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Abstract

Challenges with data in the big-data era include (i) the dimension p is often larger than the sample size
n (ii) outliers or contaminated points are frequently hidden and more difficult to detect. Challenge
(i) renders most conventional methods inapplicable. It, thus, attracts tremendous attention from
statistics, computer science, industry, and bio-medical communities. Numerous penalized regression
methods have been introduced as modern methods for analyzing high-dimensional data. Dispropor-
tionate attention has been paid to the challenge (ii) though. Penalized regression methods can do
their job very well and are expected to handle the challenge (ii) simultaneously. The fact is most
of them can break down by a single outlier (or single adversary contaminated point) as revealed in
this article. The latter systematically examines a large class of penalized regression methods in terms
of their robustness and provides quantitative assessment and reveals that most of leading penalized
regression methods can break down by a single outlier. Consequently, a novel robust penalized regres-
sion method based on the least squares of depth trimmed residuals is proposed and studied carefully.
Experiments with simulated and real data reveal that the newly proposed method can outperform
some leading competitors in terms of estimation and prediction accuracy in the cases considered.
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1 Introduction

Least squares regression, the classic approach Consider the classic linear regression
model,

yi = (1,x′i)β0 + ei := w′iβ0 + ei, (1)

where random variables yi and ei ∈ R, random vector xi ∈ Rp−1 (p ≥ 2), and β0 ∈ Rp is
an unknown parameter of interest, ′ stands for the transpose. One wants to estimate the β0

based on a given sample z(n) := {(x′i, yi)′, i ∈ {1, · · · , n}} from a parent model y = w′β0 + e.

Call the difference between yi (observed value) and w′iβ (predicted value), ri, for a can-
didate coefficient vector β (which is often suppressed).

ri := ri(β) = yi − (1,x′i)β := yi −w′iβ. (2)

To estimate β0, the classic least squares (LS) estimator is the minimizer of the sum of
the squared residuals (SSR): β̂ls = arg minβ∈Rp

∑n
i=1 r

2
i . Alternatively, one can replace the

square by the absolute value to obtain the least absolute deviations (lad) estimator (aka, L1,
in contrast to the L2 (LS), estimator). A straightforward derivation leads to

β̂ls = (X ′nXn)−1X ′nY n. (3)

where Y n = (y1, · · · , yn)′, Xn = (w1, · · · ,wn)′ and the columns of Xn are assumed to be
linearly independent (i.e. Xn has a full rank p (≤ n)).

The LS estimator is popular in practice across a broader spectrum of disciplines due to its
(i) great computability (with the computation formula); and (ii) optimal properties (the best
linear unbiased estimator (BLUE) and the uniformly minimum variance unbiased estimator
(UMVUE), page 186 of [46] when the i.i.d. error ei follows a normal N (0, σ2).

It, however, can behave badly when the error distribution is slightly departed from the
normal distribution, particularly when the errors are heavy-tailed or contain outliers.

Penalized regression, the state of the art In modern applied data analysis, the number
of variables often is even larger than the number of observations. Traditional methods such
as the LS can then no longer be applied due to the design matrix X being less than p
rank (n < p), hence LS estimator is no longer unique and its variance is large if X is close
to collinear. Furthermore, models that include the full set of explanatory variables often
have poor prediction performance as they tend to have large variance while large models are
in general difficult to interpret. Ridge regression, minimizing SSR, subject to a constraint∑p

i=1 |βi|2 < t

β̂ridge(λ) := arg min
β∈Rp

{ n∑
i=1

r2
i + λ

p∑
i=1

|βi|2
}
, (4)

first proposed in [23, 24], is a useful tool for improving prediction in regression situations
with highly correlated predictors and tackling the non-inverse issue,

β̂ridge(λ) = (Xn
′Xn + λId×d)

−1Xn
′Yn, (5)

its variance is smaller than that of the LS estimator. Therefore, better estimation can be
achieved on the average in terms of mean squared error (MSE) with a little sacrifice of bias,
and predictions can be improved overall.
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Bridge regression, introduced in [15], generalized the ridge regression, minimizes SSR
subject to a constraint

∑p
i=1 |βi|γ ≤ t with γ ≥ 0,

β̂bridge(λ, γ) := arg min
β∈Rp

{ n∑
i=1

r2
i + λ

p∑
i=1

|βj |γ
}
. (6)

Ridge regression (γ = 2) and subset selection (γ = 0) are special cases.

Least absolute shrinkage and selection operator (lasso) was introduced in [51], minimizing
SSR subject to a constraint

∑p
j=1 |βj | ≤ t, is a special case of the bridge with γ = 1. As

pointed out in [51], the lasso shrinks the LS estimator β̂ls towards 0 and potentially sets
β̂j = 0 for some j. That is, it performs as a variable selection operator simultaneously.

Other remarkable approaches of regularized regression for high dimensional sparse data
include, among others, (i) elastic nets, introduced in [59], a generalization of the ridge and
lasso models, which combines the two penalties and yields

β̂enet(λ1, λ2) := arg min
β∈Rp

{ n∑
i=1

r2
i + λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

β2
i

}
. (7)

(ii) square-root lasso, introduced in [4], to avoid the pre-estimation of standard deviation σ
of the error term in lasso and achieve a better performance, is defined as

β̂sqrt−lasso = arg min
β∈Rp

{( n∑
i=1

r2
i

)1/2
+ λ

p∑
i=1

|βi|
}
. (8)

(iii) slope (Sorted L-One Penalized Estimation) introduced in [6], aim to control the false
discover rate (FDR),

β̂slope = arg min
β∈Rp

{ n∑
i=1

r2
i +

p∑
i=1

λi|β(i)|
}
, (9)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and |β(1)| ≥ |β(2)| ≥ · · · ≥ |β(p)|.

Strong connections between some modern methods and a method called least angle regres-
sion (lar) was revealed in [11] where they developed an algorithmic framework that includes
all of these methods (lasso, boosting, forward stagewise regression) and provided a fast im-
plementation, for which they used the term ‘lars’. Lars is a promising technique/algorithm
for variable selection applications, offering a nice alternative to stepwise regression. For an
excellent review on lars and lasso, see [22].

Other outstanding penalized regression estimators include, among others, SCAD [13],
[14] and MCP [57]. It is not our goal to review all existing penalized/regularized regression
estimators in the literature. For a detailed account about lasso and its variants, refer to Table
6 of [16] or Fig. 1 of [54], and [58] and references therein.

The penalized regression estimators above improve prediction accuracy meanwhile en-
hance the interpretability of the model. They, however, pay the price of inducing a little bit
of bias in addition to the lack of robustness. There are numerous published articles related to
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lasso and regularized regression in the literature. However, there are disproportionately few
addressing the robustness of the estimators. Are they as robust as supposed (or expected)?
Or rather can they resist the influence of just a single contaminated point (or outlier) that
is typically buried in high-dimensional data?

Robust versions of the lasso (or ridge) estimators have been sporadically considered in
the literature. The LS in lasso (or ridge), is replaced by M-estimators, as in [55] and [32]; or
replaced by a Huber-type loss function, as in [37] and [49]; or by lads, as in [53];

β̂lad−lasso = arg min
β∈Rp

{ n∑
i=1

|ri|+ λ

p∑
i=1

|βi|
}
, (10)

or replacing correlations in lars by a robust type of correlation, as in [27] (Rlars); or by S-
([41]) and MM- ([56]) estimators, as in [34] for ridge regression (Rrr); or by the least trimmed
squares (LTS) ([40]), as in [2]. The LTS is defined as

β̂
n

lts := arg min
β∈Rp

h∑
i=1

(r2)i:n, (11)

where (r2)1:n ≤ (r2)2:n ≤ · · · , (r2)n:n are the ordered squared residuals, dn/2e ≤ h ≤ n, and
d·e is the ceiling function. The authors of [2] replaced SSR by the loss of LTS and defined

β̂lts−lasso = arg min
β∈Rp

{ h∑
i=1

(r2)i:n + hλ

p∑
i=1

|βi|
}
, (12)

The idea of [2] has extended to logistic regression with elastic net penalty in [29], and
penalized weighted M-type estimators for the logistic regression have also been studied in [5].

Most estimators above (except Rlars, Rrr, and β̂lts−lasso), like both L1 and L2 (LS)
estimators, unfortunately, have the worst case 0% asymptotic breakdown point (i.e., one bad
point can ruin (break down) the estimator), in sharp contrast to the 50% of the least squares
of trimmed (LST) estimator (see Section 3.1 of [65] or Section 3 here). [29] and [5] both assert
their estimators are robust, but no qualitative robustness assessment of their estimators has
been established yet. The same situation with the estimator in [45].

Now let us take a close look at the three exceptions above. The main drawback of the
Rlars is the lack of a natural definition or a clear objective function, as commented in [2].
The main focus of [34] is robustifying ridge regression (Rrr).

Only β̂lts−lasso in [2] has an established high finite sample breakdown point (see Section
3 for definition). Their result, though covers the lasso-type estimators, does not cover the
elastic nets and other estimators; the authors failed to (i) explain why their estimator can
have a breakdown point higher than 50% and (ii) study the properties (such as equivariance
and consistency) of their estimator. Furthermore, the LTS is notorious for its inefficiency
(i.e., usually has a large variance). On the other hand, the LST introduced in [65] is as
robust as LTS and can outperform the LTS (especially in efficiency) as demonstrated in [65].
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Based on observations above, questions we want to address are: (i) Can one replace
the loss of LS with that of the LST in the penalized regression? How does the resulting
estimator perform? Is it more robust, compared with existing ones? (ii) Can one provide a
more general breakdown robustness assessment that covers a large general class of regularized
regression estimators and explain why a breakdown point higher than 50% can be (iii) Besides
robustness, what are other desirable properties for a regression estimator?

