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Abstract

Halfspace depth (HD), aka Tukey depth, is one of the most prevailing depth notions
among all its competitors (Zuo and Serfling (2000), ZS00). To exactly compute the
HD in Rd(d > 2) is a challenging task nevertheless, due to its definition involving
infinitely many directional projections. Existing algorithms to compute HD in Rd
(d ≥ 2), more or less involve data projection to the directions perpendicular to hy-
perplanes (therefore involving polytopes or polyhedral cones) are either dimension
d-, or sample size n- limited, or slow.

Thanks to the work of Merkle (2010) (M10) and Bogićević and Merkle (2016)
(BM16), algorithms for the fast computation of HD in ultra high dimension d
for large n are proposed and addressed. They are sheer ball-based (or essentially
point-wise distances) computations. The worst time complexity to approximately
compute the depth m/n of a single point is O((d+m+ log(n))n2) which seems to
be one of the best known results so far among the competitors for extra large d
and n. Unlike most previous algorithms, they do not require the underlying data
set to be in general position. As by-products of the algorithm, some depth regions
(or depth level sets), and depth of sample points also could be obtained during the
depth calculation of a given point.
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1 Introduction

To visualize multivariate data, Tukey (1975) introduced the notion of data
depth (known now as halfspace depth (HD)) and depth contours. HD is
closely related to the test statistic in Hodges (1955). Besides HD, major
competing depth notions include simplicial depth (Liu (1990)), projection
depth (Liu (1992), ZS00, Zuo (2003)) and those in Mizera (2002). With
the notions of data depth or depth function, one can extend nonparametric
univariate rank/order based procedures and their advantages to the multi-
dimensional setting, rank/order, and visualize multidimensional data.

Halfspace depth of a point x ∈ Rd with respect to (w.r.t.) underlying
probability measure P (or distribution F ) is defined to be

HD(x, P ) = inf
Hx
{ P (Hx) : | Hx is a closed halfspace in Rd and x ∈ Hx }

= inf
u∈Sd−1

P{y : | u′y ≥ u′x, y ∈ Rd},

where Sd−1 := {u ∈ Rd : | ‖u‖ = 1}. In one dimension, one can readily see
that HD(x, F ) = min{F (x), 1− F (x−)}.

All points x such that HD(x, P ) ≥ α ∈ [0, 1] form a set which is called
an αth depth region, denoted by HDα(P ), i.e.

HDα(P ) = {x : | HD(x, P ) ≥ α, }, α ∈ [0, 1].

Note that HD(x, P ) is nonnegative, hence, HD0(P ) = Rd. Define

α∗ := sup
x∈Rd

HD(x, P ).

That is, α∗ is the maximum possible halfspace depth. Hereafter, we confine
our attention to the case: α ∈ (0, α∗].

Sample versions of HD(x, P ) and HDα(P ) and α∗ are obtained by re-
placing P by its sample version Pn which assigns mass 1/n to each sample
point Xi, i = 1, · · · , n. For illustration purpose, a special example of sample
depth contours is given in Figure 1. This example has been discussed in
other places. There are four halfspace depth contours with depth 1/8, 2/8,
3/8, 4/8, corresponding to the white, red, blue and yellow regions, respec-
tively. We like to emphasize a special fact, that is, the interior depth regions
contain no sample points.
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Figure 1: Four halfspace depth contours corresponding to depth 1/8, 2/8, 3/8, 4/8

Many researchers focus on the computation of depth regions: HDα(Pn).
The latter are also called level sets in the literature, with level sets they can
“order” data in a center-outward fashion (from the deepest region outward
to least deepest one) and these sets also facilitate the visualization of data
in Rd. The deepest region is often called median region in Rd. Note that

HDα(Pn) = ∩{H : | H is a closed halfspace, Pn(H) > 1− α}, (1)

for a general treatment of HDα see Section 3 or page 479 of ZS00, also see
Kuelbs and Zinn (2017+a, b) and Brunel (2016). Therefore HDα∗

is the
median region in Rd.

Some researchers (e.g. BM16) believe that exactly computing depth
regions is more important than that of depth of single point, and argue that
the latter is seldom needed in real applications. On the contrary, this author
believes that one does need to compute the depth of single point in some
real applications. For example, in the depth based applications, one has to
know the depth of the point in order to fulfil the task. Hereafter we focus
on the single point depth calculation.

Depth region computation seems more complicated than that of sin-
gle point depth computation. For both computations, existing algorithms
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more or less involve consideration of data projections along the directions
within ploytopes, or polyhedral cones. The latter are formed by the bounded
intersection of a finite set of hyerplanes in Rd (see page 973 of Liu and
Zuo (2014)). Within those polyhedral cones, a permutation {i1, · · · , in} of
{1, 2, · · · , n} keeps unchanged when one projects data onto a direction u,
where u′Xi1 ≤ u′Xi2 ≤ · · · ,≤ u′Xin for the unit direction u = a/‖a‖ and
any vector a 6= 0 within one cone. Maximization or minimization problem
could be solved using linear programming technique over single cones.

The same idea, called circular sequence, has been used in Rousseeuw
and Ruts (1996) and Ruts and Rousseeuw (1996a,b), also in Zuo and Lai
(2011). Overall time complexity of these algorithms is roughly of the order
O(nd log(n)), ad hoc ones using computational geometry and other tech-
niques may improve the time complexity a little bit, but not too much.

Utilizing a main result in M10, this article will introduce a novel approach
to the computation of the depth of single points including a sample point.
The main result also has been employed in BM16. The latter nevertheless
focuses on all depth contours computation which turns out to be very difficult
if not impossible. Here we focus on depth computation of single point. As a
by-product, our algorithm could also be used to produce some depth regions.
The new approach avoids O(nd) polyhedral cones, using instead essentially
point-wise distances of the order of O(n2). Unlike most previous algorithms,
the new one does not require the underlying data set is in general position.
(A d-variate data set is called to be in general position (GP) if there are no
more than d sample points in any (d− 1)-dimensional hyperplane)

The rest of article is organized as follows. Section 2 briefly surveys
the state of the art of computation of halfsapce depth and depth regions.
Section 3 discusses and addresses a new approach and algorithms. Real data
examples and simulation comparisons are given in Section 4. Section 5 ends
the article with some concluding remarks.

