr(β)) are the median and
MAD of the distribution of r(β).

Adding the derivative of Q(Z(n),β, α) with respect to β evaluated at β =
β0 to the both sides of equation (2.8) and multiplying 1/(2

√
n) we obtain

1√
n

∑
i

(yi −w′iβ0)wi1(β0, F
n
r(β0)) =

1√
n

∑
i

wiw
′
i(β̂

n

lst − β0)1(β0, F
n
r(β0))

− 1√
n

∑
i

ri(β̂
n

lst)wi

[
1(β̂

n

lst, F
n
r(β̂

n

lst)
)− 1(β0, F

n
r(β0))

]
,
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where 1(β, Fnr(β)) has the same meaning as in (8.9) except that the median

and MAD are the sample version, respectively based on {yi −w′iβ}. For
further simplicity, we write 1(β, n) for 1(β, Fnr(β)), and I0 for the LHS of
the equation above. Rewrite the RHS of the equation above, we have

1√
n

∑
i

(yi −w′iβ0)wi1(β0, F
n
r(β0)) =

1

n

∑
i

wiw
′
i1(β0, n)

√
n(β̂

n

lst − β0)

+
1

n

∑
i

wiw
′
i

[
1(β̂

n

lst, n)− 1(β0, n)
]√

n(β̂
n

lst − β0)

− 1√
n

∑
i

eiwi

[
1(β̂

n

lst, n)− 1(β0, n)
]

Denote the three terms on the RHS above as I1, I2, and I3, respectively.
Now we have, based on the short notations,

I0 = I1 + I2 + I3.

If we can show that I0 = Op(1), I1 = (Op(1) + op(1))
√
n(β̂

n

lst − β0),

I2 = op(1)
√
n(β̂

n

lst − β0), and I3 = op(1), then the desired result follows
immediately. On the other hand, these results are established in Lemmas
4.4 and 4.5. This completes the proof.

Lemma 4.4 With the assumptions (A3)-(A4), we have

1√
n

∑
i

(yi −w′iβ0)wi1(β0, F
n
R(β0)) = Op(1).

Proof : Notice that yi −w′iβ0 = ei. It suffices to show that

1√
n

∑
i

eiwi = Op(1).

This however follows straightforwardly from the CLT and E(eiwi) = 0.

Lemma 4.5 With the assumptions (A0)-(A4), we have

1

n

∑
i

wiw
′
i1(β0, n)

√
n(β̂

n

lst − β0) = (Op(1) + op(1))
√
n(β̂

n

lst − β0),

(8.10)

1

n

∑
i

wiw
′
i

[
1(β̂

n

lst, n)− 1(β0, n)
]√

n(β̂
n

lst − β0) = op(1)
√
n(β̂

n

lst − β0),

(8.11)

1√
n

∑
i

eiwi

[
1(β̂

n

lst, n)− 1(β0, n)
]

= op(1).

(8.12)
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Proof: By theorems 4.1 and 4.2, we have that β̂
n

lst − β0 = o(1) a.s.
Furthermore, sample median m(Fnr(β0)) converges to its popular version

m(Fr(β0)) a.s. by Glivenko-Cantelli theorem, the continuity of the median
functional (see page 7 of [20]), and Theorem 2.3.1 of [29]), hence we have

1(β0, n) = 1(β0, Fr(β0))+o(1), a.s. and 1(β̂
n

lst, n)−1(β0, n) = o(1), a.s.

In light of the CLT and by (A3) and (A4), we have that

1√
n

∑
i

eiwi =
√
nE(ew) +Op(1) = Op(1).

Now in virtue of the LLN, we have that

1

n

∑
i

wiw
′
i = E(ww′) + op(1).

The last three displays lead to the desired results.

Proof of Theorem 5.1

In order to apply the Lemma 5.1, we first realize that in our case, β̂
n

lst

and βlst correspond to τn and t0 (assume, w.l.o.g. that βlts = 0 in light
of regression equivariance); β and Θ correspond to t and T ; f(·, t) :=
f(·, ·,β, α) and α is a fixed constant, where f(x, y,β, α) = r21(F(x′,y),β)

and 1(F(x′,y),β) := 1
(
|y−w′β−µ(Fr)|

σ(Fr) ≤ α
)

, r := r(β) = y −w′β. In our
case,

∇(x, y,β, α) =
∂

∂β
f(x, y,β, α) = 2(y −w′β)w1(F(x′,y),β, α).

We will have to assume that P (∇2
i ) = P (4(y−w′β)2w2

i 1(F(x′,y),β, α) ex-
ists to meet (iv) of the lemma, where i ∈ {1, · · · , p} andw′ = (w1, · · · , wp) =
(1,x′). It is readily seen that a sufficient condition for this assumption to
hold is the existence of P (x2

i ). In our case, V = 2P (ww′1(F(x′,y),β, α),
we will have to assume that it is invertible when β is replaced by βlst (it
is covered by the assumption in Theorem 3.2) to meet (ii) of the lemma.
In our case,

r(·, t) =

(
β′

‖β‖
V/2

β

‖β‖

)
‖β‖.

We will assume that λmin and λmax are the minimum and maximum
eigenvalues of positive semidefinite matrix V overall β ∈ Θ and a fixed
α ≥ 1.