The main contributions of this article include (i) it examines the robustness for a large
class of (penalized) regression estimators (including all leading ones, e.g. the L1 and L2,
the ridge, the bridge, the lasso, the elastic net, the slope, the lad-lasso, and the sqrt-lasso)
and proves that they can break down by a single adversary contaminating point; (ii) it,
hence, introduces a novel and robust penalized least squares of depth trimmed estimator
(β̂lst−enet) that has a much higher breakdown point robustness and outperforms leading
competitors; and (iii) it proposes an efficient computational algorithm for the estimator and
vets its performance for simulated and real high-dimensional data and reveals that β̂lst−enet
can outperform its competitors in most cases considered; (iv) it discusses three desired
equivariance properties for regression estimators.

Section 2 establishes a robust result for a large class of general regularized regression
estimators and reveals that most of leading estimators (including bridge, lasso, slope, and
enet) has the worst breakdown point robustness. Section 3 invokes the least squares of depth
trimmed (LST) procedure introduced in [65] and reviews its robust property meanwhile intro-
duces a class of penalized regression estimators based on the LST and studies their properties
including, existence and uniqueness, robustness, and equivariance. Section 4 is devoted to the
establishment of the finite sample prediction error bound and estimator consistency. Section
5 addresses the computation issue of β̂lst−enet. Section 6 consists of simulation/comparison
study and real data application of five competing methods. Section 7 ends the article with
some concluding discussions. Proofs of main results are deferred to an Appendix.

2 Robustness of a class of penalized regression estimators

Are the existing numerous penalized regression methods mentioned above as robust as they
are expected or believed to be? Or rather can they resist the influence of just a single outlier
(or adversary single-point contamination)? We now formally address this issue.

2.1 A robustness measure

In the finite sample practice, the most prevailing quantitative measure of the robustness of
any regression or location estimators is the finite sample breakdown point, introduced in [10].

Definition [10] The finite sample replacement breakdown point (RBP) of a regression
estimator t at a given un-contaminated sample z(n) = {z1, z2, · · · , zn}, where zi := (x′i, yi)

′,
is

RBP(t, z(n)) = min
1≤m≤n

{
m

n
: sup
z
(n)
m

‖t(z(n)
m )− t(z(n))‖2 =∞

}
, (13)
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where z
(n)
m stands for an arbitrary contaminated sample by replacing m original sample points

in z(n) with arbitrary points in Rp and ‖x‖q = (
∑n

i=1 x
q
i )

1/q is the `q-norm for vector x ∈ Rn.
�

Namely, the RBP of an estimator is the minimum replacement fraction that could drive
the estimator beyond any bounds. It turns out that both L1 (least absolute deviations) and
L2 (least squares) estimators have RBP 1/n (or 0%) whereas LST can have (bn/2c−p+2)

/
n

(or 50%) (see Section 3), the highest possible asymptotic value for any regression equivariant
estimators (see pages 124-125 of Rousseeuw and Leroy (1987) [42] or Section 3), where b·c
is the floor function. We now present a general RBP result for a large class of penalized
regression estimators.

2.2 A general result on penalized regression estimators

Theorem 2.1 For any given data set z(n) = {(x′i, yi)′, i ∈ {1, · · · , n}} in Rp (p ≥ 2), let

β̂
∗
(λ1, λ2, γ, z

(n)) be the penalized regression estimator, which minimizes the objective

O(β, λ1, λ2, γ, z
(n)) := f

( 1

n

n∑
i=1

L(ri)
)

+ g(β, λ1, λ2, γ), (14)

where λi, γ ≥ 0, the combined penalty function g(β, λ1, λ2, γ) ≥ 0 and f(x) is continuous,
strictly increasing over [0,∞), f(0) = 0 and f(x) → ∞ as x → ∞, the loss function L(x) is
non-negative, non-decreasing over [0,∞), L(0) = 0 and L(x)→∞ when x→∞. Then

RBP(β̂
∗
(λ1, λ2, γ, z

(n)), z(n)) = 1/n.

Proof: see the Appendix. �

Remarks 2.1

(i) Conditions on L(x) are relative loose, they hold automatically if L(x) is non-negative,
non-decreasing, and convex in x and L(0) = 0. The L(x) in theorem covers almost all
loss functions (with two exceptions out of fifteen) in Table 6 of [16]. The penalty function
g(β, λ1, λ2, γ) covers almost all existing ones including, among others, λ1‖D1β‖γγ+λ2‖D2β‖22,
with Di being penalty matrices. Typical f includes the identity or square-root function
(covering the square-root lasso [4]). To the best of our knowledge, a similar general result,
judging the robustness of a large class of penalized regression estimators, never appeared in
the literature before.

(ii) The RBP result in the theorem is very general since the loss function covers most of
the existing loss functions in the machine learning and AI literature, e.g., the most popular
ones: negative log-likelihood; the `1, the `2, or any `q ( q ≥ 1) loss, Huber loss, and the loss
of the lasso and most of its variants (see Table 6 of [16]). The penalty format covers most of
the existing ones in the literature (indeed, it covers all twenty-five penalty functions listed in
Table 1 of [54]).
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(iii) The great generality of the result in the theorem implies that most of the existing
penalized regression (and the classic L1 and L2) estimators are not robust. In fact, they can
break down with just one single outlier which often buries in high dimensional data. �

Now that most of the existing penalized regression estimators can be broken down by a
single outlier (or single-point contamination). Furthermore, existing robust penalized regres-
sion estimators are most ad hoc, e.g., Rlars of [27] is for robustifying lars, and Rrr of [34]
is for robustifying ridge regression, and [5] is mainly for robustifying the penalized logistic
regression estimators. Only β̂lts−lasso of [2] and β̂enetLTS of [29] that employed the loss of
LTS to replace the SSR in lasso have really high breakdown robustness meanwhile do the
variable selection job. But the major drawback of the LTS is its inefficiency (it has a larger
variance) as demonstrated in [65] (also Sections 3 and 6) and Figures 2 and 3 of [29].

A natural question is: can one construct a penalized regression estimator that is robust
against the outliers or contamination meanwhile is more efficient (i.e., with a smaller variance
than that of the LTS)? In the sequel, we achieve this goal by adopting the loss of least squares
of depth trimmed (LST) introduced in [65] and applying it to the penalized regression setting.

3 A class of penalized regression estimators based on the LST

3.1 Least Squares of depth trimmed (LST) estimator

Definition 3.1 To robustify the LS, least trimmed squares (LTS) estimator was introduced
in [40]. The procedure orders the squared residuals and then trims the larger ones and keeps
at least h ≥ dn/2e squared residuals, the minimizer of the sum of those trimmed squared

residuals is called an LTS estimator as defined in (11). β̂
n

lts is highly robust but is not very
efficient, as reported in [35] (page 132) or in [48] having just 7% or 8% asymptotic efficiency.
A more efficient competitor, least squares of trimmed (LST) estimator, is introduced in [65],
overcoming LTS drawback while sharing its high robustness and fast computation advantages.

Depth (or outlyingness)-based trimming scheme trims points that lie on the outskirts (i.e.
points that are less deep, or outlying). The outlyingness (or, equivalently, depth) of a point
x is defined to be (strictly speaking, depth=1/(1+outlyingness) in Zuo (2003) and Zuo and
Serfling (2000))

O(x,x(n)) = |x−Med(x(n))|/MAD(x(n)), (15)

where x(n) = {x1, · · · , xn} is a data set in R1, Med(x(n)) = median(x(n)) is the median
of the data points, and MAD(x(n)) = Med({|xi − Med(x(n))|, i ∈ {1, 2, · · · , n}}) is the
median of absolute deviations to the center (median). It is readily seen that O(x,x(n)) is a
generalized standard deviation, or equivalent to the one-dimensional projection depth (see
Zuo and Serfling (2000) and Zuo (2003, 2006) for a high dimensional version). For the notion
of outlyingness, cf. Stahel (1981), Donoho(1982), and Donoho and Gasko (1992).

For a given constant α (hereafter assume α ≥ 1), β, and z(n), define a set of indexes

I(β) =
{
i : O(ri, r

(n)) ≤ α, i ∈ {1, · · · , n}
}
. (16)
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where r(n) = {r1, r2, · · · , rn} and ri is defined in (2). Namely, the set of subscripts so that
the outlyingness (see (15)) (or depth) of the corresponding residuals are no greater (or less)
than α (or 1/(1 + α)). It depends on z(n) and α, which are suppressed in the notation. For
a fixed constant α in the depth trimming scheme, consider the quantity

Qn(β) := Q(z(n),β, α) :=
n∑
i=1

r2
i 1
(
O(ri, r

(n) ≤ α
)

=
∑
i∈I(β)

r2
i , (17)

where 1(A) is the indicator of A (i.e., it is one if A holds and zero otherwise). Namely,
residuals with their outlyingness (or equivalently reciprocal of depth minus one) greater
than α will be trimmed. When there is a majority (≥ b(n + 1)/2c) identical ris, we define
MAD(r(n)) = 1 (since those ri lie in the deepest position (or are the least outlying points)).