2 State of the Art

The idea of a circular sequence in Edelsbrunner (1987) was first employed
in Rousseeuw and Ruts (1996) and Ruts and Rousseeuw (1996a,b) (later
it is also used in Zuo and Lai (2011) for projection depth). These were
pioneer works in exact computing HD or depth contours for bivariate data.
By restricting the computation to a small selected subset of data points and
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a small number of depth contours to be computed, Johnson, et al. (1998)
developed an algorithm FDC faster than the ISODEPTH given in Ruts and
Rousseeuw (1996b), while achieving the detection of outliers in data cloud.

Using duality and topological sweep of an arrangement of lines, Miller,
et al. (2003) achieved the best known algorithm so far for computing all
halfspace depth contours and depth of a point in order of O(n2) time in R2.

Burr et al. (2011) using dynamic maintenance of halfspace depth for
point and contours, proposed three algorithms with O(log n), O(n log n),
and O(n log2 n) in time per update respectively for single point, rank-based
contours and cover-based contours (see Liu et al. (1999) also Rafalin and
Souvaine (2004) for the definition of the two types of contours) for data sets
in R2 and in general position. Contours in this article are cover-based.

Bremner et al. (2006) proposed primal-dual algorithms which deal with
arbitrary dimension d after Rousseeuw and Struyf (1998) algorithm dealing
with d = 3. Their prima-dual algorithm uses reserve search technique and
updates at every step an upper and a lower bound for the depth and termi-
nates when and if they equal. The algorithm utilizes software like cdd. lrs,
ZAMA (for parallelization), etc. It runs in the time of O(n·LP (n, d)·|cells|),
where LP (n, d) denotes the time required to determine the feasibility of lin-
ear program having n constraints and d variables , and |cells| stands for the
total number of the cells used in the search.

Bremner et al. (2008) improved the previous result to a running time of
O(dm·LP (n, d−1)) for a single point x ∈ Rd with output depthHD(x, Pn) =
m/n calculation (1 ≤ m ≤ n). The algorithm thus is called “Output-
sensitive algorithms for Tukey depth”.

Using their directional quantiles defined based on halfspaces to form
envelope, Kong and Mizera (2012) proved that the envelope coincides with
the corresponding HD trimmed region. The idea of segmenting Rd into
directional cones has been employed in Mosler, et al. (2009) for zonoid
depth (Mosler (2002)) for zonid depth regions and later in Hallin et al.
(2010), Paindaveine and Šiman (2012a,b) for HD regions, in Šiman (2011)
for statistics based on project pursuit, and in Liu and Zuo (2014) for HD
of a point. The worst case time complexity of these algorithms is roughly
in the order of O(nd). Chan (2004) presented a randomized algorithm to
compute the deepest point with an expected time of O(nd−1) in Rd (d ≥ 3).

Dyckerhoff and Mozharovskyi (2016) (DM16) proposed algorithms that
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exactly computing the HD for general data sets (not necessary in GP). For
each tuple of k (1 ≤ k ≤ d−1) data points selected from original n points, the
data are projected onto the corresponding orthogonal complement, and the
HD is computed as the sum of the depths in these two orthogonal subspaces.
The calculation of one depth value in d-space is reduced to calculating many
depth values in (d− k)-space and in k-space. The algorithm is of the order
O(nd−1 log n) or O(nd) with k = 1, d − 2 or k = d − 1, respectively. Note
that DM16 implies implicitly that data sets must content n ≥ d− 1.

BM16 employing a main result from M10 and reported that their algo-
rithm for computing halfspace depth contours has a running time of order
of O(dn2 + n2 log n) in Rd which if true (unfortunately it is problematic) is
by far the best. They have a faultless theoretical result (from M10) but the
realization has some problems (i.e., the computed regions or level sets are
not the exact Tukey depth regions), see related discussions in Section 3.

Above we focus on the exact computation of depth or depth regions.
Exact computation is very important, but often is costly (time intensive)
though unaffordable in practice. Researchers therefore seek approximate
algorithms to compute the depth of a point and depth regions.

For example, Rousseeuw and Struyf (1998) (RS98); Struyf and Rousseeuw
(2000) (SR00) presented approximate algorithms to compute the halfspace
depth of a single point in Rd (d > 3). An intuitively straightforward ap-
proximate method by randomly chosen directions over unit sphere was in-
troduced by Cuesta-Albertos and Nieto-Reyes (2008) (CN08) (the authors
attributed their main idea to Zuo (2006)) which was proved to be quite
useful in experimental trials when one can afford to increase the number
of chosen directions to be sufficiently large. Afshani and Chan (2009) em-
ployed a randomized data structure and halfspace range counting queries
techniques to fast and quite accurately approximate depth value. Chen et
al. (2013) (CH13) addressed the absolute approximation of Tukey depth,
generalizing an algorithm presented by RS98.

Recent promising R packages for Tukey depth include ‘depth’ by Gen-
est, Masse and Plante (2017), and ‘ddalpha’ by Pokotyl, Mozharovskyi and
Dyckerhoff (2016) and packages cited therein.
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3 A New Approach

3.1 Preliminary Theoretical Results

First, we present a general definition of so-called Type D depth functions
which include HD function as a special case. Let C be a collection of closed
Borel subsets in Rd and P be a probability measure on Rd. A Type D depth
function for a point x ∈ Rd is defined as (see page 472 of ZS00)

D(x;P,C ) := inf
C∈C

{P (C)|x ∈ C ∈ C }. (2)

Remarks 3.1

(I) To insure the above is well defined, we assume that for any x ∈ Rd,
there always exists a C ∈ C such that x ∈ C. Examples of C include (i)
all closed halfspaces H , (ii) closed convex sets V , or (iii) closed balls B.
With closed halfspaces H , the above definition recovers the halfspace depth
function defined in Section 1.

(II) Just from the definition point of view, the above closeness is not
necessary but for the sake of depth region properties discussion in Rd, we
add the closeness requirement here. That is, a collection of open sets C in
Rd can also serve the role in the definition above.

With the general definition, one now can define the αth depth region as

Dα(P,C ) := { x | D(x;P,C ) ≥ α ∈ (0, 1] }. (3)

That is, the set of all points with depth at least α. For general properties
of D(x;P,C ) and Dα(P,C ), see ZS00 Theorem 2.11 and Zuo and Serfling
(2000b). Hereafter we sometimes write Dα for Dα(P,C ).

Generally speaking, depth regions could be employed to determine the
depth of a single point. Specifically, D(x;P,C ) = α iff x /∈ Dα+ε and
x ∈ Dα−ε, for any ε > 0, see ZS00b or BM16. In halfspace depth and the
sample case, we have the following practically very useful result.

Proposition 1. Let C = H , for any point x ∈ Rd and α ∈ (0, 1],

HD(x, Pn) = α iff x ∈ HDα(Pn) and x /∈ HDα+1/n(Pn). (4)

The proof is straightforward and skipped here.

