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1 Detailed Proofs of the Lemmas in the Proof of Theorem 5.1

Recall that
Mn(s) := n1/2 inf

v∈Sp−1
Pn(f(y,w, sn−1/2,v))− n1/2α∗, (1)

where α∗ = RD(β∗;P ), s ∈ K, a compact set in Rp. Now we need to verify (A) and (B) for

M(s) := inf
v∈V (0)

{EP (f(y,w,0,v) ≥ 0) + g(v) · s}. (2)

Lemma 5.2 In light of A2 and A3 (defined before Theorem 5.1),

R1: The sample path of M(s) is continuous in s a.s., and furthermore M(s)→ −∞ as
‖s‖ → ∞ a.s.; R2: M(s) is concave in s a.s..

Proof : Write M(s,v) = EP (f(y,w,0,v) ≥ 0) + g(v) · s. The continuity and concavity of
M(s,v) in s is obvious. The assertion on M(s) follows since the infimum preserves these
properties. We need to show the second part of R1.

First by the compactness of V (0), the continuity and boundedness of g(v) over V (0), for
an arbitrary s, there is a v0 ∈ V (0) such that

inf
v∈V (0)

g(v) · s = g(v0) · s. (3)

By the oddness of g(v) in v, it can be shown that the g(v0) · s < 0 (see the related result
R3 in Lemma 5.3). Now we have that

−∞ ≤ M(s) ≤ EP (f(y,w,0,v0) ≥ 0) + g(v0) · s→ −∞ (a.s.), as ‖s‖ → ∞, (4)

where the second inequality follows from the definition of infimum in M(s). �

Let ŝ be a maximizer of M(s). The existence of a ŝ is guaranteed by R1 and R2. To
show the tightness of ŝ, it suffices to show its measurability (see page 8 of Van Der Vaart
(1998) (VDV98)). The latter is straightforward (see page 197 of Pollard, 1984 (P84), or pages
295-296 of Massé, 2002, for example). Now we have to show that ŝ is unique. Recall that
M(s,v) = EP (f(y,w,0,v) ≥ 0) + g(v) · s. Define

V (ŝ) := {v ∈ V (0),M(ŝ) = M(ŝ,v)},

which is clearly non-empty. Suppose that t̂ is another maximizer of M(s), then by R2,
αŝ + (1 − α)t̂ is also a maximum point for every α ∈ [0, 1]. Following Nolan, 1999, one can
show that

Lemma 5.3 If A2 and A3 hold, then

R3: infv∈V (ŝ) v′x ≤ 0, ∀ x ∈ Rp; R4: V (αŝ + (1− α)t̂) = V (ŝ) ∩ V (t̂), ∀ α ∈ (0, 1). �

Equipped with the results above, we now are in the position to show that

1



Lemma 5.4 If A2 and A3 hold, then ŝ is unique.

Proof : Define G := span
({

g(v) : v ∈ V (αŝ + (1− α)t̂, for an α ∈ (0, 1)
})

. Let r be the

dimension of G . In the sequel, consider different cases of r.

If r = 1, then there exists a v ∈ V (αŝ + (1− α)t̂) such that G is spanned by g(v).

Note that EP (f(y,w,0,v) ≥ 0) = −EP (f(y,w,0,−v) ≥ 0) and g(−v) = −g(v). Now,
by the definitions of M(s), M(s,v) and V (ŝ) and Lemma 5.3, we have

M(ŝ) = M(ŝ,v) = inf
v∈V(0)

M(ŝ,v) = − sup
v∈V(0)

(−M(ŝ,v))

= − sup
v∈V(0)

M(ŝ,−v) ≤ − sup
v∈V(0)

M(ŝ) = −M(ŝ),

which implies that M(ŝ) ≤ 0. By (2) and definitions of M(s,v) and ŝ, M(ŝ) ≥ 0, we conclude
that M(ŝ) = 0. This further implies that ∀ u ∈ V (0) and ∀ s ∈ K,

EP (f(y,w,0,u) ≥ 0) + g(u) · s = 0 and V (0) = V (ŝ). (5)

Now assume that there is another vector v1(6= ±v) ∈ V (0), then g(v1) = kg(v) for some
constant k; otherwise g(v1) and g(v) are linearly independent. (5) implies that

EP (f(y,w,0,v1) ≥ 0) = kEP (f(y,w,0,v) ≥ 0).