Minimizing Q(z(n),β, α), one gets the least sum of squares of trimmed (LST) estimator,

β̂
n

lst := β̂lst(z
(n), α) = arg min

β∈Rp
Q(z(n),β, α). (18)

Differences between LST and LTS Compared with the LTS defined in (11), it is readily
seen that both estimators trim residuals. However, there are two essential differences: (i)
the trimming schemes are different. The LTS employs a rank-based trimming scheme that
focuses only on the relative position of points (squared residuals) with respect to others and
ignores the magnitude of the point and the relative distance between points whereas the LST
exactly catches these two important attributes. It orders data (residuals) from a center (the
median) outward and trims the points (residuals) that are far away from the center. This is
known as depth-based trimming. (ii) Besides the trimming scheme difference, there is another
difference between the LTS and the LST, that is, the order of trimming and squaring. In the
LTS, squaring is first, followed by trimming whereas, in the LST, the order is reversed.

All the differences lead to an unexpected performance difference in the LTS and the LST
as demonstrated in the illustrating Figure 1 (see Ex 1.1 of [65]) and Table 1.

Existence and uniqueness of β̂
n

lst have been addressed in [65], it is also equivariant (see [65]).

Equivariance A regression estimator t is called regression, scale, and affine equivariant if,
respectively (see page 116 of [42]) with N = {1, 2, · · · , n}

t
(
{(w′i, yi +w′ib)′, i ∈ N}

)
= t

(
{(w′i, yi)′, i ∈ N}

)
+ b, ∀ b ∈ Rp

t
(
{(w′i, syi)′, i ∈ N}

)
= st

(
{(w′i, yi)′, i ∈ N}

)
, ∀ s ∈ R1

t
(
{(A′wi)

′, yi)
′, i ∈ N}

)
= A−1t

(
{(w′i, yi)′, i ∈ N}

)
, ∀ nonsingular A ∈ Rp×p.

Now with the measure of robustness (presented in the last section), naturally one wants

to ask the question: is β̂
n

lst theoretically more robust than the LS estimator β̂
n

ls?

Robustness and efficiency of LST

We shall say z(n) is in general position when any p of observations in z(n) gives a unique
determination of β. In other words, any (p-1) dimensional subspace of the space (x′, y)′
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(a) Left panel: plot of seven artificial points and
two reference lines (y = 0 and y = x), which line
would you pick? Sheerly based on the trimming
scheme and objective function value, if one uses
the number h = bn/2c + b(p + 1)/2c given on
page 132 of [42], that is, employing four smallest
squared residuals, then the LTS prefers y = 0 to
y = x whereas the LST reverses the preference.

Right panel: the same seven points are fitted
by the LTS, the LST, and the LS (benchmark).
A solid black line is the LTS given by ltsReg.
Red dashed line is given by the LST, and green
dotted line is given by the LS - which is identical
to the LTS line in this case.
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(b) Left panel: plot of seven highly correlated
normal points (with mean being the zero vec-
tor and covariance matrix with diagonal entries
being one and off-diagonal entries being 0.88)
and three lines given by the LST , the LTS, and
the LS. The LS line is identical to the LTS line
again.

Right panel: the LTS line (solid black) and
the LST line (dashed red), and the LS (dotted
green) for the same seven highly correlated nor-
mal points but with two points contaminated
nevertheless. The LS line is parallel to the LTS
line due to the attributes in the R function lt-
sReg that is based on [43]).

Figure 1: (a) Performance difference between the LST and the LTS. (b) Performance difference between the
LST and the LTS when there are contaminated points (x-axis leverage points).

contains at most p observations of z(n). When the observations come from continuous distri-
butions, the event (z(n) being in general position) happens with probability one.

Lemma 3.1 [65] For β̂
n

lst defined in (18) with (α ≥ 1) and z(n) in general position, we have

RBP(β̂
n

lst, z
(n)) =

{
b(n+ 1)/2c

/
n, if p = 1,

(bn/2c − p+ 2)
/
n, if p > 1.

(19)

�
Namely, the LST shares the best 50% asymptotic breakdown value of the LTS meanwhile

it is much more efficient than the LTS as demonstrated in Table 1 below (also see [65])).

Here we generate R = 1000 samples {zi = (x′i, yi)
′, i ∈ {1, · · · , n}} with various ns from

the normal distribution, where mean being a zero-vector in R20, and covariance being a 20
by 20 matrix with diagonal entries being 1 and off-diagonal entries being 0.9. Then ε% of
each sample are contaminated by m = dnεe points, we select m points of {zi, i ∈ {1, · · · , n}}
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randomly and replace them by (7, 7, · · · , 7,−7)′ then apply the three methods, the LTS, the
LST, and the LS, to the contaminated data sets, we calculate the empirical mean squared
error (EMSE) for estimator t, EMSE :=

∑R
i=1 ‖ti − β0‖2/R. Here ti is the realization of t

obtained from the ith sample with size n and dimension p = 20. If t is regression equivariant,
then we can assume (w.l.o.g.) that the true parameter β0 = 0 ∈ Rp. Meanwhile, we also
compute, SVAR(t) :=

∑R
i=1 ‖ti− t̄‖2/(R−1), the sample variance of t, where t̄ is the mean of

all {ti, i ∈ {1, 2, · · · , R}}, and obtain the finite sample relative efficiency (RE) of a procedure
(denoted by P) with respect to the LS by the ratio of RE(P ) := SVAR(β̂ls)/SVAR(β̂P ).
At the same time, we record the total time (TT) consumed by different procedures for all
replications. The performance of LTS, LST, and LS is assessed by the four criteia: EMSE,
SVAR, TT, and RE. Results are listed in Table 1 (note that both LTS and LST can resist
up to 50% contamination without breakdown).

procedure EMSE SVAR TT RE EMSE SVAR TT RE

n=100 ε = 0% n=200 ε = 0%

LTS 0.5282 0.4764 153.82 0.5164 0.2172 0.1651 265.98 0.6510
LST 0.2969 0.2447 10.911 1.0053 0.1594 0.1073 31.690 1.0019
LS 0.2979 0.2460 1.3254 1.0000 0.1596 0.1075 1.5022 1.0000

n=100 ε = 30% n=200 ε = 30%

LTS 142.73 142.54 891.18 0.0864 31.662 31.627 855.82 0.1583
LST 0.4394 0.3875 25.787 31.768 0.2128 0.1606 60.492 31.182
LS 12.410 12.311 1.3358 1.0000 5.1072 5.1072 1.5138 1.0000

Table 1: EMSE, SVAR, TT (seconds), and RE for LTS, LST, and LS based on 1000 Gaussian samples for
various ns and contamination rates. LST is computed by lstReg with α = 3, LTS was computed by ltsReg.

Inspecting the table reveals some shocking findings (i) in the pure Gaussian sample setting,
LST can outperform both LTS and LS in terms of EMSE and SVAR, this is even more striking
in the contaminated sample setting; (ii) in terms of speed, no one can run faster than the
LS, but LST (R-based) running faster than LTS (Fortran-based) meanwhile with a smaller
EMSE and SVAR in all cases considered; (iii) LTS performs unexpectedly disappointing not
only always being the slowest but also always having the worst EMSE and SVAR, robust
LTS is ironically inferior to non-robust LS for the contaminated samples (RE is just 8.6%).

3.2 A class of penalized regression estimators based on the LST

Definition 3.2 Now that we have a much more robust regression estimator than the LS,
which turns out to be more efficient than the LTS. It is quite natural to replace the SSR
in (7) by the Qn defined in (17), and minimize it, subject to two constraints: `γ-constraint

9



∑p
i=1 |βi|γ ≤ t1, t1 ≥ 0, γ ≥ 1; and `2-constraint

∑p
i=1 β

2
i ≤ t2, t2 ≥ 0, the minimizer is

β̂
n

lst−enet(α, λ1, λ2, γ) := arg min
β∈Rp

{ 1

n

n∑
i=1

r2
iwi + λ1

p∑
i=1

|βj |γ + λ2

p∑
i=1

β2
i

}
, (20)

where λi := λ(ti) ≥ 0, α, γ ≥ 1, and wi := wi(β) := wi(β, α, ri, z
(n)) = 1

(
O(ri, r

(n)) ≤ α
)
.

Before studying its robustness, we address existence and uniqueness of β̂
n

lst−enet(α, λ1, λ2, γ).

Existence and uniqueness

Existence and uniqueness are implicitly assumed for many other penalized regression
estimators in the literature. We formally address them for β̂

n

lst−enet(α, λ1, λ2, γ) below.

Theorem 3.1

(i) β̂
n

lst−enet(α, λ1, λ2, γ) in (20) always exists;

(ii) β̂
n

lst−enet(α, λ1, λ2, γ) in (20) is unique provided that (a) λ1 > 0 and γ > 1 or (b) λ2 > 0.

Proof : see the Appendix. �

The proof of above theorem needs the following result.

Lemma 3.2 Let S ⊂ Rp be an open set and f(x): Rp → R1 be strictly convex over S and
continuous over S (the closure of S). Let x∗ be the global minimum of f(x) over S and y
be a point on the boundary of S, then f(y) > f(x∗).

Proof: see the Appendix. �

Remarks 3.1

(i) Note that β̂
n

lst−enet(α, 0, 0, γ) = β̂
n

lst. A sufficient condition for its uniqueness is Cn :=
X ′ndiag(wi, · · · , wn)Xn/n being invertible. That is, the rank of Xn and the matrix
formed by any its k :=

∑
iwi sub-rows is p (see [65]). However, in many applied data

set cases, the number of variables (p) is even larger than the number of observations
(n), we must have rank < p. So it might not be unique. However, if (a) or (b)
in (ii) of the theorem holds, then the strictly convexity guarantees the uniqueness of

β̂
n

lst−enet(α, λ1, λ2, γ).