The following result gives a useful representation of Dα.
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Proposition 2 The αth depth region Dα(P,C ) with the given probability
measure P and the collection C of Borel subsets in Rd can be expressed as

Dα(P,C ) = ∩C∈C {C|P (C) > 1− α} = ∩Cc∈C c{Cc|P (Cc) > 1− α}, (5)

where S c stands for the collection of all complements Sc of the set S in S .

To insure the nonemptiness of the right hand side (RHS) of equality
above, we assume that there always exist C1, C2 ∈ C such that P (C1) > 1−α
and P (C2) < α for any α ∈ (0, 1].

Proof: The proof of the first equality is given in ZS00 (page 479), the
proof of the second part follows directly from the definition of Dα and its
compliment (also see M10).

Remarks 3.2 The result implies that

(I) the αth depth region is the intersection of all sets C ∈ C that contain
probability mass more than 1 − α, or equivalently, all complements Cc ∈
C c that possess probability mass more than 1 − α; that is, C and C c is
interchangeable.

(II) equivalently the complement of the αth depth region is the union of
all sets C ∈ C that contain probability mass less than α.

(III) in the halfspace case, the αth halfspace depth region is the intersec-
tion of all closed halfspaces that possess probability mass more than 1− α.
Further more, one can replace the closed halfspaces with open ones.

The following result further indicates that one can replace the closed
halfspaces with closed balls.

Proposition 3 Let H and B be the collection of all closed halfspaces and
closed balls in Rd respectively and P is the underlying probability measure.
Then

D(x;P,H ) = D(x;P,Bc), (6)

and
Dα(P,H ) = ∩B∈B{B|P (B) > 1− α}. (7)

Proof Equality (6) is the Corollary 4.1 of M10. Equality (7) follows directly
from Proposition 2 and (6) (see also (4.3) of M10).

In the following we will focus on HD and sample distribution Pn and
will suppress H .
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Corollary 1. Let B be the collection of all closed balls in Rd. Then

HDα(Pn) = ∩B∈B{B
∣∣ # {i | Xi ∈ B} > n(1− α)}, (8)

where “#” is the counting measure and X1, · · · , Xn are sample points.

Remarks 3.3

(I) That is, αth halfspace depth region is the intersection of all closed
balls each of which contains at least bn(1− α)c+ 1 sample points.

(II) The centers of the balls however are undetermined in addition to the
undetermined bn(1−α)c+1 sample points, and moreover there are infinitely
many balls containing the same bn(1− α)c+ 1 sample points.

(III) That is, the result above, is seemingly useful for exact computation
of the depth region, but actually falls short in practice (as already unsuc-
cessfully experimented in BM16), due to the fact that there will be infinitely
many undetermined balls on the RHS.

Furthermore, some depth regions are not directly determined by sam-
ple points (there are cases where no sample points are on its vertexes or
boundaries or its interior of the HD regions, see Figure 1).

3.2 An exact algorithm for halfspace depth

The following result indicates that one does not have to consider infinitely
many balls and can just focus on finitely many balls in order to exactly
compute the halfspace depth of sample points within α depth regions. A
ball with minimum radius that includes all n points x1, · · · , xn within (or
on) its boundary is called a minimum enclosing ball for these n points.

Theorem 1 Let B be the collection of all closed balls in Rd. Then

{Xj

∣∣ HD(Xj , Pn) ≥ α} ⊂
{
Xi

∣∣ Xi ∈ ∩Nl Bl, # {i | Xi ∈ Bl} ≥ kα
}
,

where Xi, Xj ∈ {X1, · · · , Xn}, kα := bn(1−α)c+ 1, N =
(
n
kα

)
, and Bl ∈ B,

l = 1, · · · , N is the unique minimum enclosing ball (MEB) determined by
kα data points from {X1, · · · , Xn}, α ∈ (0, α∗].

Proof of Theorem 1

Assume that HD(Xj , Pn) ≥ α, that is, Xj is a sample point in the set on
the left hand side (LHS). We show that it belongs to the set on the RHS.
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First, it belongs to the αth depth region based on the definition, i.e. it
belongs to the LHS of (8) and hence RHS of (8). That is, Xj belongs to
any ball that contains kα sample points, hence it belongs to the MEB ball
based on those kα sample points and consequently to all N MEBs. That is,
Xj belongs to the set on the RHS. 2

Remarks 3.4

(I) The result provides an approach to identify exactly the sample points
with its HD at least α ∈ (0, α∗]. Specifically, one just needs to take inter-
sections of N balls each of which contains kα sample points. The N balls
are MEBs, each of which contains at least kα sample points. One might
need to shift the center of the MEBs if necessary so that it still contains
kα = n− k+ 1 sample points but as few as possible total sample points. See
examples 3.1.

(II) The theorem implies that the set on the RHS contains all sample
points with depth ≥ α. It does not exclude some sample points with depth
< α. In the algorithm (below), we can try to exclude the latter scenario. We
start with the smallest possible depth value α of sample points (i.e. 1/n);
and increase it by 1/n at each step; meanwhile, update the set on the RHS
(initial set is the entire data set) so that the sample points with depth value
lower than α are excluded from the set.

(III) It is a well-known result that MEBs are unique and can be computed
in linear time (see Welzl (1991), Fischer (2001), Fischer and Gärtner (2003)).

Algorithm 1 for the computation of sample points with fixed HD α
input: data matrix X with d rows and n columns;
output: sample points Xi ∈ X with halfspace depth α = m/n, 1 ≤ m ≤ n.

For 1 ≤ k ≤ min{(m+ 1), n}
Let S0 = X,Nk =

(
n

n−k+1

)
, construct MEBs Bj each containing the

n− k + 1 (but as few as possible) sample points, j = 1, · · · , Nk;

Let Sk := Sk−1∩Nkj=1 Bj ;

if Sk = ∅, print “no sample points with depth ≥ k/n”; break;

if Xi ∈ Sk−1 and Xi /∈ Sk, output Xi and HD(Xi) = (k − 1)/n;

if Xi ∈ Sk and k = n, output Xi and HD(Xi) = 1.

end

Example 3.1 Let’s illustrate the algorithm with some simple examples.
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(I) Assume that we have a bivariate sample with n = 3: X1 = (0, 1)′,
X2 = (0, 0)′ and X3 = (1, 0)′. Of course, in this case one can immediately
determine that all sample points have HD 1/3. Assume that we have α =
1/3, i.e. m = 1. When k = 1, we have S0 = X, N1 = 1, B1 contains all
sample points, and consequently S1 = S0 = X. In the next loop, k = 2, we
have N2 = 3, B1 = {X1, X2}, B2 = {X1, X3}, B3 = {X2, X3}. Note that
the MEB originally containing X1 and X3 actually also contains X2, so the
B2 does not contain the as few as possible sample points. We can shift the
center of B2 a little bit, say to (r, r)′ instead of (1/2, 1/2)′, where r > 1/2, to
content the requirement of containing as few as possible but kα(= 2) sample
points. Now we have S2 = ∅, So all three sample points have HD 1/3.