Write X and Y for EP (f(y,w,0,v1) ≥ 0) and EP (f(y,w,0,v) ≥ 0), respectively. Then
by P84 (page 149), X and Y have a joint bivariate normal distribution. This, however, is
impossible (see (7) in the main body) since the covariance matrix between X and Y has no
inverse. This implies that Sp−1 = V (0) = {v,−v}, which can happen only if p = 1. Namely,
both g(v) and ŝ are one-dimensional. The uniqueness of ŝ follows in a straightforward fashion
from (5).

We now assume that 2 ≤ r ≤ p. Assume that g(v1), · · · ,g(vr) are linearly independent
and belong to G and vi ∈ V (αŝ+(1−α)t̂) for an α ∈ (0, 1). Let S be any space that contains
both ŝ and t̂, then both ŝ and t̂ satisfy the following linear system of equations:

−g(vi) · s = EP (f(y,w,0,vi) ≥ 0)−M(ŝ), i = 1, · · · , r, s ∈ S

which immediately implies that ŝ − t̂ = 0 is the only solution of the linear system −g(vi) ·
(ŝ− t̂) = 0, i = 1, · · · , r. That is, ŝ is unique. �

We have verified (B) completely. As we noticed above ŝn := n1/2β∗n maximizes Mn(s). To

verify (A) and thus complete the proof of Theorem 5.1, we need only show thatMn(s)
d−→M(s)

uniformly in s ∈ K, where K ⊂ Rp is a compact set. Note that by (11) in the main body

Mn(s) = inf
v∈Sp−1

(
n1/2

(
P (f(y,w,0,v) ≥ 0)− α∗

)
+ g(v) · s + o(‖s‖)

+En(f(y,w,0,v) ≥ 0) + op(1)
)
, (6)
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Write

λn(v, s) := n1/2
(
P (f(y,w,0,v) ≥ 0)− α∗

)
+ g(v) · s + En(f(y,w,0,v) ≥ 0), (7)

M1
n(s) := inf

v∈Sp−1
λn(v, s). (8)

Lemma 5.5 If A1-A3 hold, then Mn(s)
d−→M(s) uniformly over s ∈ K.

Proof : We employ two steps to prove the Lemma.

(i) First, we show sup
s∈K
|Mn(s)−M1

n(s)| = op(1). In light of (6) and (7), we have

sup
s∈K

∣∣Mn(s)−M1
n(s)

∣∣ = sup
s∈K

∣∣ inf
v∈Sp−1

(λn(v, s) + o(‖s‖) + op(1))− inf
v∈Sp−1

λn(v, s)
∣∣

≤ sup
s∈K

sup
v∈Sp−1

|o(‖s‖) + op(1)| = op(1),

where the last equality follows from two facts: (1) the term o(‖s‖) in (6) is o(1) uniformly
in s over K, and (2) the term op(1) in (6) holds uniformly in s over K for large enough n,
because it is obtained from application of stochastic equicontinuity over a class of functions
whose members are close enough in the sense that each other is within a distance δ > 0 w.r.t.
seminorm ρP (see Lemma VII. 15 of P84). Thus (i) follows.

(ii) Second, we show that Mn(s)
d−→ M(s) uniformly over s ∈ K. By virtue of (i), it

suffices to show that M1
n(s)

d−→M(s) uniformly over s ∈ K. Notice that by A2, V (0) = Sp−1
and P (f(y,w,0,v))− α∗ = 0 for any v ∈ V (0). Therefore,

M1
n(s) = inf

v∈V (0)

(
En(f(y,w,0,v) ≥ 0) + g(v) · s + n1/2(P (f(y,w,0,v) ≥ 0)− α∗)

)
= inf

v∈V (0)

(
En(f(y,w,0,v) ≥ 0) + g(v) · s

) d−→ inf
v∈V (0)

(
EP (f(y,w,0,v) ≥ 0) + g(v) · s

)
,

where the last step follows from the central limit theorem for empirical process (Theorem
VII. 21 of P84) and the continuous mapping theorem. The steps above hold uniformly for
s ∈ K. (A) has been verified completely. �

2 Stochastic Equicontinuity Lemma and VC-classes of sets

The main reference of this part is P84. Similar materials could also be found in VDV98 and Van Der

Vaart and Wellner (1996) (VW96).