(ii) The uniqueness of β̂
n

lst−enet(∞, λ1, 0, γ) (here α =∞ is in the sense that α→∞), that

is, the uniqueness of β̂bridge(λ1, γ) has been intensively discussed in the literature, see

e.g., in the Theorems 1 and 2 of [17], it was shown that β̂
n

lst−enet(∞, λ1, 0, γ) is unique if
λ1 > 0 and γ > 1 plus some condition on the Hessian matrix of SSR; in their Lemma 2
(γ = 1) of [59], authors showed that it is not unique when there is repeated row of Xn,
it is unique with probability one under the some assumption on predictor variables,
argued in [52] and in [1] (γ = 1). Also see section 2.6 of [21]. �

10



The most relevant question now is: Is β̂
n

lst−enet(α, λ1, λ2, γ) much more robust than the
existing ones? Or rather, what is its RBP? The next result covers both the LST and the LTS
based regularized estimators and provides an affirmative answer to the question.

Theorem 3.2 Let β̂(λ1, λ2, γ, z
(n)) be the penalized regression estimator which minimizes

the objective function

Q(β, λ1, λ2, γ, z
(n)) :=

1

n

n∑
i=1

r2
iwi + λ1

p∑
i=1

|βi|γ + λ2

p∑
i=1

β2
i , (21)

where wi ∈ {0, 1} is an indicator function: 1(r2
i ≤ r2

h:n) or 1(O(ri, r
(n)) ≤ α) and

∑n
i=1wi = k

(dn/2e ≤ k ≤ n), λi ≥ 0, and λ1 + λ2 > 0, 1 ≤ γ ≤ 2. Then

RBP(β̂(λ1, λ2, γ, z
(n)), z(n)) = (n− k + 1)/n.

Proof : see the Appendix. �

Remarks 3.2

(i) The theorem covers the special case, the main result (Theorem 1) of [2] with k = h

(the default h value is b(n+ p+ 1)/2c) for the β̂
n

lts−lasso (incidentally, the boldfaced ρ there
is defined to be a vector in Rn, Theorem 1 fails to explain how to order n vectors in Rn).

The theorem covers the RBP of β̂
n

lst−enet(α, λ1, λ2, γ) in (19) for any α ≥ 1, the RBP reaches
its highest value (bn/2c + 1)/n when α = 1 (k = b(n + 1)/2c in this case). It also for the
first time provides the RBP for the reweighted sparse-LTS (or enet-LTS ) in [2] (or [29]) with
k = nw there. The theorem tells that ridge, bridge, lasso, and enet all have the lowest RBP
1/n. The square loss in (21) can be extended to be the more general loss L in Theorem 2.1.

(ii) Note that the RBP result can be higher than (b(n − p)/2c + 1)/n, the latter is the
upper bound for any regression equivariant estimator (see Theorem 4 on page 125 of [42]).
The main reason for this is that the estimator violates the regression equivariance. Without
the regression equivariance, any constant vector will have the best possible RBP (100%), but
it is not a good estimator at all. Note that the RBP definition in [2] and [28], promoting a
constant vector as the most robust estimator, is different from the traditional one. �

Equivariance

Among regression, scale, and affine equivariance, the three desired properties (discussed
in Sec.3), the regression equivariance is the most fundamental (see [62]), it demands that if
one shifts response variable y up and down, then the regression line (or hyperplane) should
shift accordingly up and down. The LS estimator and all its robust alternatives mentioned
so far satisfy the three properties. But this is not the case for most of regularized regression
estimators. In fact,

Theorem 3.3 Among three equivariant properties, only scale equivariance is posessed by
β̂ridge in (4), the β̂sqrt−lasso in (8), the β̂lad−lasso in (10), and β̂

n

lts−enet(α, 0, λ2, γ) in (20)
among all penalized regression estimators discussed previously.

11



Proof: Scale equivariance of the β̂ridge, the β̂sqrt−lasso, the β̂lad−lasso , the β̂lad−lasso, and

β̂
n

lts−enet(α, 0, λ2, γ) is trivial verification in light of (4), (8), (10), and (20). For other prop-
erties and penalized estimators, it suffices to show that regression equivariance is violated.

When yi is shifted to yi + w′ib, if the regression coefficients β is also shifted to β + b,
then SSR is invariant whereas the constraint or penalty still on β. �

Remarks 3.3

(i) There has been an abundance of theoretical and computational work on the generalized
lasso and its variants and its special cases. Among hundreds, if not thousands, publications
on penalized regression in the literature, very few addressed equivariance. Exceptions are [36],
and [28]. It is admitted in [36] that their shooting S-estimator fails to meet the regression
equivariance. [28] asserted that via transformation and re-transformation, their estimator
enjoys the three equivariance properties.

(ii) Standardizing y and x columns are common practice in the literature for many com-
putational algorithms for regularized estimators. This, however, amounts to assuming im-
plicitly that these estimators meet the three equivariance properties. Furthermore, centering
the observations of y and x might spread the contamination or outlyingness. �

4 Finite sample predition error bounds–consistency

In this section we assume that the true model is Y = Xβ0 + e where Y = (yi, · · · , yn)′,
Xn×p = (w1, · · · ,wn)′, and e = (e1, · · · , en)′ with yi, ei, and wi defined in (1) and (2).

We investigate the difference between Xβ̂
n

lst−enet and Xβ0 (prediction error). Write β̂
n

for

β̂
n

lst−enet for simplicity.

In light of wi in (20), the index set I(β) in (16) is the same as {i : wi = 1}, the scalar
wi ∈ {0, 1} in (20) is different from the vector wi above. Write D(β) = diag(w1, · · · , wn)
with wi defined in (20). Let A be a n by n symmetric positive semidefinite matrix, a norm (or

seminorm) induced by A is ‖x‖2A = x′Ax for any x ∈ Rn. Although β̂
n

provides predictions

for all i, but we just employed residuals ri with i ∈ I(β̂
n
) in (20), so instead of looking at

‖X
(
β̂
n
− β0

)
‖2, we will focus on the squared perdition error ‖X

(
β̂
n
− β0

)
‖2
D(β̂

n
)
.

Lemma 4.1 Assume that β0 is the true parameter of the model in (1), β̂
n

:= β̂
n

lst−enet is
defined in (20). We have

‖X
(
β̂
n
− β0

)
‖2
D(β̂

n
)
≤ 2

n
e′D(β̂

n
)X(β̂

n
− β0) +

1

n

(
‖e‖2D(β0) − ‖e‖

2
D(β̂

n
)

)
+ λ1‖β0‖γγ + λ2‖β0‖22 − λ1‖β̂

n
‖γγ − λ2‖β̂

n
‖22. (22)

Proof : see the Appendix. �

Write (e∗1, · · · , e∗n) := (e∗)′ with e∗i = ei1
(
i ∈ I(β̂

n
)
)
. Define two sets

S1 :=

{
max

1≤j≤p
2|(e∗)′x(j)|/n ≤ q1

}
, S2 :=

{
‖e‖2D∗/σ2 −Nd ≤ q2

}
,

12



where x(j) is the jth column of the fixed design matrix Xn×p, D
∗ = D(β0) − D(β̂

n
),

a diagonal matrix with D∗(i, i) = 1
(
D(β0)(i, i) = 1 and D(β̂

n
)(i, i) = 0

)
and Nd =

|I(β0)| − |I(β0) ∩ I(β̂
n
)|. Note that e′D(β̂

n
) = (e∗1, · · · , e∗n) := (e∗)′. Assume hereafter

that max1≤j≤p ‖x(j)‖2 ≤ cx for a constant cx.

In the classical setting ei in (1) is assumed N(0, σ2), it is needed for the second result
below, but for the first, it can be relaxed to be a sub-Gaussian variable. For the definition of
the latter, we refer to Definition 1.2 of [39] and/or Theorem 2.1.1 of [38].

Lemma 4.2 (i) Let eis in (1) be independent sub-Gaussian variables that have variance
proxy σ2, then (e∗)′x(j)/cx is a sub-Gaussian variable with variance proxy σ2. (ii) Let ei in
(1) be i.i.d. N(0, σ2), then ‖e‖2D∗/σ2 follows a χ2 distribution with Nd degrees of freedom.

Proof : see the Appendix. �

Lemma 4.3 Assume that eis in (1) are i.i.d. N(0, σ2) and other assumptions in Lemmas
4.1-4.2 hold, for any δ ∈ (0, 1) let

q1 =
4cxσ

n

(
2
√
p+

√
2 log(2/δ)

)
; q2 = 2

√
log(2/δ)

(√
|I(β0)|+

√
log(2/δ)

)
,

then
P (S1) ≥ 1− δ/2; P (S2) ≥ 1− δ/2. (23)

Proof : see the Appendix. �

In light of all Lemmas we are in the position to present the main result.

Theorem 4.1 Set γ in (20) to be one and assume that the assumptions in Lemma 4.3 hold.
For any δ ∈ (0, 1), selecting λ1 ≥ q1. Then with probability at least 1− δ, one has

‖X(β̂
n
− β0)‖2

D(β̂
n

)
≤ 2λ1

√
p‖β0‖2 + λ2‖β0‖22 +

σ

n
(q2 +Nd). (24)

Remarks 5.1

(i) If select λ1 ≥ q1 and in the order of O(
√
p/n) and

√
λ2 ≤ λ1

√
p and if ‖β0‖2 is in the

order less than O(n/p) (e.g., o(n/p)), then one obtains the consistency if Nd = o(n) since
q2 = O(n1/2).