(II) Now consider the case that there is fourth data point X4 which is
overlapped with X3, i.e. we have a data set that is not in general position.
Applying the above algorithm, one can successfully identify the exact depth
of 1/4, 1/4, 2/4 and 2/4 for X1, X2, X3 and X4, respectively.

One can also consider (III) the case of four sample points in R2 which
form arbitrary quadrilateral and (IV) then add one more sample point inside
(or (V) on the boundary), applying the algorithm one can compute the exact
depth of sample points in all three cases successfully.

In the classification or discriminant depth applications, one has a new ob-
servation x (might be a new cancer patient) which is no longer a sample
point. How can one figure out its depth w.r.t. a given sample?

Let x be a non sample point w.r.t. the sample X1, · · · , Xn in Rd. Add
x to the original data and denote the augmented data set as X ′1, · · · , X ′n+1

and let P ′n+1 be the empirical distribution corresponding to the augmented
data set.

Then the following result tells that one just needs to focus on the depth
calculation of sample points.

Proposition 4 HD(x, Pn) = m/n iff HD(x, P ′n+1) = (m+ 1)/(n+ 1).

Proof: It is straightforward and trivial.

Remarks 3.5

(I) The result provides a direct way to calculate the halfspace depth of
an arbitrary non sample point x ∈ Rd w.r.t. the original data set and the
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augmented data set. That is, if one could get the halfspace depth w.r.t.
one data set and the depth w.r.t. other data set is automatically obtained
and vice versa. This means the algorithm 1 could also be adapted to the
calculation of halfspace depth of an arbitrary point x ∈ Rd. This is es-
pecially important in the case of classification and discrimination for real
applications.

(II) With α halfspace depth sample points, one may hope to reconstruct
αth depth contours using the so-called vertex or facet enumeration (see
Bremner, Fukuda, and Marzetta (1998)). This approach works for some
α (such as 1/n) but not for all α due to the fact that some depth regions
contain no sample points on its vertexes, boundary, or entire convex region.
If one records the results from the algorithm, then the depth of all sample
points can be used to construct all the rank-based contours.

(III) In the algorithm 1, set intersections can be done in linear time
and built-in function exists in packages like C++, Matlab, and R. However,
there are totally unaffordable Nk =

(
n

n−k+1

)
intersections for every 1 ≤ k ≤

min{(m+1), n}. That is, the exact algorithm 1 is still not feasible in practice
except in the special cases below.

(IV) When n is small and d is large ( also called a big p small n problem),
as in the micro-array data cases or more general genetic data analysis (see
Johnstone and Titterington (2009)), one has small subject number n (in
tens) but huge dimensions d (in hundreds). The algorithm works effectively.
On the other hand, classical approaches may fail in these cases, since when
n < d, the hyperplane contains d sample points could not be constructed
and hence the polytopes approaches fail. Meanwhile, MEBs still exist (see
Fischer and Gärtner (2003)). Of course one could work on the subspace
formed by (and containing) n points. Besides, if the data set is in GP, then
each sample point should have HD 1/n in these degenerated (singular) cases.

When n is large (with small or large d), algorithm 1 is no longer feasible
for the computation of halfspace depth. One, however, can (i) either count
on research developments in computational geometry and computer science
to have more feasible algorithms based on ball intersections, or (ii) propose
fast and approximate algorithms like the one given in Section 3.3 below,
where one just considers n balls initially.
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3.3 Approximate Algorithms and Discussions

The following result provides a method which identifies sample points with
halfspace depth at least α.

Theorem 2 Let B be the collection of all closed balls in Rd. Then

{Xj

∣∣ HD(Xj , Pn) ≥ α} ⊂ {Xi | Xi ∈ ∩nj=1Bj}, (9)

where Bj is the minimum ball centered at Xj containing kα sample points.

Proof: It is trivial.

Remarks 3.6

(I) Based on the result, one can identify sample points with depth at
least α just by the intersection of n balls. Note that each of the n balls is
determined with fixed center and easily identified radius.

(II) In one dimension, the smallest and largest sample points in the set
of RHS of (9) exactly form the αth depth region (interval). This suggests
an alternative way to define the halfspace depth and region in R1 and is a
demonstration of Proposition 3 in R1.

(III) Although the set on the RHS of (9) is not exactly equal to the one
on the LHS. But from the relationship of the two sets, we can develop an
approximate algorithm to compute the HD of sample points. The algorithm
is given below and is based on the onion-peeling idea.

(IV) The theorem implies that the set on the RHS contains all sample
points with depth no less than α but it does not exclude some sample points
with depth less than α. In the algorithm, we can try to exclude the latter
scenario. We start with the smallest possible depth value α of sample points
(i.e. 1/n); and increase it by 1/n at each step; meanwhile, update the set
on the RHS (initial set is the entire data set) so that the sample points with
depth value lower than α are excluded from the set (by adding systematically
balls centered at points uniformly selected from a region based on data and
containing kα sample points into intersection process). In this way, we can
further identify all sample points with exact α depth by utilizing Proposition
1. Generally speaking, the algorithm based on Theorem 2 tends to be too
liberal (overestimate HD of points, see examples in Section 4).

Combining Proposition 4 with Theorem 2, one can also compute the halfs-
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pace depth of an arbitrary non sample point x ∈ Rd use the n balls intersec-
tion idea in Theorem 2 on the RHS of (9). The following is the algorithm.

Algorithm 2 for the computation of HD of an arbitrary point in Rd :

Input: a data set X = {X1, · · · , Xn} with d rows and n columns and
an arbitrary point X0 in Rd (d ≥ 2).

Output: halfspace depth of X0.