Stochastic equicontinuity

Stochastic equicontinuity refers to a sequence of stochastic processes {Zn(t) : t ∈ T}
whose shared index set T comes equipped with a semi metric d(·, ·). (a semi metric has all
the properties of a metric except that d(s, t) = 0 need not imply that s equals t.)
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Definition 1 [IIV. 1, Def. 2, P84 ]. Call Zn stochastically equicontinuous at t0 if for each
η > 0 and ε > 0 there exists a neighborhood U of t0 for which

lim supP

(
sup
U
|Zn(t)− Zn(t0)| > η

)
< ε. (9)

�

Because stochastic equicontinuity bounds Zn uniformly over the neighborhood U , it also
applies to any randomly chosen point in the neighborhood. If τn is a sequence of random
elements of T that converges in probability to t0, then

Zn(τ)− Z(t0)→ 0 in probability, (10)

because, with probability tending to one, τn will belong to each U . The form above will be
easier to apply, especially when behavior of a particular τn sequence is under investigation.
This also is the form used in the Theorem 5.1.

To establish (9), we need the chaining technique to prove maximum inequalities, which
involves the covering number (IIV. 2, P84). Chaining is a technique for proving maximal
inequalities for stochastic processes, the sorts of things required if we want to check the
stochastic equicontinuity condition defined in Definition 1. It applies to any process {Z(t) :
t ∈ T} whose index set is equipped with a semimetric d(·, ·) that controls the increments:

P (|Z(s)− Z(t)| > η) ≤ ∆(η, d(s, t)) for η > 0.

It works best when ∆(·, ·) takes the form

∆(η, δ) = 2 exp

(
−1

2
η2/D2δ2

)
,

with D a positive constant. Under some assumptions about covering numbers for T , the
chaining technique will lead to an economical bound on the tail probabilities for a supremum
of ‖Z(s)− Z(t)‖ over pairs (s, t).

Covering number

Definition 2 [IIV. 2, Def. 8, P84]. The covering number N(δ, d, T ) is the size of the smallest
δ-net for T . That is, N(δ, d, T ) equals the smallest m for which there exist points t1, · · · , tm
with mini d(t, ti) ≤ δ for every t ∈ T . The associated covering integral is

J(δ, d, T ) =

∫ δ

0
[2 log

(
N(δ, d, T )2/u

)
]1/2du for 0 < δ < 1. (11)

Chaining Lemma [VII. 2. Lemma 9, P84]. Let {Z(t) : t ∈ T} be a stochastic process
whose index set has a finite covering integral J(δ, d, T ). Suppose there exists a constant D
such that, for all s and t

P
(
|Z(s)− Z(t)| > ηd(s, t)

)
≤ 2 exp

(
−η2/D2

)
for η > O.
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Then there exists a countable dense subset T ∗ of T such that, for 0 < ε < 1,

P
(
|Z(s)− Z(t)| > 26DJ(d(s, t)) for some s, t in T∗ with d(s, t) ≤ ε

)
≤ 2ε

We can replace T ∗ by T if Z has continuous sample paths. �

Random Covering Numbers

The symmetrization method (II. 3, P84) relates Pn−P to the random signed measure P on
that puts mass ±n−1 at each of ξ1..., ξn (random sample from P), the signs being allocated
independently plus or minus, each with probability 1/2 (see page 15 of P84). For central
limit theorem calculations it is neater to work with the symmetrized empirical process Eon =
n1/2P on . Hoeffding’s Inequality gives the clean exponential bound for Eon conditional on
everything but the random signs. For each fixed function f ∈ F , a class of functions,

P
(
|Eonf | > η

∣∣∣ξ ) = P
(∣∣∣ n∑

i=1

±f(ξi)
∣∣∣ > ηn1/2

∣∣∣ξ)
≤ 2 exp

[
− 2(ηnl/2)2

/ n∑
i=1

4f(ξi)
2
]