Theorem 4.1 and (23) certainly provide a finite sample squared perdition bound, but the
assumption of Nd = o(n) above is too arbitrary, it can be dropped nevertheless. Set α in

(19) to be one, then K := |I(β0)| = |I(β̂
n
)| = b(n + 1)/2c. Treat the two parts of D∗

separately, notice that both ‖e‖2D(β0)/σ
2 and ‖e‖2

D(β̂
n

)
/σ2 have a χ2 distribution with the

same degrees of freedom K. Write 1
n

(
‖e‖2D(β0) − ‖e‖

2
D(β̂

n
)

)
in (21) as σ2

n

(
(‖e‖2D(β0)/σ

2 −

K)+(K−‖e‖2
D(β̂

n
)
/σ2)

)
. Apply the exponential tail bounds on page 1325 of [30], the upper

bound in RHS of (23) becomes 2λ1
√
p‖β0‖2+λ2‖β0‖22+2σ2q2/n. The consistency is obtained

without Nd = o(n) assumption.
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(ii) In above discussions, we treat the unknown σ as known. It appears in q1 and in
the upper bound of (23). In practice, we have to estimate it by an estimator, say σ̂ so that
P (σ̂ ≥ σ) with high probability (say, 1 − δ/3, in this case, if we change δ/2 and log(2/δ) in
Lemma 4.3 to δ/3 and log(3/δ) respectively, then Theorem 4.1 still holds). Such an estimator
σ̂ has been given on page 104 of [7].

(iii) One limitation of Theorem 4.1 is that the design matrix is fixed. For the general
random design X case, one can treat it following the approaches of [3] and [18]. �

5 Computation algorithm

Re-parametrizations

(i) Following the notation used in (34), we note that the objective function on the RHS
of (20) can be written as (also see the proof of Lemma 4.1)

On(β, λ1, λ2, γ) =
1

n
‖Y −Xβ‖2D(β) + λ1

p∑
j=1

|βj |γ + λ2‖β‖22,

where D(β) = diag(w1, · · · , wn) with wi defined in (20). Now for every λ2 > 0, if we write
X∗(n+p)×p = (1 + λ2)−1/2(X ′n×p,

√
λ2Ip×p)

′, Y ∗(n+p)×1 = (Y ′n×1,0
′
p×1)′, β∗p×1 = (1 + λ2)1/2β.

Then D∗(β∗)(n+p)×p := (D(β∗), Ip×p)
′ = (D(β), Ip×p)

′. If let λ∗1 := λ1/(1 + λ2)1/2, we have

On(β∗, λ1, λ2, γ) = On(β, λ1, λ2, γ) =
1

n
‖Y ∗ −X∗β∗‖2D∗(β∗) + λ∗1

p∑
j=1

|β∗j |γ ,

An `1-type penalized regression with an objective function much resembling that of a lasso-
type problem (especially when in the γ = 1 case). Denote the minimizer of the objective

function above by β̂
∗
. It can be computed via the approach for lasso such as the lars algorithm

of [11].

(ii) Alternatively, if we set λ∗ = λ1 + λ2 and α∗ = λ2/(λ1 + λ2) (note that λ1 + λ2 > 0,
otherwise we have a non-penalized problem addressed in [65]), then we have

On(β, λ1, λ2, γ) = On(β, α∗, λ∗, γ) :=
1

n
‖Y −Xβ‖2D(β) + λ∗

(
(1− α∗)

p∑
j=1

|βj |γ + α∗‖β‖22
)
.

(25)
Note that α∗ ∈ [0, 1) (a pure ridge regression case is excluded) and λ∗ ∈ (0, λ0] for some λ0

(which is set to be max1≤j≤p |2Y ′x(j)|/n as in the literature, see e.g., [2] and Section 2.12
of [7]). Boundedness of parameters is the advantage of this formulation. For a given data
set z(n) = {(x′i, yi)′, i ∈ {1, · · · , n}}, we now present the outline our approximate algorithm

(AA) for β̂
n

lst−enet.

Pseudocode for computing β̂
n

lst−enet (lst-enet)

(1) Sample two indices {i, j} (two points) and obtain at least p βs: βk (k ∈ {1, · · · , p})
using the algorithm AA1 in [65] and obtain index sets I(βk) := {i : wi := wi(β

k) = 1}.
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(2) For each βk, employing the strategy below select a pair (α∗, λ∗) with respect to
sub-data sets (D(βk)X, D(βk)Y ).

(3) Based on the sub-data sets (D(βk)X, D(βk)Y ) obtain solution β̂
k

via LARS algo-
rithm (limited the total steps to 900)

(4) EvaluateOn(β, α∗, λ∗, γ) with respect to βk and β̂
k

(k ∈ {1, · · · , p}). Update β̂
n

lst−enet
(initially it is a 0 vector) to be the one that minimizes

On(β, α∗, λ∗, γ) =
1

n

∑
i∈I(β)

wir
2
i (β) + λ∗

(
(1− α∗)

p∑
i=1

|βj |γ + α∗‖β‖22
)
.

(5) Repeat (1)-(4) 50 times and output the one that has the minimum objective value.

In algorithm above, (α∗, λ∗) is assumed to be selected. Now we address the issue how to
choose this pair. Obviously, we can search among a finite grids over the region [0, 1)× (0, λ0].

Choice of the penalty/tuning parameters via cross-validation.

We first pick a (relatively small) grid of values for λ∗, say from 0 (excluded) to λ0 with
λ0/10 as the step so that there are 10 equal spaced grid points. For the estimation of λ0, one
can see [11] and [2], or (ii) of Re-parametrization above.

For each λ∗, we will select an α value among 10 equal spaced grid points over [0, 1) via
five-fold cross-validation (CV). In k-fold cross-validation, the data are split randomly in k
blocks (folds) of approximately equal size. Each block is left out once to fit the model, and
the left-out block is used as test data (see Section 7.10.1 of [20]).

The CV is a popular method for estimating the prediction error and comparing different
models (see [59] and [20]). The popular R package glmnet can be used to select the parameters
as did in [29], which automatically checks the model quality for a sequence of values for α,
taking the mean squared error as an evaluation criterion.

We use a 5-fold CV via our own developed program to avoid the drawback of the glmnet
which often leads to the error message “from glmnet C++ code (error code 7777); All used
predictors have zero variance” (this especially is true under the adversary contamination
scenario). The latter leads to a problem for evaluating the performance of the procedure
enetLTS of [29] when the contamination at 10% level in next section. We have to drop
enetLTS in the comparison in that situation. We will run ten times of our 5-fold CV, then
the pair (λ∗, α) with the minimum averaged CV error will be the final chosen pair (λ∗, α∗).

The lars algorithm can be used to fit a linear model based on the k− 1 blocks to obtain a
β̂(λ∗, α). Other algorithms, such as coordinate descent algorithms (including Fu’s shooting
algorithm ([17]) (see 2,11.1 of [7]) can be employed to speed up the computation.

15



6 Illustration examples and comparison

6.1 Simulation

All R code for simulation and examples as well as figures in this article (downloadable via
https://github.com/left-github-4-codes/lst-enet) were run on a desktop Intel(R)Core(TM) 21
i7-2600 CPU @ 3.40 GHz.

Five regularized regression procedures We like to compare the performance of our
procedure lst-enet with leading regularized regression procedures including lasso, lars, enet,
and enetLTS. lasso will be computed via R package “lars”, it can be obtained via “elasticnet”.
The latter package is mainly for the enet whereas the former mainly focuses on lars. Though
lasso could be obtained via “glmnet” but due to the contamination scenario, the glmnet
often does not work. Unfortunately, enetLTS employing glmnet in its CV calculation, it
can not hand the model y = w′β0 + e appeared in (1) (an error message “glmnet fails at
standardization step”). We use an alternative model given below

Simulation designs To copy with the situation above, we simulate data from the true
model: y = Xβ0 + σe, e ∼ N(0, 1), where the true unknown parameter β0 is assumed to
be a p-dimensional vector with the first p1 := d6% ∗ pe components are threes and the rest
p2 := p − p1 components are zeros. σ is set to be 0.5 but could be changed to other values
(leading to different signal-to-noise ratio).

Design I: take sample of X from N(0, σIp×p) and e from N(0, 1). Design II: take sample

from X ∼ N
(
0,Σ

)
with Σ(i, j) = ρ

|i−j|
1 , 1 ≤ i, j ≤ p1, Σ(i, j) = ρ

|i−j|
2 , p1 < i, j ≤ p,

ρ1 = 0.95, ρ2 = 0.05, all other entries of Σ are zeros and e ∼ N(0, 1). We take n ∈ {50, 100}
samples from theX and e above and calculate the response yi = Xiβ0+σei, i ∈ {1, 2, · · · , n}.

Contamination levels and schemes Let ε be the contamination level, when ε = 0
there is no contamination, an ideal situation (and not realistic). Consider the scenario
ε ∈ {0, 0.05, 0.1, 0.2} (i.e., 0%, 5%, 10%, 20% contamination). Let m = bε ∗ nc, sample
m indices from {1, · · · , n}.

Contamination Scheme I: add 20 to the corresponding m components of (e1, · · · , en),
compute yi = Xiβ0 +σei, i ∈ {1, 2, · · · , n}, and add 20 (component-wise) to the correspond-
ing m rows of (X1, · · · ,Xn)′. Scheme II: add 20 to the corresponding m components of
(e1, · · · , en), compute yi = Xiβ0 + σei, i ∈ {1, 2, · · · , n}. Replace the corresponding m rows
of (X1, · · · ,Xn)′ by a p-vector with its first component being 104 and the rest are zeros, do
the same for the corresponding m components of (y1, · · · , yn) but with a scalar 1010.