Initial Phase

(I) check if X0 is a sample point, record the finding in a variable p, p=0, or 1
p=0 means yes. modify X so that it contains X0,
update n to n∗ = n+ p, w.l.o.g., still call it n;

· · · % in O(n) time

(II) using matrix operation, compute the O(n(n− 1)/2) point-wise distances;

· · · % in O(d · n2) time

(III) sort for each point its point-wise distances, i.e., dij , i, j = 1, · · · , n;

· · · % in O(n2 log(n)) time

(IV) initiating: m = 0, α0 = 0, S0 = {Xi : Xi ∈ X};

Iteration Phase

(V) updating: m = m+ 1, αm = m/n; set Sm = Sm−1 ∩ni=1 Bi;

If (X0 ∈ Sm−1 and X0 /∈ Sm), then hd = (m− 1− p)/(n− p);
· · · % converting the depth by Proposition 4 and 1;

if (Sm = Sm−1 and X0 ∈ Sm and αm = 1), then hd = 1

fprintf (‘ halfspace depth of X0 is: %f\n ’, hd); return;

% where Bi is the set of points Xj ’s with dij ≤ dikα , i, j ∈ {1, · · · , n} and
% kα = bn(1− α)c+ 1 = (n−m) + 1.

· · · % in O(n2) time,

(VI) if Sm = Sm−1 and αm < 1, then goto (V);

· · · % in O(n) time,

% the loop above has been executed at most m times if the depth of X0 is m/n.
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The algorithm itself has already clearly indicated its worse case time
complexity, i.e. O(n + d · n2 + n2 log(n) + m · n2), where the halfspace
depth of the given point is assumed to be m/n, or more precisely, O((d +
m+ log(n)) · n2). Note that the largest possible value of m is n.

Strictly speaking, d plays a role in almost all the steps above. For example,
checking whether a point belongs to a set involves d coordinate comparisons
besides going over all members in the set. Since they are all linear in d
and the high order term n2 log(n) does not involving the d (dij are just
one-dimensional numbers), w.l.o.g., d factor is ignored in those terms.

That is, the time complexity depends on the dimension d only linearly and
on sample size n logarithmically quadratically. This seems to be one of the
best existing results for approximately computing the halfspace depth for
arbitrary large d and n, as far as the author knows.

If one is interested in depth contours, then at each step after updating
Sm, one can use qhull or quickhull to construct contours in O(n log(n))
time. Here some caution must be taken, i.e., in some cases, the contours
constructed are not exactly equal to the αth depth contours, see Remarks
after Algorithm 1. On the other hand, one can safely store or output the
depth of each sample points in Sm. In this way, one can obtain the depth
for all sample points and therefore construct any rank-based contours.

For two extra options above, algorithm 2 needs very slight modification,
adding no extra time complexity in terms of big O. With this information,
one can even identify the halfspace median by borrowing the idea on page
833-834 of Rousseeuw and Ruts (1998) exactly in R2 or on page 419 of SR00
approximately in Rd (d > 2).

4 Examples and Simulations

4.1 Real data

4.1.1 Bivariate data set

Approximate Algorithm 2

We start with a data set(lib.stat.cmu.edu/DASL/Datafiles/nycrimedat.html)
studied by SR00 and focus on the change (in percent) in policeman power
and in weekly car thefts in New York city for 23 time periods in 1966-1967.
The scatter plot of the data set is given in Figure 2 (to enhance the readabil-
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Figure 2: Scatter plot of crime data of New York City during 1966-1967.

ity, we uses a scale factor 0.1 for original data in this and other two plots)
Inspecting the figure immediately reveals that there is an obvious outlier.

Employing our algorithm 2 to compute the HD of all sample points, the
results are given in Figure 3. For illustration purpose, the depth of each point
has been multiplied by sample size n so that we can simply display integers.
Reviewing the figure one can see that many depth values are overestimated
and there are just two (boundary) points that get the correct HD (1/23).

This is due to that fact that the approximate algorithm (called AA1)
ignores many important balls, just looking at n balls. To get the exact HD
of each sample point, we have to add more balls into the intersection process
(called AA2).

General scheme for AA2 : (i) pick a number Nb for total added balls
(could be a fixed number (say 100) but usual Nb ≤ 1000, depending on the
structure of data, Nb = 0 in AA1 case); (ii) select the centers of Nb balls
(could use a fixed scheme (say along axes), or as in this article randomly
pick uniformly distributed points from a wide region determined by the
data set); (iii) then calculate the distances from the center to all n sample
points, sort them for each ball, keep just first kα nearest sample points in
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Figure 3: Halfspace depth of data points in NY crime data set, using approximate

algorithm 2 only (AA1).

the intersection process; (iv) select a repeating number Nr and repeat the
previous calculation Nr times to mitigate randomness, pick the minimum
one as the final depth. Nr should coordinate with Nb (i.e., small Nr should
be coupled with larger Nb, and vice versa, say, if Nb = 1000, then Nr = 100
is usual enough, on the other hand, if Nr = 200, then Nb = 500 might be
enough. Generally, larger Nb is preferable to larger Nr).

By adding more balls into the intersection process we obtain the exact
depth of all example points, in our experiment, we just add one more ball
with strategically selected center for each point. The refined depth plot is
given in Figure 4 . Comparing this with the Figure 1 of SR00, we see the
refined algorithm (AA2) indeed captures exact depth of all points.

The time for the computation of depth in Figure 3 or Figure 4, is
extremely short (about 1.29 or 1.60 seconds, respectively) based on mat-
lab code (available upon request) on a server: Intel(R)Xeon(R) CPU E5-
26670@2.90GHz 2.90GHz (2 processors), installed memory(RAM) 64.0GB.

Exact Algorithm 1

We have investigated the performance of approximate algorithm 2 above.
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Figure 4: Halfspace depth of data points in NY crime data set, using refined

algorithm 2 (AA2).

The running time 1.60 seconds for Figure 4 is somewhat misleading since
it depends on “the strategically selected center”. The latter however costs
much more time to figure out and can be done just in two dimensional cases.

Without the special center of the added ball (circle), one can still obtain
the exact depth by using AA2. One instead employs replication Nr = 20
times and adds Nb = 100 balls and costs 82.72 seconds for all points.

Now we like to investigate the performance of the exact algorithm (i.e.
algorithm 1). We call it EA1. We first apply EA1 to (I) octagon data at the
very beginning (i.e. 8 points located at the vertexes of the regular octagon),
it costs 0.607 seconds for EA1 to get the exact depth of all points. We used
Nr = 10 replications to alleviate the randomness of the sampling process.
So the average time is 0.0607 seconds for all 8 points per replication.