= 2 exp
[
− 1

2
η2/Pnf

2
]
. (12)

That is, if distances between functions are measured using the L 2(Pn) seminorm then tail
probabilities of Eon under P (∆

∣∣ξ) satisfy the exponential bound required by the Chaining
Lemma, with D = 1. For the purposes of the chaining argument, Eon will behave very much
like the gaussian process BP , except that the bound involves the random covering number
calculated using the L 2(Pn) seminorm (ρPn(f, g) = (

∫
(f − g)2dPn)1/2, for f, g ∈ F ). Write

J2(δ, Pn,F ) =

∫ δ

0

[
2 log

(
N2(u, Pn,F )2/u

)]1/2
du

for the corresponding covering integral, where we interpret P as standing for L 2(P ) semi-
metrics on F , the notation N2(δ, Pn,F ) (a random number) agrees with Definition 2 (also
see II.6, Def. 32, P84).

Stochastic equicontinuity of the empirical processes {En} (the signed measure nl/2(Pn −
P )) at a function f0 in F means roughly that, with high probability and for all n large
enough,

∣∣Enf −Enf0∣∣ should be uniformly small for all f close enough to f0. Here closeness
should be measured by the L 2(P ) seminorm ρP . Of course we need F to be permissible
(see Appendix C, Def. 1, P84), i.e. roughly speaking, there is no measurability issue.

Equicontinuity Lemma [IIV. 4, Lemma 15, P84]

Let F be a permissible class of functions with envelope F in L 2(P ) (call each measurable
F such that |f | ≤ F , for every f ∈ F , an envelope for F ). Suppose the random covering
numbers satisfy the uniformity condition: for each η > 0 and ε > 0 there exists a γ > 0 such
that

lim supP
(
J2(γ, Pn,F ) > η

)
< ε. (13)
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Then there exists a δ > 0 for which

lim supP
(

sup
[δ]
|En(f − g)| > η

)
< ε, (14)

where [δ] = {(f, g) : f, g ∈ F and ρP (f − g) ≤ δ}. �

Up to this point, there are two approaches to establish the stochastic equicontinuity:
(i) via Definition 1, (ii) via Equicontinuity Lemma. The first approach is usually more
challenging, the second one is equivalently to verify the uniformity condition for the random
covering numbers.

A sufficient condition for the latter is the graphs of the functions in F have polynomial
discrimination. The graph of a real-valued function f on a set S is defined as the subset

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0, s ∈ S}.

If the graphs of the functions in F have polynomial discrimination, then N2(u, Pn,F )
is bounded by a polynomial A(u−1)W in u−1 with A and W not depending on Pn (Lemma
II. 36, P84), which amply suffices for the Equicontinuity Lemma: For each η > 0, there is a
γ > 0 so that J2(γ, Pn,F ) ≤ η for every Pn. Therefore, the graphs of the functions in F
having polynomial discrimination becomes a key point for Equicontinuity Lemma.

Polynomial discrimination

Definition 3 [II.4, Def.13, P84]. Let D be a class of subsets of some space S. It is said to
have polynomial discrimination (of degree v) if there exists a polynomial ρ(·) (of degree v)
such that, from every set of N points in S, the class picks out at most ρ(N) distinct subsets.
Formally, if S0 consists of N points, then there are at most ρ(N) distinct sets of the form
S0∩D with D ∈ D. Call ρ(·) the discriminating polynomial for D . D is also called a VC-class
of sets (see Vapnik and Chervonenkis, 1971).

Generalized Glivenko-Cantelli theorem

Theorem 1 [II.4, Th.14, P84]. Let P be a probability measure on a space S. For every
permissible class D of subsets of S with polynomial discrimination,

sup
D
|PnD − PD| → 0 almost surely.

Examples

1. Let D = {(−∞, t], t ∈ R}. The collection of sets is the one in the traditional Glivenko-
Cantelli theorem in one-dimension. The D can pick at most (n+ 1) subsets for any set of n
points on the line. D has polynomial discrimination. Theorem 1 holds true.