Four performance criteria The first measure is the estimation error, or L2-error/L2-loss
between the true parameter β0 and the estimator β̂P via procedure P and is defined as:

L2-error(β0, β̂P ) := ‖β0 − β̂P ‖22, (26)

where ‖a− b‖2 is the `2-norm between the two p-dimensional vectors.

On the other hand, one has to take the performance measure into the context of the
sparsity model consideration. In the following we introduce the true sparsity discovery rate
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(TSDR) and the false sparsity discovery rate (FSDR). For notation simplicity, we denote the

unknown parameter by β0 (assume it has at least one zero coordinate), an estimator by β̂
P

.

TSDR(β0, β̂
P

) :=

∑p
i=1 1(β0

i = 0, β̂Pi = 0)∑p
i=1 1(β0

i = 0)
, (27)

namely, the fraction of correctly detecting/discovering the zero coordinates of the true pa-

rameter β0. The higher the TSDR, the better the β̂
P

.

FSDR(β0, β̂
P

) :=

∑p
i=1 1(β0

i 6= 0, β̂Pi = 0)∑p
i=1 1(β0

i 6= 0)
, (28)

namely, the fraction of falsely detecting/discovering as zero coordinate for the true parameter

β0. The lower the FSDR, the better the β̂
P

.

The fourth performance measure is a popular one, it is (square-)root of mean squared
(prediction) error (RMSE) on testing data. That is, for a given data set, one first partitions
data into training and testing two parts (we take the ratio 7:3 for partition). Then fit the
model and get estimator based on the training data and using the testing data to get the
RMSE. Testing data sets are often assumed to be clean (have no contamination or outliers)
in the literature. This, however, is not realistic in practice.

Let Xtest, ytest be the testing data and β̂P be the estimator obtained from the training
data. Then

RMSE(β̂P ) :=
(

mean
(
(ytest −Xtestβ̂P )2

))1/2
. (29)

The four performance measures above were discussed in the literature before, all are hoped
to be small except the TSDR which is hoped to be as high as possible. All (but RMSE)
depend on the unknown parameter β0.

Tuning parameter choices In the following simulation, the tuning parameter α in (17), or
(20) is set to be 3 and h in enetLTS is set to be the default value b0.75(n+ 1)c.

Example 6.1 We first consider ε = 0. For simplicity, data are generated according to design
I and set n = 100, p = 50 (low dimension case) or n = 50, p = 300 (high dimension and
sparsity case). We generated 50 samples forX and e and obtained corresponding responses y.
The simulation results are displayed in Figure 2. For description simplicity, we use hereafter
P1 for lst-enet, P2 for lasso, P3 for lars, P4 for enetLTS, P5 for enet in the Figures.

Inspecting Figure 2 reveals that (i) with respect to (w.r.t.) FSDR, all four perform equally
well with 0% mis-discovery rate; (ii) w.r.t. TSDR, lst-enet, Lars, and lasso perform stably
and at a highest rate while enet with a less stable lower rate but enetLTS performs most
unstable with the lowest median rate; (iii)w.r.t. RMSE, lasso and lars are the best followed
by lst-enet, enetLST has the median RMSE that is also among the best but with the widest
spread of RMSE while enet has the largest (and wider spread of) RMSE; (iv) w.r.t. L2-error,
lst-enet, lars, and lasso are among the best while enetLTS has the worst performance followed
by enet. Overall, lst-enet, lars, and lasso are among the best whereas enetLTS performs worst
overall followed by enet.
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Figure 2: Boxplots for five procedures (P1 stands for lst-enet, P2 for lasso, P3 for lars, P4 for enetLTS, P5 for enet)
and 50 samples each with n = 100 and p = 50 that are generated from design I with 0% contamination rate.

Example 6.2 Perfect normal data are not realistic in practice. We now consider ε = 0.05
(i.e. 5% contamination), all others are the same as Example 7.1 except the contamination
scheme II will be adopted (in 7.1 contamination scheme does not matter). We first consider
n = 100, p = 50 (low dimension case) and for simplicity generate data according design I.
Performance of five procedures in 50 samples is displayed in Figure 3.

Inspecting the Figure reveals that (i) w.r.t. L2-error, lst-enet, enetLTS and enet are
the best performers while lasso and lars are equally dissatisfactory; (ii) w.r.t. RMSE, the
situation is the same as in the L2-error case; (iii) w.r.t. TSDR, enet is the best performer
(this perhaps is false best since it might assign zero to all components of the estimator β̂
that could lead to 100% of its FSDR) while enetLTS is the worst; (iv) w.r.t. FSDR, lst-enet,
enetLTS are the best performers followed by lasso and lars while enet is the loser. Overall,
lst-enet is the only winner.

The simulation study above with 5% contamination is repeated but n = 50 and p = 300
(high dimensional case) and simulation design II is adopted. Results are displayed in Figure
4.

Reviewing the Figure discovered that (i) w.r.t. L2-error, lst-enet, enetLTS, and enet are
the best performers while lasso and lars are disappointing; (ii) w.r.t. RMSE; the situation
is almost the same as in L2-error case; (iii) w.r.t. TSDR, lst-enet, lasso, lars and enet are
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Figure 3: Boxplots for five procedures and 50 samples each with n = 100 and p = 50 that are generated from design
I with 5% contamination rate.

the best performers while enetLTS is the loser; (iv) w.r.t. FSDR, enet is the worst performer
(since its FSDR is almost 100%), enetLTS has the lowest median value while it has the
widest spread. lst-enet is the second best performer, lasso and lars are disappointed. Overall,
lst-enet is the only winner.

Example 6.3 In practice, 10% (or even 20%) contamination is not rare. Next we consider
the case ε = 0.1 (i.e., 10% contamination), contamination scheme II will be adopted. Samples
of 50 with n = 50, p = 300 are generated with simulation design I. Due to the higher level
contamination and the usage of R package glmnet in its background CV calculation, enetLTS
fails to go through the computation we have to drop it in our comparison. Simulation results
are displayed in Figure 5.

Inspecting the Figure reveals that (i) w.r.t. L2-error, lst-enet and enet are the best while
lasso and lars are inferior; (ii) w.r.t. RMSE, the situation is the same as in L2-error case;
(iii) w.r.t. TSDR, enet is the worst performer (it assigns zeros to almost all components of
β̂ that will lead to 100% of its FSDR), lst-enet and lasso are the best performers followed by
lars; (iv) w.r.t. FSDR, lst-enet is the best performer, enet is the worst one while lasso and
lars perform dissatisfactory. Overall, lst-enet is the winner.

The advantage of lst-enet is even better demonstrated in Figure 6 when n = 100 and
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Figure 4: Boxplots for five procedures and 50 samples each with n = 50 and p = 300 that are generated from design
I with 5% contamination rate.

p = 50 and ε = 0.2 (i.e., 20% contamination).

6.2 A real data example

Example 6.4 To analyze a realistic dataset with very large number of variables, we con-
sider the well-known cancer data from the National Cancer Institute (NCI60); see [50] for
more detail about this dataset. A total of 59 of the human cancer cell-lines (n= 59) were
assayed for gene expression and protein expression. The data set, downloadable from the
CellMiner program package, NCI (http://discover.nci.nih.gov/cellminer/) and available from
the R package robustHD, has been repeatedly studied in the literature, see e.g., [31].

We process the data set by following the approach in the literature and treat the gene
expression microarray data as the predictors Xraw (a 59 by 22283 matrix) and the protein
expression data as responses variables Y raw ( a 59 by 162 matrix). Similar to [31] or [2], we
order the protein expression variables according to their scale (employing MAD as a scale
estimator instead of the standard deviation) and select the one with median MAD, serving
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Figure 5: Boxplots for four procedures and 50 samples each with n = 50 and p = 300 that are generated from design
I with 10% contamination rate.

as our dependent variable. It is 75the column of the protein expression data matrix. Denote
it by Y .

Next, we selected out genes using their correlations with Y . Here we adopt the robust
correlation measure in [27]. We obtain 22283 ordered (decreasing) correlations and select top
k1 = 100 corresponding columns of Xraw and combined with the bottom 1000− k1 columns
as our final X, reducing the number of genes from 2,2283 to p = 1, 000. The number p could
easily be changed by adjusting k1.

We partition (by rows) X59×1000 and Y into x.train, y.train and x.test, y.test according
the rate 7 : 3. That is 41 rows of X and Y for the training data sets, the rest 18 rows
as testing data sets. We do this step 50 times and each time we calculate the RMSE (the
only measure that still valid without the given β0) for the five procedures. The results
are displayed in Figure 7, where the fifth performance measure is introduced, that is, the
empirical mean squared error defined as:

EMSE(β̂P ) :=
1

R

R∑
i=1

(
β̂P − β̂P

)2
, (30)

where R is the replication number, namely, R
R−1EMSE is the sample variance of β̂P . x stands

for the sample mean of xi.
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Figure 6: Boxplots for four procedures and 50 samples each with n = 100 and p = 50 that are generated from design
I with 20% contamination rate.
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Inspecting the Figure reveals that (i) lasso, lars, enetLTS (enetLTS has the wider spread)
have the smallest RMSE but their sample variances (EMSE) are among the largest; (ii) RMSE
of the lst-enet is the second smallest but it is the most stable estimator with the distinguished
smallest sample variance (EMSE) which means that with different training and testing data
sets obtained by random partitioning, lst-enet produces very closed solutions; (iii) enetLTS
has the lowest median RMSE but its sample variance is the remarkably large; (iv) enet has
the categorical largest RMSR while its sample variance is also the largest. Overall, lst-enet
is recommended with the rivals enetLTS, lasso and lars.