We then apply the EA1 to (II) the three-point data set in Example 3.1
(I), note that there is a trouble point (0,0)’, we have to shift the center of
one of the MEBs (or try different centers, the scheme of selecting center is
the same as the one in AA2) while keep the total sample points enclosed in
the ball exactly kα = n − k + 1. We just selected Nb = 10 and Nr = 10, it
costs 0.098 seconds for EA1 to get the exact halfspace depth 1/3 for all three
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points, i.e. 0.0098 per replication. We also tried EA1 to (III) 10 standard
normal points (center at (1.50, 3.75)’). EA1 did the job again with Nr = 2
and Nb = 5 and costed 0.60 seconds, see Figure 5. Note that the deepest
point looks like to have depth 4/10 but actually 3/10.

Figure 5: Halfspace depth of 10 normal data points, using exact algorithm 1 (EA1).

Finally, we apply EA1 to two real data sets. The first date set (from
Seber (1984) (Table 9.12)) is (IV) the measurements of phosphate and chlo-
ride in the urine of 12 men with similar weights, and has been studied in
Example 6.1 of Maronna, Martin, and Yohai (2006). The data set and its
depth from EA1 are illustrated in Figure 6. The displayed numbers are
again the 12 ∗HD. It is easily to verify that they are indeed the exact HD.
Here Nr = 1, Nb = 5, EA1 costed 0.35 seconds.

Of course, we also tried EA1 for (V) New York Crime data set. It
turns out that the EA1 could get the exact depth for all 23 points. The
time consumed per point varies widely, ranging from 0.0024 to 485 seconds
corresponding to depth 1/23 and 8/23, respectively (Nr = 1, and Nb = 1 or
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Figure 6: Halfspace depth of data points in a biomedical data set, using exact

algorithm 1 (EA1).

Nb = 10, respectively). As excepted, lower depth point costs less time.

Remarks 4.1

(I) Our matlab code for EA1 (available upon request) is restricted to
bivariate cases due to the limitation of existing executable code for MEB.
Both Algorithm 1 and original MEB algorithm of Welzl (1991) are suitable
for high dimensions though. That means further work to develop executable
codes for both MEB and EA1 algorithms is needed.

(II) Compared with our AA algorithms, EA1, like other exact algorithms,
is less efficient (much slower) and especially sample size n restricted. The
latter is especially serious issue since no one can afford to have a

(
n

n−k+1

)
loops in the computation, 2 ≤ k ≤ (m + 1), where m/n is the HD to be
computed. Note that EA1 depends on d only linearly.
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4.1.2 Four dimensional data set

Now we focus on a data set in R4, which has been studied in Liu and Zuo
(2014) (LZ14). It consists of 64 four dimensional points, for details including
the exact coordinates and depth of each point, please refer LZ14.

Here we compare our approximate depth results from AA1 and AA2 with
the exact ones from LZ14, in terms of accuracy and average time consumed
per data point and total time consumed for all 64 sample points (in seconds),
where AA1 is the approximate algorithm based on Algorithm 2 and using
only directly n balls intersections, whereas AA2 is the refined version by
adding 1000 extra balls into the ball intersection process. Since AA2 involves
randomness (using the random uniformly distributed points as the center of
balls), the results are the minimum from 1000 replications.

Table 1. The performance of exact and approximate algorithms based on
64 four dimensional data points

Methods accuracy total time (seconds) average time per point

LZ14 64/64 6194 96.80

AA1 4/64 15.87 0.248

AA2 58/64 97.23 1.52

Inspecting the table immediately reveals that the AA algorithms are
unsurprisingly much faster than the exact one. AA1 just spent on average
of 0.248 seconds whereas the exact one consumed about 97 seconds for a
single point. For this advantage, the AA1 has to pay the heavy price of low
accuracy (6% vs. 100%). AA2 on the other hand is also vary fast (1.52 vs.
97 seconds) but with an acceptable accuracy (about 90% vs. 100%). Note
that, the accuracy of AA2 could be further improved by adding more balls
(more than 1000) and of course that will cost more seconds.

On the other hand, if one can afford to wait for the exact results, one
should still use the exact algorithm. Furthermore, without the slow exact
algorithm as the benchmark, no one can develop fast approximate algorithms
with known acceptable accuracy. The contribution and importance of the
exact algorithm can never be over emphasized.
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4.1.3 Thirteen dimensional data set

The LZ14 exact algorithm is restricted to dimension less than 8 (due to the
limitation of some existing function with matlab), so for this data set in
R13, it is no longer applicable.

The original data set contains crime rate and 13 social variables (plus
one binary variable) for 47 states of the USA in 1960, and there are 16
observations that come from southern states (corresponding to the binary
variable labeled 1). For more details we refer to the R package “ddalpha”.

We first get rid of the binary variable in the 14 variables, then compute
the halfspace depth of all the 16 southern states w.r. t. all the 47 states in
the USA in R13. Due to the extremely long time needed (for a single point,
it could cost more than 8 days to get the exact result), the exact algorithm
given by DM16 which is theoretically capable of doing the job could not be
practically employed here for gauge or comparison. Instead, we use another
well vetted approximate algorithm results from Shao and Zuo (2016)(SZ16)
as the benchmark (see the reason given below).

Results from other leading competitors (RS98, CN08, and CH13) are
also summarized in Table 2 for comparison, where RS98 uses the fourth
proposal on page 196, CH13 uses a modified third proposal and projects
onto two dimensional affine space (k = 2). All three used 104 directions.

Reviewing the table, one can see that SZ16 is very fast yet most accurate,
AA1 is even faster (0.135 v.s. 0.144 seconds) but least accurate (6% v.s.
100%). Whereas AA2 (adding 104 balls into the ball intersection process)
is still quite fast (2.921 v.s. 0.135 seconds) but much more accurate ( 100%
v.s. 6%) compared with AA1.

All results are based on the minimum halfspace depth from 50 times rep-
etitions of the algorithms. Due to the consumed time factor, 50 is selected
here. Changing this number, results might be slightly different. AA1 how-
ever is not sensitive at all since it has nothing to do with the randomness
as long as the data set is fixed. It will serve as a good candidate of tools for
ultra-high dimensional data screening to immediately identify outliers.

SZ16, RS98, CH13 and AA2 gets the smallest possible depth (1/47), i.e
the exact depth, whereas CH08 is the second worst accurate yet the slowest
one.
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Table 2. The performance of approximate algorithms based on 16 points
out of a thirteen dimensional data set of size 47

Methods accuracy total time (seconds) average time per point per repeat

SZ16 16/16 115.0 0.144

AA1 01/16 108.2 0.135

AA2 16/16 2337.5 2.921

RS98 16/16 3767.0 4.709

CN08 5/16 4094.2 5.118

CH13 16/16 2548.7 3.186

Remarks 4.2

(I) Table 2 presents results from a single run of different methods. One
may have concerns on the representativeness and fairness of the comparison
since most methods (except AA1) involve randomness.