Now to apply Lemma 5.1, we need to verify the five conditions, among
them only (iii) and (v) need to be addressed, all others are satisfied triv-

ially. For (iii), it holds automatically since our τn = β̂
n

lst is defined to be
the minimizer of Fn(t) over t ∈ T (= Θ).
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So the only condition that needs to be verified is the (v), the stochas-
tic equicontinuity of {Enr(·, t)} at t0. For that, we will appeal to the
Equicontinuity Lemma (VII.4 of [20], page 150). To apply the Lemma, we
will verify that the condition for the random covering numbers satisfy the
uniformity condition. To that end, we look at the class of functions for a
fixed α ≥ 1

R(β) =

{
r(·, ·, α,β) =

(
β′

‖β‖
V/2

β

‖β‖

)
‖β‖ : β ∈ Θ

}
.

Obviously, λmaxr0/2 is an envelope for the class R in L 2(P ), where r0

is the radius of the ball Θ = B(βlts, r0). We now show that the cover-
ing numbers of R are uniformly bounded, which amply suffices for the
Equicontinuity Lemma. For this, we will invoke Lemmas II.25 and II.36 of
[20]. To apply Lemma II.25, we need to show that the graphs of functions
in R have only polynomial discrimination.

The graph of a real-valued function f on a set S is defined as the subset
(see page 27 of [20] )

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0, s ∈ S}.

The graph of r(x, y, α,β) contains a point (x, y, t), t ≥ 0 iff
(
β′

‖β‖V/2
β
‖β‖

)
‖β‖ ≥ t for all β ∈ Θ. Equivalently, the graph of r(x, y, α,β) con-
tains a point (x, y, t), t ≥ 0 iff λmin/2‖β‖ ≥ t. For a collection of n
points (x′i, yi, ti) with ti ≥ 0, the graph picks out those points satisfying
λmin/2‖β‖ − ti ≥ 0. Construct from (xi, yi, ti) a point zi = ti in R. On R
define a vector space G of functions

ga,b(x) = ax+ b, a, b ∈ R.

By Lemma 18 of [20], the sets {g ≥ 0}, for g ∈ G , pick out only a polyno-
mial number of subsets from {zi}; those sets corresponding to functions in
G with a = −1 and b = λmin/2‖β‖ pick out even fewer subsets from {zi}.
Thus the graphs of functions in R have only polynomial discrimination.

Transformation in Section 5 before Corollary 5.1 Assume the
Cholesky decomposition of Σ in (5.4) yields a nonsingular lower triangular
matrix L of the form (

A 0
v′ c

)
with Σ = LL′. Hence det(A) 6= 0 6= c. Now transfer (x′, y) to (s′, t) with
(s′, t)′ = L−1((x′, y)′−µ). It is readily seen that the distribution of (s′, t)′

follows E(g; 0, Ip×p).
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Note that (x′, y)′ = L(s′, t)′ + (µ′1, µ2)′ with µ = (µ′1, µ2)′. That is,

x = As+ µ1, (8.13)

y = v′s+ ct+ µ2. (8.14)

Equivalently,

(1, s′)′ = B−1(1,x′)′, (8.15)

t =
y − (1, s′)(µ2,v

′)′

c
, (8.16)

where

B =

(
1 0′

µ1 A

)
, B−1 =

(
1 0′

−A−1µ1 A−1

)
,

It is readily seen that (8.15) is an affine transformation on w and (8.16)
is first an affine transformation on w then a regression transformation on
y followed by a scale transformation on y. In light of Theorem 2.4, we can
assume hereafter, w.l.o.g. that (x′, y) follows an E(g; 0, Ip×p) (spherical)
distribution and Ip×p is the covariance matrix of (x′, y).

Remark 6.1
(I) Stopping criteria for the algorithm include (i) the total number of the
LS estimation decided to perform (ii) the total number of two indices sam-
pled from {1, 2, · · · , n} or (iii) the total number of distinct index sequences
i1, · · · , iK in the step (a2) of (3).

(II) There are O(n2) two-point pairs, all other operations cost at most
O(np2 + p3), theoretically, overall the worst time complexity is O(pn3 +
n2p3). However, in the program,N is the minimum of {1000,

(
n

b(n+1)/2c
)
, Tls},

where Tls is a turning parameter, the total number of the LS estimation
decided to perform, which usually set to be 100 ∼ 500, so in practice the
real time complexity is O(np2 + p3) (see Section 7).

(III) When xi = xj for some i 6= j, one can add a small ε say, to xi, to
force them are not identical. So that one can still apply the AA1.

Remark 6.2
(I) It is readily seen that the worst case time complexity of algorithm
AA2 is O(N(p2n + p3)) where p3 comes from finding the inverse of p by
p matrix and from p × p matrix multiply a p vector and the most costly
step is (1) to compute the I(βnew) which, however, can achieve in O(np2).
When n and p are small (say n ≤ 50, p ≤ 3), then N might just be

(
n
p

)
,

otherwise it will be 300(p−1). Here 300 could be tuned to a larger number
- such as 500 - or even larger. It is readily seen that the AA2 produces a
non-negative and non-increasing sequence: Q1 > Q2 · · · > Qk > · · · . So
the convergence of AA2 is always achievable.



Hanwen Zuo and Yijun Zuo/ Least squares of trimmed residuals 49

(II) For large n, say n ≥ 200, we suggest that one first partitions the data
set into disjoint (say five) subsets, then applies the AA2 to each subset
to obtain β from each subset. Finally, one carries out step (1) above with
respect to the entire data set and selects the β which produces the smallest
objective function value Q(β).

(III) In the algorithm AA2, the sub-sample size m is p. Other choices
include b(n+ 1)/2c (corresponding to α = 1) and I(βnew) (which requires
an initial βnew). The latter however is generally not recommended.
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