7 Concluding discussions

The originality of the current work (i) For the first time it discovered that most of the
leading penalized regression estimators for high-dimensional sparse data can break down by a
single outlier (or contaminating point) (Theorem 2.1). (ii) For the first time it demonstrated
that the newly proposed lst-enet estimator not only possesses a high breakdown robustness
(Theorem 3.2) but also performs well in simulation studies and a read data example (Sec-
tion 6), serving as a robust alternative to regularized regression estimators. (iii) the newly
proposed lst-enet estimator, its unique existence (Theorem 3.1), and its finite-sample predic-
tion error bound (Theorem 4.1) are original notion and novel results, respectively. (iv) The
equivarance discussion and result (Theorem 3.3) are novel and original, and so is the (ii) of
Remarks 3.3. (v) Table 1 provides brand new evidence of the superiority of LST over LTS.

Connection to the existing work (i) It adduced the procedure LST introduced in [65]
(see Section 3.1 and figure 1, they are quoting results from [65]). (ii) The idea of replacing the
square loss of LS in lasso by a loss of robust alternative of LS (e.g. the LTS) appeared in the
literature before (see, e.g. [2] and [29]). (iii) A RBP result first appeared in [2] intended for

β̂
n

lts−lasso ( Theorem 1, the main result of [2]), however, our Theorem 3.2 covers their Theorem
1 ((a) the loss function in Theorem 3.2, being more general, covers the one in Theorem 1
of [2], it is not vice versa since the loss in [2] involving the sum of h ordered n-vectors but
Theorem 1 fails to explain how to order the vectors; (b) the penalty terms in Theorem 3.2
are more general and cover the one in Theorem 1, it is not vice versa).

Robust measure Finite sample breakdown point has been served as a prevailing quanti-
tative robustness measure in finite sample practice, the main advantage/beauty is its non-
randomness and probability-free nature that is exactly why it was enthusiastically welcomed
and quick became adopted in a broad spectrum of disciplines after its introduction in 1983.

Critics (e.g., [45]), however, would like to have a more complicated version, a version that
includes randomness and Orlicz norm. They argued that worst case performance might not
be a good robustness measure. On the other hand, it is common practice to use the worst
case performance as in the complexity of an algorithm or the safety of a passenger cars case.

Future possible work (a) Further performance measure could be pursued including (i)
whether β̂ performs well on future samples (i.e., whether E(Y −w′β̂)2 is small); (ii) whether
β̂ closely approximates the “true” parameter β0 (i.e., whether ‖β̂ − β0‖ is small with high
probability); or (iii) whether β̂ correctly identifies the relevant coordinates of the “true,”
sparse parameter β0 (i.e., whether (β0j = 0) ⇔ (β̂j = 0) with high probability). (b)
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Extension of current regression work to a more general setting to cover discriminant analysis,
logistic regression, and other topics.
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Appendix: proofs of main results

Proof of Theorem 2.1

Proof : Clearly, it suffices to show that RBP(β̂
∗
(λ1, λ2, γ, z

(n)), z(n)) ≤ 1/n. Equivalently,
to show that one contaminating point can break down the estimator. Assume, otherwise, one
point is not enough to break down the estimator. That is, there exists an M such that

sup
z
(n)
1

‖β̂
∗
(λ1, λ2, γ, z

(n)
1 )‖2 < M <∞, (31)

where z
(n)
1 stands for any contaminated data set by replacing one point in the original data

set z(n) with an arbitrary point in Rp. We seek a contradiction now.

Replace z1 = (x′1, y1)′ in z(n) = {z1, · · · , zn} by z∗1 = ((δ, 0, · · · , 0), κδ)′. Denote the

contaminated data set by z
(n)
1 and the estimator based on it as β̂

∗
:= β̂

∗
(λ1, λ2, γ, z

(n)
1 ).

Let My = maxi |yi|,Mx = maxi |xi1|. Let βκ = (0, κ, 0, · · · , 0)′ ∈ Rp and set κ =

(
√
p+1)M+1. Select a large δ such that f

(
L(δ)/n

)
≥ f

(
L(My+Mxκ)

)
+g(βκ, λ1, λ2, γ)+1,

This is possible since L(x)→∞ when |x| → ∞ and L(x) is non-decreasing over (0,∞), f(x)
is strictly increasing over [0,∞) and f(x)→∞ as x→∞. Then

O(β̂
∗
) ≤ O(βκ) = f

( 1

n

n∑
i=1

L(ri(βκ))
)

+ g(βκ, λ1, λ2, γ)

= f
( 1

n

n∑
i=2

L(ri(βκ))
)

+ g(βκ, λ1, λ2, γ) (since L(r1) = L(0) = 0)

≤ f
(n− 1

n
L(My +Mxκ)

)
+ g(βκ, λ1, λ2, γ)

< f
( 1

n
L(δ)

)
− 1. (32)

On the other hand, for any β = (β1, β2, · · · , βp)′ ∈ Rp such that (
√
p+ 1)‖β‖2 ≤ κ− 1, one
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has

O(β) ≥ f
( 1

n
L(y1 −w1β)

)
= f

( 1

n
L(κδ − (β1 + δβ2))

)
≥ f

( 1

n
L(κδ − (δ|β1|+ δ|β2|))

)
≥ f

( 1

n
L(δ(κ− (

√
p+ 1)‖β‖2))

)
≥ f

( 1

n
L(δ)

)
, (33)

where the facts: (i) |βi| ≤ ‖β‖i(i = 1, 2) and (ii) ‖β‖1 ≤
√
p‖β‖2 are utilized.

Combining (32) and (33), leads to the conclusion that

‖β̂
∗
(λ1, λ2, γ, z

(n)
1 )‖2 >

κ− 1
√
p+ 1

= M,

which contradicts (31). �

Proof of Theorem 3.1

Proof : λ1 + λ2 = 0 case has been treated in [65], we treat λ1 + λ2 > 0 case here.

(i) Denote the objective function on the RHS of (20) as

On(β, λ1, λ2, γ) := O(β, λ1, λ2, α, γ,z
(n)) =

1

n

n∑
i=1

r2
iwi + λ1

p∑
j=1

|βj |γ + λ2

p∑
i=1

β2
i . (34)

Name the three terms on the RHS above as g(α,β, z(n)), g1(λ1, γ,β), and g(λ2,β), respec-
tively. It is readily seen that the RHS of (20) is equivalent to minimizing G(β, α, λ1, γ) :=
g(α,β,Z(n)) + g1(λ1, γ,β) subject to

∑p
i=1 β

2
i ≤ t2, t2 ≥ 0

By Lemma 2.2 of [65], g(α,β, z(n)) is continuous in β (this is not as obvious as one
believed) while the continuity of g1(λ1, γ,β) in β is obvious. Therefore we have a continuous
function of β, G(β, α, λ1, γ), which obviously has minimum value over the compact set ‖β‖2 ≤
t2.

(ii) Follows the approach originated in [65], we partition the parameter space Rp of β into
disjoint open pieces Rβk , 1 ≤ k ≤ L ≤

(
n

b(n+1)/2c
)

and ∪1≤k≤LRβk = Rp, where A stands for
the closure of the set A, and

Rβk = {β ∈ Rp : I(β) = I(βk), Oi1(β) < Oi2(β) · · · < OiK (β)}, (35)

where Oi(β) := O(ri, r
(n)) for a given z(n) and β, i1, · · · , iK in I(β) and K = |I(β)| with wi

defined in (20)

I(β) =
{
i : wi = 1

}
. (36)

For any β ∈ Rp, either there is Rη and β ∈ Rη or there is Rξ, such that β 6∈ Rη ∪ Rξ and

β ∈ Rη ∩Rξ. Now we claim that β̂ := β̂
n

lts−enet(α, λ1, λ2, γ) ∈ Rβk0 for some 1 ≤ k0 ≤ L.

Otherwise, assume that β̂ ∈ Rβk0 . By Lemma 2.2 of [65], g(α,β,Z(n)) (denoted by
Qn(β) there) is convex over Rβk0 . Therefore, On(β, λ1, λ2, γ) is strictly convex in β over
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Rβk0 . Assume that β∗ is the global minimum of On(β, λ1, λ2, γ) over Rβk0 . Then it is

obviously that On(β̂, λ1, λ2, γ) ≤ On(β∗, λ1, λ2, γ). But this is impossible in light of Lemma
3.2. The strict convexity of On(β, λ1, λ2, γ) over Rβk0 guarantees the uniqueness. �

Proof of Lemma 3.2

Proof: Let B(x∗, r) be a small ball centered at x∗ with a small radius r and B(x∗, r) ⊂ S.
Let Bc := S−B(x∗, r) and α∗ = infx∈Bc f(x). Then, α∗ > f(x∗) (in light of strict convexity)
Since y ∈ S, then there is a sequence {xj} ∈ Bc such that xj → y and f(xj) → f(y) as
j →∞. Hence f(y) = limj→∞ f(xj) ≥ α∗ > f(x∗). �

Proof of Theorem 3.2

Proof : We complete it in two steps.