(II) To meet the concerns, Table 3 below lists the results based on R =
10 repetitions using different methods. The empirical mean squared error
(EMSE) is defined as EMSE = 1

R

∑R
i=1 ‖θ̂i − θ‖2 where θ is the target

(exact) depth value vector with length 16 and each component 1/47, and
θ̂i = minNrk=1{d̂ik} is the depth vector estimate from the ith repetition and d̂ik
is the depth vector estimate from the kth interior repetition within the ith
exterior repetition, min function works column-wise, Nr = 50 is the interior
repetition number of the methods.

Table 3. The performance of approximate algorithms based on 16 points
out of a thirteen dimensional data set of size 47, repeated 10 times

Methods EMSE total time (seconds) average time per replication

AA1 0.8302 1145.11 114.5

AA2 0.0064 3208.78 320.9

RS98 0.0000 3672.13 367.2

CN08 0.0399 4044.45 404.4

CH13 1.36e-4 3504.71 350.4

Inspecting the table reveals that speed of AA1 works again its accuracy.
AA2 is the third most accurate and the second most fast. RS98 is the most
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accurate. CH13, the improved version of RS98 that indeed consumed less
time but less accurate. CH08 is the slowest yet the second worst accurate.

For RS98, CN08, and CH13, they used 103 random directions. Their
performance could be improved by increasing this number (we could not
afford in our simulation though), but see second point in Remark 4.2. If
time permits one can increase Nr to get more accurate results. Nb = 103 is
the total number of balls added into the intersection process in AA2, whereas
AA1 corresponds to Nb = 0. One cannot afford to have R = 100 since it
will consume roughly 10.2 and 11.2 hours for RS98 and CH08, respectively.

Remarks 4.3

(I) Randomness Note that AA1 actually has nothing to do with the
randomness since the 16 points are fixed and the algorithm uses the same
fixed steps in each replication. All others involve randomness. The purpose
of repeating of the calculation 50 times is to alleviate their randomness. The
potential advantage of the ball-based approach AA2 will be more clearly
demonstrated for larger d in subsection 4.2.

(II) Tuning parameters All methods use parameters. In RS98, CN08,
and CH13, one parameter is the number of random directions used. Increas-
ing this number generally could improve their performance, but not always
as one expected. For example, using 105 directions, CN08 costs 848 seconds
but still misses 11 exact depth out of 16 in a single replication with its EMSE
0.0299 still significant. The same is true for the repetition number which
can improve their performance but also could consume intolerable time.

Tuning Nb and the repeating number (Nr) in AA2 could change the
performance of AA2. Generally speaking, smaller Nb or Nr will speed up
the procedure but pay the price of losing accuracy.

(III) Platform and programming SZ16 is not included in the ta-
ble since its original code and many of its employed stochastic optimization
procedures are in R, the results above are based on matlab programming.
From this point of view, the comparison of results in table 2 is somewhat
unfair (since results are not obtained from the same platform and program-
ming). One expects that SZ16 will still perform very well even using matlab
in view of its single run result from R though (the two should not have very
big difference).
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4.2 Simulated data

After comparing the accuracy and efficiency of AA algorithms with other
leading approximate algorithms, we next investigate the effect of the sample
size n and dimension d on the performance of AA algorithms in terms of
average consumed time (seconds) per data point (i.e. its scalability and
feasibility).

As discussed in Section 3.3, AA1 costs at mostO((d+m+log(n))·n2) time
to compute the HD m/n of a point, whereas AA2 just adds Nb additional
balls into the process. It then costs O((d+m+ log(n)) · n2 +Nbn log(n)).

Now we have experimental results for finite numbers d and n in order
to better understand the asymptotic conclusions above. The average time
consumed per data point by different AAs are plotted in Figure 7 and 8.
Here we generalized random multivariate standard normal d dimensional n
points, and computed the HD of each sample point and then determined
the average time spent (seconds) per data point. We considered 7 different
dimensions d, they are d = [10, 20, 40, 80, 100, 150, 200] and 6 sample sizes
n = [50, 100, 200, 300, 400, 500]. For smaller n, the results are obtained by
averaging results from many replications (hundreds or thousands). Inspect-
ing the Figures reveals that the average times consumed by the algorithms
are roughly linear in dimension d and logarithmically quadratic in sample
size n. Again here one has to take randomness into consideration.

There are two seemingly surprising and yet puzzling phenomena in the
Figures. First, for fixed n, when d increases (from 10), the average consumed
time per data point contrarily decreases in many cases. Second, when adding
1000 more balls into the intersection process (AA2), the average consumed
time per data point decreases reversely (d 6= 10) compared with AA1.

The first phenomenon can be explained by the fact that for a fixed n,
data points in the lower (smaller) d are more “dense” (or less “sparse”) than
in higher (larger) d, where points are more likely lying on the boundary, i.e.
they are more likely to have lower depth m/n close to 1/n and therefore
need fewer loops (time) to stop (get depth).

For the second phenomenon, it is due to the fact that AA1 tends to
overestimate depth as m∗/n, whereas AA2 tends to quickly get exact depth
m/n. Here δ = m∗ − m > 0 tends not to be a small integer, therefore
δn2 log(n) dominates the extra term N∗b n log(n) in the time complexity of
AA2, where N∗b is much less than Nb (= 1000) since AA2 terminates when
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Figure 7: Average time consumed (in seconds) per multivariate standard normal

point wrt different n and d = [10, 20, 40, 80, 100, 150, 200] by AA1.

the stopping condition is satisfied and does not necessarily exhaust all Nb

balls.

Remarks 4.4

(I) Assuming that X is in GP and n ≤ d+1, then one can conclude that
the HD of all sample points is 1/n. In this sense, one just needs to focus
on the cases n > d + 1 in the simulations. The other cases are kept in the
figures for the purpose given below.

(II) It is impossible to compute the HD in most combinations above using
exact algorithms (or even most existing approximate algorithms). However,
we checked the accuracy of AA2 by considering different cases of n ≤ d+ 1
and found that it was capable of getting the exact depth 1/n very fast in all
the cases considered. For its performance in other cases, see Table 6.

(III) For comparison purpose, we list results in Table 6 below. Note that
RS98 (n ≤ d) and CH13 (n ≤ d−2) are no longer applicable, whereas CN08
and AA1 and AA2 make no restrictions on d and n.
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Figure 8: Average time consumed (in seconds) per multivariate standard normal

point wrt different n and d = [10, 20, 40, 80, 100, 150, 200] by AA2.