2. Let D = {(−∞, t], t ∈ R2}. The collection of all quadrants of the form (−∞, t] in
R2, which can pick fewer than (n + 1)2 subsets from a set of n points on the plane. D has
polynomial discrimination. Theorem 1 holds true.
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3. Let D be the class of all closed halfspaces in Rd, then it can pick at most O(n2) subsets
from a set of n points in Rd. D has polynomial discrimination. Theorem 1 applies.

4. Let D be the class of closed, convex sets. From every collection of n points lying on
the circumference of a circle in R2, it can pick out all 2n subsets. D no longer has polynomial
discrimination. �

Back to the Equicontinuity Lemma, a sufficient condition for the uniformity condition in
the lemma is that the graphs of the functions in F have polynomial discrimination. How to
verify the latter becomes the key point. It turns out that this can be done straightforwardly
by the following lemma.

Lemma 1 [II.5, Lemma 28, P84]. Let F be a finite-dimensional vector space of real functions
on S. The class of graphs of functions in F has polynomial discrimination.

The following lemmas are equally useful as well.

Lemma 2 [II.4, Lemma 18, P84]. Let G be a finite-dimensional vector space of real functions
on S. The class of sets of the form {g ≥ 0}, for g in G , has polynomial discrimination of
degree no greater than the dimension of G .

Lemma 3 [II.4, Lemma 15, P84]. If C and D have polynomial discrimination, then so do
each of: (i) {Dc : D ∈ D}; (ii) {C∪D : C ∈ C and D ∈ D}; (iii) {C∩D : C ∈ C and D ∈ D}.

3 More details for the proofs of Theorems 4.2 and 5.1

Consider three classes of functions that appear in Theorems 5.1 and 4.2,

Fv = {f(·, ·,0,v),v ∈ Sp−1},

Fβ = {f(·, ·,β,v0),β ∈ Rp,v0 ∈ Sp−1 is fixed},

Fβ,v = {f(·, ·,β,v),β ∈ Rp,v ∈ Sp−1}.

Under A0 given in Theorem 4.2, the three classes have a square integrable envelope F. We
want to show that the graphs of the functions in these classes have polynomial discrimination.

It suffice to show this for Fβ,v since other are just special cases.

The graph of a function in Fβ,v contains a point ((y,w), t) if and only if 0 ≤ f(y,w,β,v) ≤
t or f(y,w,β,v) ≤ t ≤ 0. Therefore, the total number of subsets of given n points ((yi,wi), ti)
that can be picked out by the graphs of functions in Fβ,v is less than the total number of
those picked out by the union of classes of sets {f(yi,wi,β,v) ≥ 0} ∪ {f(yi,wi,β,v) ≤ 0}.
We now show that each class of sets has polynomial discrimination, so does the union (by
Lemma 3) and consequently so do the graphs of functions in Fβ,v.

Note that f(y,w,β,v) = (y − β′w)v′w with w′ = (1,x′). It suffices to just treat the
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class of sets {f(yi,wi,β,v) ≥ 0}. We have that

{f(y,w,β,v) ≥ 0,β ∈ Rp,v ∈ Sp−1} =
{(
{(y − β′w) ≥ 0} ∩ {u′x < v}

)
∪
(
{(y − β′w) < 0} ∩ {u′x ≥ v}

)
,u ∈ Sp−2, v ∈ R1,β ∈ Rp

}
.

The RHS is built up from sets of the form {g ≥ 0} with g in the finite-dimensional vector
space of functions. There are four classes of functions on the RHS each forming a finite
dimensional vector space of real functions. By Lemmas 1 and 3, we conclude that the graphs
of the functions in Fβ,v have polynomial discrimination. So do the other class of functions.

That is, they are VC class, or polynomial class of functions in the terminology of P84.
We have all needed for invoking Equicontinuity Lemma.

However, to invoke the Corollary 3.2 in Kim and Pollard (1990), as did in the proof of
Theorem 4.2, we actually need to show that Fβ,v is a manageable class of functions, a notion
defined in Pollard, 1989 (P89). On the other hand, every VC class is a Euclidean class (a term
introduced in Nolan and Pollard, 1987), luckily enough, every Euclidean class is manageable
(P89). �
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