(i) m ≤ n− k contaminating points are not enough to break down the estimator. Let My =

maxi |yi|, denote the minimizer of the Q in (21) for the contaminated sample as β̂, Then, it
is obviously that

Q(β̂) ≤ Q(0, λ1, λ2, γ, z
(n)
m ) =

1

n

n∑
i=1

r2
iwi ≤

k

n
(M2

y ),

where the last inequality deserves further explanations. Note that there are at least k un-
contaminated (original) points. Therefore, in the case that wi = 1(r2

i ≤ r2
h:n), the RHS of

the above display wants to keep the sum of smallest k = h squared residuals (y2
i ), this sum

is certainly no greater than that of k = h squared residuals from the k original points.

Likewise, in the case of wi = 1(O(ri, r
(n) ≤ α), the RHS wants to keep the sum of squared

residuals (y2
i ) from k = |I(0)| points that have the smallest outlyingness no greater than α,

which is certainly no greater than the sum of k squared residuals from the k original points.

Assume, w.l.o.g. that λ1 > 0 (λ2 > 0 is even easier). Consider any β with ‖β‖2 ≥M :=
((k + 1)M2

y

/
nλ1)1/γ , then

Q(β, λ1, λ2, γ, z
(n)
m ) > λ1

p∑
i=1

|βi|γ = λ1‖β‖γγ ≥ λ1‖β‖γ2 ≥
k + 1

n
M2
y ,

where the fact that ‖x‖q ≤ ‖x‖p when 1 ≤ p ≤ q <∞ is invoked.

The two displays above imply that

‖β̂(λ1, λ2, γ, z
(n)
m )‖2 < M.

(ii) m = n− k + 1 contaminating points are enough to break down the estimator.

The structure and basic idea of this part is an analogue to that of proof of Theorem 2.1.
Assume, otherwise, m points are not enough to break down the estimator. That is, there
exists an M such that

sup
z
(n)
m

‖β̂(λ1, λ2, γ, z
(n)
m )‖2 < M <∞, (37)
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where z
(n)
m stands for any contaminated data set by replacing m points in the original data

set z(n) with m arbitrary points in Rp. We seek a contradiction now.

Replacing m original points zis with the point ((δ, 0, · · · , 0), δκ)′. Denote the contami-

nated data set by z
(n)
m and the estimator based on it as β̂ := β̂(λ1, λ2, γ, z

(n)
m ).

Let My = maxi |yi|,Mx = maxi |xi1|. Let βκ = (0, κ, 0, · · · , 0)′ ∈ Rp and set κ = M + 1.
Select a large δ such that

δ2 ≥ max(k −m, k − 1)

n
(My + κMx)2 + λ1κ

γ + λ2κ
2 + 1,

This is possible since x2 →∞ when |x| → ∞. Note that k ≥ m.

It is readily seen that all residuals based on βκ and m contaminated points are zeros.
All non-zero residuals correspond to uncontaminated original points. Then in the case that
wi = 1(r2

i ≤ r2
k:n)

Q(β̂) ≤ Q(βκ) =
1

n

n∑
i=1

r2
iwi + λ1κ

γ + λ2κ
2

=


1
n

∑k−m
i=1 r2

ji
+ λ1κ

γ + λ2κ
2, if k > m

λ1κ
γ + λ2κ

2 else,
(38)

where the last equality is due that fact that the objective function sums the smallest k squared
residuals, but among n squared residuals, m of them are zeros.

For the case wi = 1(O(ri, r
(n)) ≤ α), one has

Q(β̂) ≤ Q(βκ) =
1

n

n∑
i=1

r2
iwi + λ1κ

γ + λ2κ
2

=
1

n

k−1∑
i=1

r2
ji + λ1κ

γ + λ2κ
2, (39)

where the last equality is due the fact that there is at most n−m = k− 1 non-zero residuals.
Overall we have

Q(β̂) ≤ Q(βκ) ≤ max(k −m, k − 1)

n
(My + κMx)2 + λ1κ

γ + λ2κ
2 ≤ δ2 − 1. (40)

On the other hand, for any β with β1 ≤ ‖β‖2 ≤ κ− 1, one has

Q(β) ≥ (κδ − δβ1)2 ≥ δ2, (41)

where we utilize the fact that among the k squared residuals, there is at least one residual
that is based on a contaminated point since un-contaminated points are at most k − 1.
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Combining (40) and (41) leads to

‖β̂(λ1, λ2, γ, z
(n)
m )‖2 > κ− 1 = M,

which contradicts (37). �

Proof of Lemma 4.1

Proof : Employing the true model assumption: Y = Xβ0 + e and that β̂
n

is the minimizer
of the RHS of (19), this is straightforward by some algebraic derivations. �

Proof of Lemma 4.2

Proof : According to the Definition 1.2 of [39], each e∗i is a sub-Gaussian variable. Write
v(j) = (v1, · · · , vn)′ := x(j)/cx, then (e∗)′x(j)/cx =

∑
i∈I(β̂n

)
viei with ‖v‖2 ≤ 1. Following

the proof of Theorem 1.6 of [39], one obtains the desired result (i). (ii) follows from the fact
that e2

i /σ
2 has a χ2 distribution with one degree of freedom. �

Proof of Lemma 4.3

Proof : First we note that

P
(

max
1≤j≤p

|(e∗)′x(j)|/n > q1/2
)
≤ P

(
max
‖v‖≤1

|v′e∗| > nq1/(2cx)
)
,

where v ∈ Rn. Now invoking Lemma 5.2 and Theorem 2.2.2 and Remark 2.2.2 of [38] (set
nq1/(2cx) to be the t in Remark 2.2.2), one gets that

P
(

max
1≤j≤p

|(e∗)′x(j)|/n > q1/2
)
≤ P

(
max
‖c‖≤1

|c′e∗| > q1/2
)
≤ δ/2,

the statement about P (S1) follows.

For the statement about P (S2), we first invoke Lemma 5.2 and notice that ‖e‖2D∗/σ2

follows a χ2 distribution with Nd degrees of freedom, then invoke Lemma 1 and Comments
on page 1325 of [30], we get

P
(
‖e‖2D∗/σ2 −Nd ≥ 2

√
Ndt+ 2t

)
≤ e−t,

now if one sets δ/2 = e−t, that is t = log 2/δ, then one gets that

P (S2) ≥ 1− δ/2.

The second statement follows. �
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[18] Guédon, O., Mendelson, S., Pajor, A., and Tomczak-Jaegermann, N. (2007), “Subspaces and
orthogonal decompositions generated by bounded orthogonal systems”. Positivity 11 269–283.

[19] Hastie, T. and Efron, B. (2011), “lars: Least angle regression, lasso and forward stagewise”. R
package version 0.9-8.

29



[20] Hastie, T., Tibshirani, R., and Friedman, J. (2017), The Elements of Statistical Learning Data
Mining, Inference, and Prediction, Springer Series in Statistics.

[21] Hastie, T., Tibshirani, R., and Wainwright, M. J. (2015), Statistical Learning With Sparsity:
The Lasso and Generalizations, Boca Raton, FL: CRC Press. [254]

[22] Hesterberg, T., Choi,N. H., Meier, L., and Fraley, C. (2008), “Least angle and `1 penalized
regression: A review”, Statistics Surveys Vol. 2 61–93 ISSN: 1935-7516 DOI: 10.1214/08-SS035

[23] Hoerl, A.E., and Kennard, R.W. (1970a), “Ridge Regression: Biased Estimation for Nonorthog-
onal Problems,” Technometrics, 12, 55–67.

[24] Hoerl, A.E., and Kennard, R.W. (1970b), “Ridge Regression: Applications to Nonorthogonal
Problems,” Technometrics, 12, 69–82.

[25] Huber, P. J. (1981). Robust Statistics. Wiley, New York.

[26] James, G., Witten, D., Hastie, T., Tibshirani, R. (2013), An Introduction to Statistical Learning,
with Applications in R. Springer New York Heidelberg Dordrecht London

[27] Khan, J. A., Van Aelst, S. and Zamar, R. H. (2007), “Robust linear model selection based on
least angle regression”. J. Amer. Statist. Assoc., 102 1289-1299.

[28] Kong, D., Bondell, H.D., and Wu, Y. (2018), “Fully efficient robust estimation, outlier detection
and variable selection via penalized regression”, Statistica Sinica, 28 (2018), 1031-1052.

[29] Kurnaz FS, Hoffmann I, Filzmoser P (2018), “Robust and sparse estimation methods for high-
dimensional linear and logistic regression”, Chemomet Intell Lab Syst, 172:211–222,

[30] Laurent, B. and Massart, P. (2000), “Adaptive estimation of a quadratic functional by model
selection”, Ann. Statist., 28(5): 1302-1338, DOI: 10.1214/aos/1015957395

[31] Lee, D., Lee, W., Lee, Y. and Pawitan, Y. (2011). “Sparse partial least-squares regression and
its applications to high-throughput data analysis”. Chemometrics and Intelligent Laboratory
Systems, 109 1–8.

[32] Li, G., Peng, H. and Zhu, L. (2011), “Nonconcave penalized M-estimation with a diverging
number of parameters”. Statistica Sinica, 21 391–419.

[33] Maglott, D., Ostell, J., Pruitt, K. D. and Tatusova, T. (2005), “Entrez Gene: genecentered
information at NCBI”. Nucleic Acids Research, 33 D54–D58.

[34] Maronna, R. A. (2011), “Robust ridge regression for high-dimensional data. Technometrics, 53
44–53.”,

[35] Maronna, R. A., Martin, R. D., and Yohai, V. J.(2006), “ Robust Statistics: Theory and Meth-
ods”, John Wiley &Sons
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