Thanks to AA2 which is efficient (very fast) yet accurate (produced the
smallest possible HD, 1/n, thus exact depth), we luckily have a benchmark
for the evaluation of the performance of other competitors in the Table,
otherwise no exact algorithms could be invoked to handle all the cases.

Inspecting the table immediately reveals that AA2 can very fast get
exact HD in all the combinations whereas other leading competitors fail
to get exact HD in most cases (except RS98 which can get most exact
HD but costs much more time than AA2 though). ‘NA’ means that the
corresponding algorithm collapses or fails to produce results within 96 hours.

To compute the HD of a point w.r.t. a data set in Rd, RS98 and CH13 run
in the time of O(NdNr(d

3 + dn)) and O(NdNr(n log n+ 2dn)) respectively,
while AA2 and CN08 run in the time of O(Nr((Nb+n)n log n+ (d+m)n2))
and O(NdNrdn) respectively, where Nd = 103: the random directions used
in RS98, CN08, CH13; Nb = 103: the balls used in AA2; Nr = 50: the
interior repetitions in all methods; and m/n is the depth of point to be
computed. These results are manifested in Table 6. Only AA2 can freely
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handle the ultra-high dimensional case (e.g. (200 ≤ d ≤ 800, n = 800), etc.).

Table 6. Performance of approximate algorithms based on standard
normal points with various d and n in 10 replications. Table entries (a; b)

are a=EMSE, and b=time consumed (seconds) per replication.

AA2 AA1 RS98 CN08 CH13

d = 20, n = 18

(0; .3020) (.6358; 15.10) (NA; NA) (0; 495.3) (16.06; 543.5)

d = 20, n = 22

(0; .7101) (.8616; 28.65) (0; 857.4) (0; 622.8) (0; 1273.9)

d = 20, n = 34

(0; 3.247) (.9585; 100.2) (0; 936.9) (3.4e-4; 977.0) (0; 2130.9)

d = 20, n = 80

(0; 36.51)∗ (1.268; 109.9) (0; 3607.7) (.0088; 2281.5) (.1420; 2230.8)

d = 20, n = 100

(0; 108.1)∗ (1.853; 1997) (7e-5; 5565.8) (.0307; 2733.7) (.3308; 2822.1)

d = 100, n = 200

(0; 154.9) (.8782; 19175) (NA; NA) (NA; NA) (NA; NA)

* entries with Nr = 100.

For fixed d, when n gets larger, one should increase Nr, say, to 100,
depending on the accuracy wanted and time allowed. In fact, for d = 20
and n = 80 or 100, AA2 used Nr = 100 to get the exact depth. Increasing
Nd may also improve the accuracy of RS98, CN08, and CH13 with the price
of paying intolerably long times (one cannot afford to increase Nr for them
as well). This is the reason why the overall replication is just 10 times. In
our simulation, the same data sets are generated and used for all methods.

When n ≤ (d+1), the exact HD of each point in any GP data set is 1/n.
Can this still hold when n > d+1? The answer is negative. This nevertheless
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does not exclude that it still can happen for a specifically generated random
data which is in GP. In fact, it happens for a wide range of n. For example,
in our simulation, when d = 20, for all n selected, the simulated normal
points all have HD 1/n (for n = 22 this is verified in 104 replications).

This is a rather unexpected result. It gives an astonishing perspective of
the position of sparse data in high dimensions. That is, all simulated points
lie at the corners of the convex hull formed by general position data in high
dimensions. In fact, when n = 300 the phenomenon above still happened.

Remarks 4.5

(I) Discussions and simulations above assume that the underlying data
sets are in GP (indeed the simulated points are in GP with probability one).
In practice, one may have non-GP data sets. Authors in the literature often
state that assume (w.l.o.g.) that the data sets are in GP. They claim that
one can always employ some small perturbation to convert the data set to
one that is in GP.

(II) Let’s first assume that the technique works. The real issue here is
the complexity of checking whether the data set is in GP. It is an O(nd)
problem that is as costly as computing the halfspace depth.

(III) The observation above calls for procedures robust towards the po-
sition of the data set, i.e. the procedures that can treat both in GP or not
in GP data. What about the robustness of procedures discussed so far?

(IV) It turns out that the ball-based approach (i.e.Algorithm 1 and 2)(see
Example 3.1) and CN08 is robust against the position of the data set, while
the traditional hyperplane (determined by d points) and projection to its
orthogonal unit vector approaches (including RS98 and CH13) will fail for
some non-GP data sets.

5 Concluding Remarks

A closed balls based approach for the definition and therefore computation
of Tukey’s halfspace depth is proposed and discussed. An exact comput-
ing algorithm and approximate ones are presented. The exact algorithm
is based on

(
n

(n−m+1)

)
minimum enclosing balls (MEBs), where m/n is the

halfspace depth the algorithm is computing. Therefore, like all other exist-
ing exact algorithms based on the classical polyhedral cones approach, it is
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not practically feasible for large n.

Approximate algorithms thereafter proposed are much more promising,
especially AA2 which is efficient (fast) and yet much more reasonably accu-
rate compared with other leading competitors. To compute HD for large d
(especially ultra-high d) and large n, AA2 as one of the best choices among
the leading competitors has been demonstrated whereas AA1 can serve as
a good candidate of tools for quickly detecting outliers in those scenarios.

The exact algorithm proposed here is anticipated to be improved very
soon by researchers with computational geometry and combinatorial tech-
niques and other tricks (such as dynamic maintenance and different search
methods and data structures). For approximate algorithm AA2, issues like
(i) how many balls are needed to be added and how many interior replica-
tions are needed (ii) how to determine the optimal range of the center of
these balls are needed to be further addressed.

Recently, another type of feasible approximate algorithm was proposed
by SZ16, where multiple try Metropolis algorithm combining with a simu-
lated annealing algorithm is employed in the sampling scheme to speed up
the searching for a global optimization solution. SZ16 however needs tuning
parameters (at least four) and is much more sophisticated than AA2 which
just has parameter Nb (the number of balls added, usually Nb = 1000) and
Nr (the number of interior replication, usually Nr = 100) that need to be
tuned and is more feasible for lay people in practice.

The essence of SZ16 is that it shares the dividend of latest developments
in sampling techniques (e.g. MCMC) and stochastic optimization schemes,
etc. while AA2 benefits directly from the ball-based new definition. Both
procedures depend on d linearly and are robust against position of data
sets. This begs for a further comparison investigation into the two and
which deserves to be pursued elsewhere.
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